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Abstract
Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenera-

tive disease Friedreich’s ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mi-

tochondria, interacting with other components of the Fe-S cluster machinery, including

cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methio-

nine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this po-

sition, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This

suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity re-

quired a completely functional Nfs1 and correlated with the presence of efficient scaffold

function. A screen of random Isu1 mutations for frataxin-bypass activity identified only

M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persul-

fide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in

the absence of frataxin. Direct targeting of the entire E. coli IscU to Δyfh1mitochondria also

ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substi-

tution i.e. IscU with Ile to Met change led to worsening of the Δyfh1 phenotypes, including

severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters

and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/pro-

karyotic IscU database entries sorted on the amino acid utilized at the M141 position identi-

fied unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the

preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing

amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid

position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and

ancient feature of the prokaryotic Fe-S cluster assembly machinery.

Author Summary

Frataxin was discovered because mutations in the corresponding gene cause the neurode-
generative disease Friedreich’s ataxia. The finding that frataxin protein physically
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associates with scaffold proteins Isu1/IscU places it squarely in the pathway of Fe-S cluster
assembly. Fe-S clusters are essential cofactors for many proteins involved in cellular respi-
ration, DNA repair, translation and other processes. Frataxin is conserved throughout evo-
lution, being present in eukaryotes such as yeast and human and in some prokaryotes
including E. coli. However, differences exist between the eukaryotic and prokaryotic forms
of frataxin. The eukaryotic forms are critical for Fe-S cluster assembly whereas prokaryotic
forms are more dispensable. We found that a key to this difference is a single amino acid
in the scaffold protein Isu1 at position 141. Changes of the eukaryotic amino acid, Met, to
prokaryotic amino acids, Ile, Leu, Cys, or Val, rendered mitochondria more frataxin-inde-
pendent. No other changes were able to replicate this effect. Thus, Isu1 containing Met at
position 141 may have coevolved with frataxin in eukaryotes, conferring frataxin-depen-
dence. In contrast, the appearance of other amino acids at this position may have rendered
prokaryotic cells less dependent on frataxin.

Introduction
Frataxin is a highly conserved protein that is found in both prokaryotic and eukaryotic organ-
isms [1]. The protein was originally identified based on its connection to Friedreich’s ataxia,
which is an inherited neurodegenerative and cardiodegenerative disease resulting from a defi-
ciency of frataxin [2]. Recently a mitochondrial Fe-S cluster assembly protein complex was
identified consisting of frataxin in association with the cysteine desulfurase Nfs1, the small eu-
karyote-specific protein Isd11, and the scaffold protein Isu1 [3,4,5]. This protein complex
serves to synthesize Fe-S cluster intermediates on Isu1 for subsequent transfer to the myriad
proteins that use Fe-S cluster cofactors [6,7]. Iron-sulfur cluster intermediates contain iron and
sulfur bound to the Isu1 scaffold in a [Fe2S2] configuration [8]. Although the precise function
of frataxin has not been defined, it probably plays a role in sulfur and/or iron donation to Fe-S
cluster intermediates [9,10].

The entire process of Fe-S cluster biogenesis is highly conserved between eukaryotic mito-
chondria and prokaryotic organisms [6,7]. Similar components are present, and in many cases
the corresponding proteins function as orthologs. Sulfur for Fe-S cluster synthesis is derived
from cysteine via the action of a cysteine desulfurase (Nfs1 in yeast, IscS in bacteria). This en-
zyme binds the amino acid cysteine in a substrate-binding site via the pyridoxal phosphate
(PLP) cofactor [8]. The bound substrate is subjected to nucleophilic attack by an active site cys-
teine present on a moveable loop of the protein, forming a persulfide (e.g. Nfs1-S-SH in yeast).
The persulfide sulfur is then transferred to recipients including Isu1 and used in building Fe-S
clusters [11]. Frataxin (Yfh1 in yeast, CyaY in E. coli) interacts with the cysteine desulfurase
and may be involved in regulating the enzyme activity. Whereas a positive regulatory effect has
been observed for the yeast or human proteins [12,13], a negative regulatory effect has been ob-
served for the E. coli homolog [14], and this difference has still not been explained [15]. Isd11
is a small accessory subunit that interacts with the eukaryotic Nfs1 and is necessary for its cys-
teine desulfurase activity [16]. However, Isd11 is eukaryote specific, being entirely absent from
prokaryotic lineages [17]. Iron combines with sulfur on the scaffold protein to form Fe-S clus-
ter intermediates. The scaffolds (Isu1 in yeast, IscU in E. coli) are highly homologous proteins
[18]. The iron donation step is poorly characterized, and frataxin has also been implicated in
this step. Both yeast and E. coli frataxins bind iron with low affinity on acidic residues in vitro
and interact with their respective scaffold proteins in vitro and in vivo, and thus they may par-
ticipate in iron donation [19,20]. Electrons provided by ferredoxin (Yah1 in yeast, Fdx in E.
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coli) are needed for reduction of iron or sulfur during Fe-S cluster intermediate formation [21].
Following formation of the intermediate on Isu1 or IscU, coordinated by three critical cysteines
in the protein backbone, Hsp70 chaperones and cochaperones (Ssq1 and Jac1 in yeast, HscA
and HscB in E. coli) interact with the scaffolds, mediating Fe-S cluster transfer in an ATP-de-
pendent manner [22].

In terms of phenotypes resulting from frataxin deficiency, however, eukaryotes and pro-
karyotes show major differences. Total lack of frataxin is lethal in humans and metazoans [4].
Deletion of the YFH1 gene in yeast is associated with extremely deleterious effects, including
slow growth, oxidant sensitivity, heme deficiency and lack of Fe-S clusters [23,24]. In addition,
frataxin deficiency is associated with a curious iron homeostatic phenotype characterized by
constitutive and unregulated cellular iron uptake. Within the cell iron accumulates in mito-
chondria in the form of biologically unavailable ferric phosphate nanoparticles. This constella-
tion of findings apparently results from defective Fe-S proteins in the iron-sensing machinery
[25,26]. In contrast to the yeast mutants, the effects of frataxin deletion in E. coli are mild. The
bacterial deletion strain shows normal growth and does not exhibit iron homeostatic abnor-
malities or sensitivity to oxidative stress, although in one report the protein level for respiratory
complex I was reduced [27].

A spontaneously occurring mutation in a frataxin-deleted yeast strain was found to effec-
tively bypass the severe Δyfh1 phenotypes, restoring normal growth, Fe-S cluster protein levels,
iron homeostasis, heme synthesis, and oxidative stress resistance. The effect was conferred by
the Met to Ile change of amino acid 141 in the scaffold protein Isu1 [28]. The altered Isu1 was
able to bind and activate the Nfs1 cysteine desulfurase in the absence of frataxin, thus providing
a possible explanation for the bypass activity [29,30]. Interestingly, isoleucine is the amino acid
utilized by E. coli in the homologous position of IscU. Thus in yeast lacking frataxin, the Met to
Ile change in Isu1, by substituting the E. coli amino acid at this position, effectively rendered
yeast more frataxin independent and more "prokaryote like".

Here we have delved more into the genetics of this frataxin-bypass phenomenon, finding
more prokaryotic features of Isu1 bypass mutants. Randomly selected Isu1 bypass mutants
were confined to a single amino acid position, and the amino acids conferring bypass were all
present in homologous prokaryotic proteins. The prokaryotic homologs were identified both in
organisms with frataxin and in organisms without frataxin, underscoring the frataxin-indepen-
dence associated with these particular scaffold mutants. The entire E. coli IscU (targeted to mi-
tochondria with a leader sequence) conferred more frataxin-independence, whereas a reverse
substitution, in which the eukaryotic amino acid Met was introduced at the same position, con-
ferred more frataxin-dependence. Examination of the set of Isu1/IscU sequences in available
databases also suggests that Isu1-Met appears almost exclusively in eukaryotes and likely co-
evolved with frataxin. The substituted Isu1-Ile probably mimics a conserved and ancient feature
of the prokaryotic Fe-S cluster assembly complex, relieving the frataxin requirement.

Results

Genetic dominance of the M141I Isu1 or Isu2 substitution conferring
frataxin-bypass
The frataxin-bypass mutant was isolated as a spontaneously arising clone of more rapidly
growing cells in a background of a frataxin-deleted haploid yeast strain (Δyfh1) [28]. The by-
pass activity was conferred by a single point mutation (ATG to ATA), changing the amino acid
of codon 141 of ISU1 fromMet to Ile. However yeast S. cerevisiae carries two redundant genes
coding for Fe-S cluster scaffolds, ISU1 and ISU2 [31]. The initial presentation of the suppressor
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or bypass mutant suggested that it was genetically dominant, because it was able to bypass
Δyfh1 even in the presence of a normal copy of ISU2.

In order to evaluate this genetic dominance further, matched Δyfh1 strains were compared,
one expressing a single copy of substituted ISU1 and deleted ISU2, called Δyfh1 [ISU1-Ile]
(Table 1) and another expressing both ISU1 and ISU2 in addition to the plasmid-borne substi-
tuted Isu1-M141I, called Δyfh1 [ISU1-Ile] ISU1 ISU2 (Table 1). As assessed by colony forma-
tion, both strains showed improved growth compared with the Δyfh1 control (Fig 1A, compare
rows 3 and 4 to row 2), although the single copy [ISU1-Ile] showed slightly better Δyfh1 sup-
pression activity as assessed by growth (Fig 1A, compare rows 3 and 4), and other phenotypes
such as iron uptake and Fe-S cluster levels. Thus, a high degree of genetic dominance of the
Isu1 Met to Ile substitution was observed in producing reversal of Δyfh1 phenotypes.

ISU1 and ISU2 encode highly homologous proteins, with 83% amino acid identity. Isu1 and
Isu2 proteins are functionally redundant, although the endogenous expression level of Isu1 is
roughly seven times higher than that of Isu2, and Isu1 represents most of the cellular Isu pro-
tein in a wild-type strain [32]. Significantly the critical Met (amino acid 141 in Isu1 or 133 in
Isu2) is present in both proteins. The adjacent cysteine that functions as an Fe-S cluster ligand
and the adjoining frataxin-binding motif are also present in both proteins [33]. ISU2 and ISU2-
Ile, in which the Met-133 was changed to Ile, were experimentally evaluated. Results show that

Table 1. List of yeast strains.

Strain
number

Name Genotype Source

70–31 YFH1 shuffle MATa ura3-52 lys2-801(amber) ade2-101(ochre) trp1-Δ63 his3-Δ200 leu2-Δ1 Δyfh1::HIS3 ISU1 ISU2
[pGAL1-YFH1, URA3]

[28]

109–9 YFH1 (Δisu1) shuffle MATa ura3-52 lys2-801(amber) ade2-101(ochre) cyh2 Δyfh1::TRP1 Δisu1::HIS3MX6 ISU2 [pRS318-
YFH1-CYH2-LEU2]

This
work

110–66 MATa ura3-52 lys2-801(amber) ade2-101(ochre) trp1-Δ63 his3-Δ200 leu2-Δ1 Δyfh1::HIS3 ISU1 ISU2
[pGAL1-YFH1-URA3][YCplac22-ISU1-M141I]

[28]

108–54 Δyfh1 ISU1 ISU2
[ISU1-Ile]

MATa ura3-52 lys2-801(amber) ade2-101(ochre) trp1-Δ63 his3-Δ200 leu2-Δ1 Δyfh1::HIS3 ISU1 ISU2
[YCplac22-ISU1-M141I]

This
work

113–26 MAT? ura3-52 lys2-801(amber) ade2-101(ochre) trp1-Δ63 leu2-Δ1 cyh2 nfs1-14::LEU2 Δyfh1::HIS3
ISU1 ISU2 [pRS416-YFH1]

This
work

115–10 GAL1-ISU1/Δisu2
(Parent)

MATa lys2-801(amber) ade2-101(ochre) trp1-Δ63 leu2-Δ1 YFH1 Δisu2::URA3 His3MX6:GAL1-ISU1 This
work

115–26 Δyfh1 [ISU1] Parent with [YCplac22-ISU1] Δyfh1::LEU2 [30]

115–28 Δyfh1 [ISU1-Ile] Parent with [YCplac22-ISU1-M141I] Δyfh1::LEU2 [30]

116–51 Δyfh1 [ISU1-Val] Parent with [YCplac22-ISU1-M141V] Δyfh1::LEU2 This
work

116–53 Δyfh1 [ISU1-Leu] Parent with [YCplac22-ISU1-M141L] Δyfh1::LEU2 This
work

116–54 Δyfh1 [ISU1-Cys] Parent with [YCplac22-ISU1-M141C] Δyfh1::LEU2 This
work

117–36 YFH1 [iscU] Parent with [YCplac22-iscU E. coli] This
work

117–37 YFH1 [iscU-Met] Parent with [YCplac22-iscU-I108M E. coli] This
work

117–40
117–42

Δyfh1 [iscU] Parent with Δyfh1::LEU2 [YCplac22-iscU E.coli] This
work

117–44
117–46

Δyfh1 [iscU-Met] Parent with Δyfh1::LEU2 [YCplac22-iscU-I108M E. coli] This
work

114–58 YFH1 [ISU1] Parent with [YCplac22-ISU1] This
work

doi:10.1371/journal.pgen.1005135.t001
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ISU2-Ile conferred frataxin-bypass activity in a YFH1 shuffle strain (S1 Fig). Bypass activity
was conferred whether it was expressed from the native ISU2 promoter or from the ISU1 pro-
moter (S1 Fig). Thus, genetic dominance for frataxin-bypass by ISU2-Ile was observed, similar
to that of ISU1-Ile. Furthermore, the ISU2 and ISU2-Ile constructs were also able to support
growth of the GAL1-ISU1/Δisu2 strain indicating that they were functional as Isu. The reason
that only the ISU1-Ile was isolated and ISU2-Ile was not isolated in the original screen for
Δyfh1 suppressors is probably due to the lack of saturation of this genetic screen.

Fig 1. Genetic manipulations of ISU1-Ile and other ISU1 alleles. (A) Genetic dominance of ISU1-Ile conferring frataxin-bypass. Strains YFH1 [ISU1],
Δyfh1 [ISU1], Δyfh1 [ISU1-Ile], and Δyfh1 [ISU1-Ile] ISU1 ISU2 (Table 1) were compared by spotting serial 5-fold dilutions of 105 cells on YPAD plates and
photographing three days later. (B) Frataxin-bypass function and scaffold function of ISU1 alleles. A series of plasmids was constructed in the YCplac22
backbone. These plasmids carried native ISU1 or ISU1 alleles with substitutions of residue M141 to all 19 other standard amino acids. N123D or N123A
substitutions were also constructed, predicted to give disordered or structured conformations, respectively [34]. Plasmid-borne YFH1 and empty vector (-)
were included as controls. To test frataxin-bypass function the ISU1 alleles were transformed into the YFH1 shuffle strain, and the transformed cells were
transferred to fluoroorotic acid (FOA) plates to remove the covering YFH1-URA3 plasmid and expose the Δyfh1 phenotype (plates 1–3). To test scaffold
function the ISU1 alleles were transformed into theGAL1-ISU1/Δisu2 strain and plated on raffinose carbon source to repress genomicGAL1-ISU1. (C)
Effects of cysteine mutations. Plasmids with various cysteine substitutions in Isu1 were tested for frataxin-bypass function by introducing them into the YFH1
shuffle strain and counterselecting on FOA (plates 1 and 2). The Isu1 substitutions were also tested for scaffold function by introducing them into the
GAL1-ISU1/Δisu2 strain and shifting the carbon source from galactose to glucose (plates 3 and 4). Key to transformants. 1. Empty plasmid YCplac22, 2.
ISU1, 3. ISU1-M141I, 4. ISU1-C69A-M141I, 5. ISU1-C96A-M141I, 6. ISU1-C139A-M141I, 7. ISU1-C139A-M141C. (D) Δyfh1 nfs1-14 double mutant does not
support frataxin-bypass by ISU1-M141I. Shuffle strain 113–26 (Δyfh1 nfs1-14 [pRS416-YFH1]) was transformed with YCplac22, YCplac22-YFH1, or
YCplac22-ISU1-Ile. Transformants were patched onto tryptophan drop-out medium without (plate 1) or with (plate 2) FOA.

doi:10.1371/journal.pgen.1005135.g001
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Isu1 substitutions at M141: Frataxin-bypass function and scaffold
function
All 20 possible amino acids were substituted at position M141 in a single copy plasmid-borne
ISU1. Each mutant form of ISU1 was tested for frataxin-bypassing activity by transforming the
plasmids into a YFH1 shuffle strain, followed by counterselection with fluoroorotic acid on raf-
finose medium to remove the covering plasmid (Fig 1B, plates 1–3). After counterselection, ro-
bust growth was noted for positive control YCplac22-YFH1, and slow growth was noted for the
empty plasmid, YCplac22 (Fig 1B, plate 1, “YFH1” versus “-”), consistent with the important
role of frataxin for normal growth. The ISU1-Ile plasmid with the Met to Ile change restored
robust growth in the absence of YFH1 (Fig 1B, plate 1, “I”). Similarly, plasmids substituted at
the same amino acid position and containing ISU1-Leu, ISU1-Cys, and ISU1-Val, conferred
improved growth (Fig 1B, plates 1–3). These ISU1 alleles thus carried frataxin-bypass activity
and were genetically dominant, given that wild-type genomic copies of ISU1 and ISU2 were
still present.

Fe-S cluster assembly scaffold function was tested separately. The collection of ISU1 alleles
was transformed into the GAL1-ISU1/Δisu2 strain. In this strain the redundant ISU2 was delet-
ed and ISU1 was placed under control of GAL1, a galactose-dependent promoter. When the
transformants were shifted to a non-inducing carbon source (i.e. raffinose-based medium),
only plasmid-borne ISU1 was expressed, allowing scaffold function for each allele to be scored.
The wild-type ISU1 (Fig 1B, plate 4, M) supported normal growth, and a large set of ISU1 plas-
mids with amino acid substitutions also supported normal growth, indicating that these were
highly functional ISU1 proteins (Fig 1B, plates 4–6, I, L, A, N, C, F, Y, S, V, G, T and H). Impor-
tantly, all of the substitutions conferring frataxin-bypass activity (Fig 1B, plates 1–3, I, L, C,
and V) were also functional ISU1 scaffold proteins. Another set of substitutions was partially
functional as shown by slowed growth (Fig 1B, plate 5, D, E and W), and these mutants tended
to accumulate iron, indicating that they were hypomorphic mutants in the Fe-S cluster assem-
bly pathway. A small set of substituted alleles was completely non-functional and did not grow
at all on the raffinose plates (Fig 1B, plates 4–6, R, Q, K and P).

The E. coli ortholog, IscU, was studied by NMRmethodology [34] and found to assume in-
terconverting disordered or structured conformations. When a conserved amino acid in the
primary sequence, Asn 123 in the Isu1 numbering, was substituted with Asp, the conformation
of the mutant protein was shown to be shifted preferentially to the disordered form. Alterna-
tively when Asn 123 was substituted with Ala, the conformation was shifted to the structured
form [34]. We wondered if the frataxin-bypassing activity could be related to one or the other
of these conformations. The Asp change (N-D; presumably disordered) and the Ala change
(N-A; presumably structured) were introduced into YCplac22-ISU1 and the respective plas-
mids were transformed into the YFH1 shuffle strain. However, neither conferred any bypass
activity (Fig 1B, plate 3, N-D and N-A). The Asp 123 form conferred growth to the
GAL1-ISU1/Δisu2 strain indicating efficient scaffold function, but the Ala 123 form was poorly
functional in this assay (Fig 1B, plate 6, N-D versus N-A).

Substitutions of critical cysteine residues inactivate both frataxin-bypass
activity and scaffold activity of ISU1-Ile
Isu1 with the Met to Ile substitution, ISU1-Ile, exhibited both frataxin-bypassing activity and
scaffold activity. Therefore the question arose of whether both activities must necessarily reside
in the same molecule. Alternatively, the ISU1-Ile might act on wild-type ISU1 protein, stimulat-
ing it to perform as the primary scaffold. The existence of a protein complex containing the
suppressor ISU1-Ile protein and the wild-type ISU1 protein could provide a physical context
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for such stimulation to occur [35,36]. To begin to address this question genetically, the three
cysteine residues of Isu1, presumed to be Fe-S cluster ligands [31], were individually replaced
by alanine. The C69A, C96A and C139A forms of Isu1 were introduced into strain
GAL1-ISU1/Δisu2, and they were unable to support growth on their own in non-inducing glu-
cose-containing medium. Double mutants were then constructed in which the critical cysteine
substitutions were combined with the suppressor ISU1-Ile change of residue 141 in the same
molecule. The mutated ISU1 alleles, C69A-M141I, C96A-M141I and C139A-M141I, were test-
ed for frataxin-bypass activity in the YFH1 shuffle strain, and no bypass activity was observed
(Fig 1C, plate 2). Likewise the mutated ISU1 alleles were tested for scaffold activity by expres-
sion in the GAL1-ISU1/Δisu2 strain in glucose, and no complementation was observed (Fig 1C,
plate 4). The frataxin-bypass activity of the Cys substitution of residue 141 raised the possibility
that the cysteine at this location was functioning as an alternative Fe-S cluster ligand instead of
Cys 139. In a genetic experiment, Cys 139 was replaced with alanine in the presence of the
M141C substitution. However, in this case, neither scaffold activity nor bypass activity was ob-
served (Fig 1C, plates 2 and 4, number 7), making it unlikely that the Cys substituted at posi-
tion 141 can function as an alternative Fe-S cluster ligand. In summary, substitutions that
abrogated Isu1 scaffold function by altering the Fe-S cluster ligands also abrogated frataxin-
bypass function.

Cysteine desulfurase hypomorphic allele nfs1-14 does not permit
frataxin-bypass by ISU1-Ile
Amutant allele of NFS1, nfs1-14, was identified because of its effects on iron homeostasis, and
it was later found to be associated with decreased cysteine desulfurase activity in mitochondria
[16]. The cells carrying this mutant allele were viable and grew well in most media despite the
low activity of cysteine desulfurase. However, the combination of nfs1-14 and Δyfh1 was syn-
thetically lethal (Fig 1D, YCp). YFH1 (Fig 1D, YCp-YFH1) introduced into the nfs1-14 Δyfh1
strain restored growth. However, although ISU1-Ile was able to bypass Δyfh1 alone, it was un-
able to rescue the nfs1-14 Δyfh1 double mutant (Fig 1D, YCp-ISU1-Ile). These data suggest that
a threshold level of cysteine desulfurase activity is required for the frataxin-bypass activity of
ISU1-Ile. Recent biochemical data indicate that frataxin stimulates the cysteine desulfurase ac-
tivity of Nfs1 [13]. Furthermore, the suppressor ISU1-Ile acts in a similar fashion to stimulate
Nfs1 even in the absence of frataxin, perhaps explaining its bypass activity [29]. Thus it makes
sense that in the absence of a sufficiently active Nfs1, bypass of Δyfh1 by the Ile-substituted
ISU1 will not occur.

Biochemical characteristics of newly discovered frataxin-bypassing
mutant alleles of ISU1
The frataxin-bypassing activity of ISU1 protein with changes of Met 141 to Cys, Ile, Val or Leu
was shown by growth enhancement of the YFH1 shuffle strain. In this strain, the chromosomal
ISU1 and ISU2 were still intact (Fig 1B). To examine and compare these effects in more detail,
matched strains were constructed in which each of the bypassing ISU1 alleles was expressed in
the absence ISU2 (Table 1). The starting strain was designated YFH1 [ISU1], indicating a YFH1
positive strain with plasmid carrying wild-type ISU1 (Met at position 141) (Table 1). Another
strain was designated Δyfh1 [ISU1], indicating a strain deleted for YFH1 and carrying wild-
type ISU1. Similarly, Δyfh1 [ISU1-Cys], Δyfh1 [ISU1-Ile], Δyfh1 [ISU1-Leu], and Δyfh1 [ISU1-
Val], were used to designate deletions of YFH1 with the indicated ISU1mutant alleles
(Table 1). The growth of the YFH1 [ISU1] strain was more rapid than the Δyfh1 [ISU1] strain
as shown by the larger colony size (Fig 2A, upper panel, rows 1 and 2). Hydrogen peroxide
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Fig 2. Characterization and comparison of frataxin-bypass substitutions of ISU1 amino acid 141: ISU1-Cys, ISU1-Ile, ISU1-Leu and ISU1-Val. (A)
Growth defects in Δyfh1 are corrected by the frataxin-bypass suppressors. The strains YFH1 [ISU1] (Y-M), Δyfh1 [ISU1] (Δ-M), and suppressor strains Δyfh1
[ISU1-Cys] (Δ-C), Δyfh1 [ISU1-Ile] (Δ-I), Δyfh1 [ISU1-Leu] (Δ-L), and Δyfh1 [ISU1-Val] (Δ-V), were grown in an argon-filled chamber, and serial dilutions were
spotted on YPAD agar, without or with 4 mM hydrogen peroxide. (B) Mitochondrial protein levels by immunoblotting. Strains were inoculated from the argon-
filled chamber into aerobic defined raffinose medium for 16–24 h prior to isolating mitochondria. Mitochondrial proteins (100 μg) were separated by
SDS-PAGE and transferred to nitrocellulose. Strips were cut from a single blot and probed with the indicated antibodies against mitochondrial proteins (Aco1,
Nfs1, Mir1, Yfh1, and Isu1). Cytochrome c (Cyc1) was analyzed using a duplicate gel. (C) Iron homeostasis in the frataxin-bypass suppressors. The indicated
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exposure exacerbated the Δyfh1 phenotype [37], further slowing growth and viability as a con-
sequence of increased oxidative stress (Fig 2A, lower panel, rows 1 and 2). The ISU1 alleles
with Cys, Leu, or Val at position 141, similar to the ISU1M141I allele, improved growth of
Δyfh1 under these conditions, including in the presence of hydrogen peroxide, although not
quite to levels in the frataxin plus strain (Fig 2A, upper and lower panels, rows 1–6).

In terms of mitochondrial proteins, immunoblotting with anti-frataxin antibody confirmed
the correctness of the genetic assignments: the YFH1 strain expressed frataxin (Fig 2B, Y-M,
lane 1) and the Δyfh1 strains did not (Fig 2B, lanes 2–6). The ISU1 alleles were all expressed in
mitochondria. The abundance of Isu1 protein was increased in the Δyfh1 [ISU1] strain in the
presence of the ISU1-Met allele (Fig 2B, Δ-M, lane 2), but in the presence of the bypassing ISU1
alleles, Isu1 expression returned to normal, similar to the YFH1 positive strain (Fig 2B, lanes
3–6). The changes in protein abundance were several fold, and most likely attributed to Aft1/2
transcriptional effects and protein stability effects [32]. Nfs1 protein levels were unchanged in
all the strains consistent with the lack of regulation of the protein level (Fig 2B), although cyste-
ine desulfurase activity was strongly regulated (see below).

Cytochrome c, a heme protein, was undetectable in the Δyfh1 [ISU1] strain (Fig 2B, lane 2)
compared with the wild-type (Fig 2B, lane 1). The various suppressor strains recovered signifi-
cant levels of cytochrome c (Fig 2B, lanes 3–6). Cytochrome c is regulated transcriptionally and
post-transcriptionally by heme availability [38]. The dramatic changes in protein abundance
probably reflect changes in heme synthesis and steady state heme levels.

Iron homeostasis was examined using steady state labeling of growing cells with radioactive
55Fe. In YFH1 [ISU1] strain, cellular iron levels were appropriately regulated, whereas in the
mutant Δyfh1 [ISU1] strain, by comparison, excess iron accumulated (Fig 2C, Cellular iron,
Y-M versus Δ-M). The presence of the suppressor ISU1mutant alleles, ISU1-Cys, ISU1-Ile,
ISU1-Leu, or ISU1-Val, restored cellular iron levels towards normal (Fig 2C, Cellular iron, Δ-C,
Δ-I, Δ-L, Δ-V). The radiolabeled cells were subjected to subcellular fractionation, separating
mitochondrial and post-mitochondrial fractions (Fig 2C, Mitochondrial iron and Post-mito
supernatant iron). The iron quantitation for these fractions resembled the patterns for whole
cell iron. The radiolabeled mitochondrial iron showed features that were dependent on YFH1.
In the YFH1 [ISU1] mitochondria, the predominant portion was solubilized by exposure to
non-ionic detergents such as Triton X-100, whereas in the Δyfh1 [ISU1] mitochondria, propor-
tionally more iron was recovered in the pellet following centrifugation in the presence of deter-
gent (Fig 2C, Mitochondrial iron distribution, Y-M versus Δ-M). Most likely this effect reflects
the accumulation of nanoparticles of ferric phosphate that is a hallmark feature of Δyfh1mito-
chondria [25]. In mitochondria from the different suppressor strains the amount of insoluble
iron was decreased compared with the control deletion strain Δyfh1 [ISU1], indicating an im-
provement in the biochemical properties of mitochondrial iron pools (Fig 2C, Mitochondrial
iron distribution, Δ-M versus Δ-C, Δ-I, Δ-L, Δ-V).

Aconitase (Aco1), an abundant [Fe4S4] protein of mitochondria, was evaluated. An in- gel
assay showed the aconitase enzyme activities in mitochondrial lysates. The control strain YFH1
[ISU1] (Fig 3A, upper panel, lanes 1 and 7, Y-M) showed concentration dependent activity.
The frataxin minus strain Δyfh1 [ISU1] (Fig 3A, upper panel, lanes 2 and 8, Δ-M) had no de-
tectable activity regardless of the concentration of lysate in the assay. The various suppressors

strains were grown in air for six doublings in defined raffinose medium in the presence of 10 μM 55Fe ascorbate. Cells were washed free of radioactive iron
and separated into mitochondria and post-mitochondrial supernatant. An aliquot of mitochondria was lysed in the presence of 0.1% Triton X-100 for 10 min at
room temperature, and supernatant (soluble) and pellet (insoluble) fractions were separated by centrifugation at 20,000 x g for 30 min at 4°C. Iron content
was reported for whole cells (pmol per million cells), or various cellular fractions (pmol per micrograms protein).

doi:10.1371/journal.pgen.1005135.g002
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Fig 3. Assessment of Fe-S cluster assembly in mitochondria isolated from frataxin-bypass mutants. The same strains as in Fig 2 were assayed as
follows: (A) Aconitase activity by in-gel assay. Mitochondria were lysed and 100 μg (lanes 1–6) or 200 μg (lanes 7–12) proteins were separated by native gel
and developed using reagents that reflect aconitase activity (upper panel). The same lysates were separated by SDS-PAGE and analyzed by
immunoblotting with anti-aconitase antibody to show the level of total aconitase protein (lower panel). (B) Persulfide formation on Nfs1 in mitochondria.
Isolated and intact mitochondria were depleted of nucleotides and NADH by incubation at 30°C for 10 min. Either 50 μg or 100 μg protein equivalents were
labeled for 15 min with 35S-cysteine. Samples were diluted with buffer, mitochondria were recovered by centrifugation, and total proteins were analyzed by
non-reducing SDS-PAGE and autoradiography. The persulfide Nfs1-S-35SH is indicated by an arrow. Mitochondria from the nfs1-14mutant was included as
a negative control (lane 13), because this hypomorphic Nfs1 mutant has negligible persulfide-forming activity [16]. (C) New Fe-S cluster synthesis on
apoaconitase in isolated mitochondria. Isolated and intact mitochondria, were labeled with 35S-cysteine in the presence of added 4 mMATP, 1 mMGTP, 5
mM NADH and 10 μM ferrous ascorbate for 30 min at 30°C. Mitochondria were recovered and membranes were ruptured. After centrifugation, the
supernatant fractions containing soluble mitochondrial proteins (corresponding to 25 or 50 μg for YFH1 [ISU1] and 100 or 200 μg for the other strains) were
separated by native gel prior to autoradiography. The arrow indicates the aconitase protein containing newly made radiolabeled [Fe-35S] clusters.

doi:10.1371/journal.pgen.1005135.g003
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(Fig 3A, upper panel, Δ-C, Δ-I, Δ-L, Δ-V, lanes 3–6 and lanes 9–12) recovered significant activi-
ty, although not entirely to wild-type levels. Aconitase protein (Fig 3A, lower panel) as detected
by immunoblotting was present in YFH1 [ISU1] control (lanes 1 and 7), and was decreased in
the frataxin-minus Δyfh1 [ISU1] (lanes 2 and 8) mitochondria, perhaps because the apoprotein
was turned over more rapidly by mitochondrial proteases. Aconitase protein levels were re-
stored in the suppressor strains (Fig 3A, lower panel, lanes 3–6 and lanes 9–12), consistent
with recovery of enzyme activity.

The persulfide-forming activity in these mitochondria was tested as an indication of their
cysteine desulfurase activity. Isolated and intact mitochondria were depleted of endogenous nu-
cleotides and NADH by incubation at 30°C for 10 min, thereby blocking Fe-S cluster biogenesis
without disrupting cysteine desulfurase activity [16]. After labeling with 35S-cysteine, mitochon-
drial proteins were separated by non-reducing SDS-PAGE, and the persulfide covalently bound
to Nfs1 was visualized by autoradiography (Fig 3B, Nfs1-S-35SH). The signal was absent in nfs1-
14mitochondria, which were unable to form significant Nfs1 persulfide because of a hypo-
morphic mutation in Nfs1 (Fig 3B, lane 13) [16]. The specificity of the Nfs1-persulfide signal
was further confirmed by immunoprecipitation with anti-Nfs1 antibody [16]. Several other ra-
diolabeled bands were detected in mitochondria (Fig 3B), some of which were present in the
nfs1-14 control and some of which were absent. Thus these background bands could be attribut-
ed to direct binding of 35S-cysteine, persulfide transfer from Nfs1 which was incompletely
blocked, or binding of other reactive cysteine persulfides to mitochondrial proteins. The YFH1
[ISU1] mitochondria (Fig 3B, lanes 1 and 2, Y-M) had significantly more Nfs1 persulfide than
the frataxin-minus mutant Δyfh1 [ISU1] (Fig 3B, lanes 3 and 4, Δ-M). Each of the suppressor
mutants (Fig 3B, Δ-C, Δ-I, Δ-L, and Δ-V; lanes 5–12) recovered persulfide-forming activity in
mitochondria. Differences among the suppressor alleles were not apparent, and each one pro-
vided rescue of the persulfide-forming activity that was deficient in Δyfh1 [ISU1] mitochondria.

Next, 35S-cysteine labeling of isolated intact mitochondria was performed in the presence of
added ATP, GTP, NADH and iron, thereby permitting multiple cycles of Fe-S cluster forma-
tion to occur [16]. Soluble proteins from these mitochondria were separated on native gels, and
autoradiography was used to detect newly synthesized Fe-S clusters on aconitase (Fig 3C, Aco1
[Fe-35S]). In the”wild-type” YFH1 [ISU1] mitochondria (Fig 3C, lanes 1 and 2, Y-M) a strong
signal was observed, whereas in the frataxin-minus Δyfh1 [ISU1] (Fig 3C, lanes 3 and 4, Δ-M)
no signal was present, consistent with the important role of frataxin in mitochondrial Fe-S
cluster assembly. In the various suppressor mutants, although they still lacked frataxin, Fe-S
cluster synthesis on Aco1 was restored to 24–31% of the YFH1 control as assessed by densitom-
etry and correction for the total amount of protein loaded (Fig 3C, lanes 5–12).

Randommutagenesis of ISU1 and screening for additional frataxin-
bypass suppressor alleles
A library of randomly mutated ISU1 plasmids was generated by error-prone PCR and trans-
formed into a YFH1 shuffle strain also deleted for ISU1. The colonies appeared uniform (Fig
4A, plate 1). The diversity of this library was confirmed by sequencing the inserts from ran-
domly selected colonies. Of 42 colonies evaluated in this way, inserts were identified that in-
cluded 72 amino acid changes in Isu1, which were well distributed throughout the coding
region (S1 Table, controls). Transformants were replicated to cycloheximide plates, counterse-
lecting against the YFH1-containing plasmid and uncovering the Δyfh1 phenotype. Most colo-
nies grew slowly on glucose or not at all on raffinose, but a few colonies exhibited robust
growth (Fig 4A, plates 2 and 3). Plasmid DNA rescued from these more rapidly growing Δyfh1
colonies was sequenced and in most cases was found to contain single nucleotide changes in
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ISU1 conferring substitutions of residue 141 of the coding sequence. In some cases, YFH1 se-
quences were found to have recombined into the ISU1 plasmid and these clones were dis-
carded. The PCR randomization was then repeated with different ISU1 templates starting with
Y141, H141 or F141, and a large number of colonies (approximately 36,950 representing
17,588 amino acid changes in Isu1) was screened in this way. The “hits” with frataxin-bypass
activity included amino acid changes of M141 to Ile, Cys, Leu, and Val, sometimes in combina-
tion with other amino acids changes and sometimes alone (Fig 4B and S1 Table). However, no
other amino acid change or combination of changes was able to confer frataxin-bypass activity.
All possible amino acid changes in ISU1 were not sampled, and only single nucleotide changes
at position 141 were selected. The failure to find amino acid substitutions with bypass activity

Fig 4. Screening of randomized ISU1 in search of new frataxin-bypass suppressors reveals only amino acid substitutions of residue 141. (A) A
library of linear ISU1 sequences with randommutations was created by error prone PCR and co-transformed with a gapped plasmid (pRS416-ISU1) into a
YFH1 (Δisu1) shuffle strain. The transformants contained recombined ISU1 sequences with randommutations, and appeared uniform on defined uracil drop-
out medium (plate 1). The transformants were replicated to cycloheximide and glucose containing plates, removing the covering pRS318-YFH1 plasmid
(plate 2). The transformants were also replicated to cycloheximide and raffinose containing plates (plate 3), selecting against the Δyfh1 phenotype. (B)
Summary table of screening results indicating starting template, number of colonies screened, number of hits conferring frataxin-bypass, and types of hits.

doi:10.1371/journal.pgen.1005135.g004
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at other locations in the Isu1 protein may derive from the many constraints on this essential
scaffold protein, which must interact with multiple partner proteins and perform multiple
functions, such as stimulating Nfs1 activity, coordinating Fe-S clusters and transferring Fe-S
clusters [39]. Based on these results, the possibility of finding another ISU1mutant with fra-
taxin-bypass activity, while not entirely ruled out, seems unlikely.

E. coli cross-species complementation and frataxin-bypass
The Met to Ile substitution in yeast ISU1 that conferred frataxin-bypass activity did so by alter-
ing the methionine at position 141 (107 in the signal-cleaved mature protein) to the amino acid
isoleucine used in the E. coli IscU in the corresponding position (I108 in IscU). Interestingly,
deletion of the homologous frataxin gene cyaY in E. coli gave milder phenotypes in that organ-
ism than in yeast. Slowed growth, iron accumulation, and oxidative stress sensitivity were not
observed in the E. coli knockout [27] in contrast to the yeast knockout. A series of species cross-
complementation studies was undertaken in order to test the relative frataxin dependence or in-
dependence of yeast expressing the entire E. coli IscU protein targeted to mitochondria. For
comparison, IscU protein was reverse engineered to place Met at position 108, as in the eukary-
otic Isu1. The IscU protein (authentic E. coli protein with Ile) and IscU-Met (substituted E. coli
protein with Met) separately were fused to the leader sequence of yeast mitochondrial protein
CoxIV. Each of these fusion constructs was transformed into the GAL1-ISU1/Δisu2 strain.

The E. coli IscU proteins, with the authentic isoleucine or with the substituted methionine,
were able to function in yeast as indicated by complementation of GAL1-ISU1/Δisu2 cells. Each
of these complemented strains grew well, indicating that the E. coli IscU or IscU-Met targeted
to yeast mitochondria could function as the only Fe-S cluster assembly scaffold in the cell. No
difference between iscU or iscU-Met expressing cells was noted in terms of growth (Fig 5A,
rows 1 and 2). Frataxin was deleted in these strains, and a striking growth phenotype was ob-
served. Both the Δyfh1 [iscU] or Δyfh1 [iscU-Met] could be maintained under an argon atmo-
sphere with subtle differences in colony size on agar plates (Fig 5A upper panel). However,
following air exposure, Δyfh1 [iscU] continued to grow with a doubling time of 2.5 h, whereas
Δyfh1 [iscU-Met] progressively slowed until the doubling time reached 8.5 h in defined raffi-
nose-based medium (Fig 5A, compare top panel for argon growth to bottom panel for aerobic
growth in rows 3 and 4). This air/oxygen dependent growth inhibition was much more severe
for the Δyfh1 [iscU-Met] strain than for the matched Δyfh1 [ISU1], carrying Δyfh1 and yeast
ISU1-Met. Perhaps the hybrid yeast-E. coli Fe-S cluster assembly machinery is particularly oxy-
gen sensitive in the absence of frataxin. One of the functions of frataxin could be to shield the
Fe-S cluster assembly machinery from oxygen [10].

Isolated mitochondria were examined for protein expression by immunoblotting. The yeast
Isu1 migrated as a single band of about 14 kDa in mitochondria (Fig 5B, lane 1). The CoxIV fu-
sions with the E. coli proteins reacted strongly with antibody raised against the yeast Isu1, giv-
ing rise to a slower migrating doublet (Fig 5B, lanes 2–7). The slower migrating band co-
migrated with the bacterial expressed and purified IscU at about 17 kDa, and therefore it likely
represents the CoxIV signal sequence-cleaved form of the IscU fusion protein. The more rapid-
ly migrating form may be a proteolytic product. The retarded gel mobility of E. coli IscU com-
pared with yeast Isu1 may be explained by its lower pI (4.7 for the E. coli IscU versus 9.3 for the
yeast Isu1), which is associated with decreased binding of SDS and slower migration in the gel
[40]. We have observed a similarly aberrant slow migration of Yfh1 due to its many acidic resi-
dues and failure to bind SDS [41].

In the Δyfh1 [iscU-Met] mitochondria, IscU protein was markedly increased in abundance
(Fig 5B, lanes 6 and 7). By contrast, in the Δyfh1 [IscU] mitochondria, the IscU protein level
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Fig 5. E. coli iscU or iscU-Met targeted to yeast mitochondria. (A) Growth phenotypes in argon or in air. Strains with mitochondrial targeted E. coli IscU
proteins indicated in the figure were grown on YPAD in argon or in air for 3 days and photographed. Strain YFH1 [ISU1]was included as a control. (B)
Mitochondrial protein levels by immunoblotting. The following strains were evaluated: 1) YFH1 [ISU1] or Y-M, 2) YFH1 [iscU] or Y-eI, 3) YFH1 [iscU-Met] or Y-
eM, 4) Δyfh1 [iscU] or Δ-eI clone 1, 5) Δyfh1 [iscU] or Δ-eI clone 2, 6) Δyfh1 [iscU-Met] clone 1 or Δ-eM, and 7) Δyfh1 [iscU-Met] clone 2 or Δ-eM. Cultures
were inoculated into defined raffinose medium bubbled with argon. After an initial growth period the cultures were shifted to air. The doubling time of the
Δyfh1 [iscU-Met] clones in air started at 2.5 h but prolonged to greater than 8 h, necessitating a longer growth period prior to harvesting these cells.
Mitochondrial proteins were separated by SDS-PAGE, and transferred to nitrocellulose, which was cut horizontally into segments and probed with various

Prokaryotic Isu1/IscU Scaffolds Bypass Yeast Frataxin

PLOS Genetics | DOI:10.1371/journal.pgen.1005135 May 21, 2015 14 / 28



was comparable to that of the frataxin plus strains (Fig 5B, lanes 4 and 5, compare with lanes 2
and 3). The difference may be traced to defective Fe-S cluster assembly in the Δyfh1 [iscU-Met]
cells. In cells with impaired Fe-S cluster assembly, Isu1 protein abundance was previously
shown to be up-regulated due to increased iron-dependent transcription mediated by the Aft1/
2 regulator, and decreased turnover mediated by the Pim1 protease [32]. Furthermore, the E.
coli IscU proteins might be poorly recognized by the yeast Pim1, further slowing turnover and
increasing abundance (Fig 5B, lane 1 versus lanes 2 and 3). Other mitochondrial proteins were
also examined. Nfs1 protein levels were comparable in all cases, consistent with the lack of reg-
ulatory changes (Fig 5B). Yfh1 was detected in the cells consistent with the predicted geno-
types, being present in YFH1 [ISU1], YFH1 [iscU], and YFH1 [iscU-Met] but absent in Δyfh1
[iscU] and Δyfh1 [iscU-Met] (Fig 5B). Cytochrome c, an indicator of cellular heme status, was
present in the Δyfh1 [iscU] mitochondria expressing the authentic E. coli protein but complete-
ly undetectable in Δyfh1 [iscU-Met] mitochondria expressing the substituted form of the E. coli
protein (Fig 5B, compare lanes 4 and 5 versus lanes 6 and 7).

Iron homeostasis was also evaluated. Two independent clones of Δyfh1 [iscU-Met] cells
were tested because of the genetic instability and changeable phenotypes associated with this
genotype. Both clones exhibited strongly increased cellular iron uptake compared with the
unsubstituted control clones Δyfh1 [iscU] (Fig 5C, Cellular iron, bars 6 and 7). Iron accumulat-
ed in the post-mitochondrial supernatant and mitochondria of the Δyfh1 [iscU-Met] strains
(Fig 5C, Post-mito supernatant and Mitochondrial iron, bars 6 and 7). The increase in mito-
chondrial iron levels was about 2–4 fold more than in the matched Δyfh1 [iscU] strains (Fig 5C,
Mitochondrial iron, bars 4 and 5). Iron accumulated in both soluble and insoluble forms as as-
sessed by centrifugation in the presence of Triton X-100, probably indicating ferric phosphate
nanoparticle accumulation [25,26]. In all cases, the Δyfh1 [iscU-Met] mitochondria accumulat-
ed more insoluble iron than the Δyfh1 [iscU] mitochondria [Fig 5C, Mitochondrial iron distri-
bution, bars 6 and 7 versus bars 4 and 5). In the frataxin-plus strains expressing E. coli proteins,
YFH1 [iscU] and YFH1 [iscU-Met], iron homeostasis was mostly preserved (Fig 5C, all panels,
bars 2 and 3). The most severe loss of iron homeostasis occurred in the Δyfh1 [iscU-Met] strain
and correlated with the concurrent severe deficiency of Fe-S cluster proteins. The mechanism
by which defective mitochondrial Fe-S cluster assembly perturbs iron homeostasis is still poor-
ly defined. However, it is likely that important roles are played by loss-of-function of Fe-S clus-
ter binding proteins such as Aft1/2 [42] and glutathione reductases [6].

Aconitase activity, measured by the in-gel assay of mitochondria, was present in Δyfh1 [iscU]
mitochondria from two independent clones (Fig 5D, lanes 4, 5 and lanes 11, 12) and absent in
Δyfh1 [iscU-Met] mitochondria from two independent clones (Fig 5D, lanes 6, 7 and lanes 13,
14). Aco1 protein was present in normal amounts in Δyfh1 [iscU] but markedly decreased in
Δyfh1 [iscU-Met] mitochondria, consistent with increased turnover of the apoprotein (Fig 5B).
By contrast, in frataxin plus mitochondria, aconitase protein and activity were present in all
cases. Aconitase activity was greatest in the frataxin plus ISU1 expressing yeast mitochondria
(Fig 5D, lanes 1 and 8), slightly less in the frataxin plus E. coli iscU expressing mitochondria (Fig
5D, lanes 2, 3 and lanes 9, 10), and slightly less again in the frataxin null iscU expressing

antibodies against various mitochondrial proteins (Aco1, Nfs1, Mir1, Yfh1, and Cyc1). The segment used for anti-Cyc1 was stripped and reprobed with anti-
Isu1. The antibody to the yeast Isu1 was used to detect the E. coli IscU. The two bands attributed to E. coli IscU are indicated by a double arrow, and yeast
Isu1 is indicated by a single arrow. (C) Iron homeostasis. The indicated strains were precultured in argon-bubbled raffinose medium and then shifted to air in
the presence of 10 μM 55Fe ascorbate. Following growth to a density of 2 x 107 cells/ml, cells were harvested. Total cellular iron and iron in cellular fractions
(post-mitochondrial supernatant, mitochondria, and soluble or insoluble fractions of mitochondria) were measured as in Fig 2C. (D) Aconitase activity.
Mitochondria from the indicated strains were lysed, and 100 μg (lanes 1–7) or 200 μg (lanes 8–14) of proteins were separated by native gel and analyzed for
aconitase activity using the in-gel assay.

doi:10.1371/journal.pgen.1005135.g005
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mitochondria (Fig 5D, lanes 4, 5 and lanes 11, 12). Thus aconitase activity correlated well with
other features of these strains, including growth, cytochrome c levels, and iron homeostasis.

Bioinformatic survey of Isu1/IscU
Isu1/IscU entries in the public database RefSeq (6064 in total) were collected and aligned on
the highly conserved 12 amino acid sequence LPPVK LH CSX LA, using the Muscle algorithm
[43]. The sequences were then sorted according to the amino acid at position X, where X is Met
in the yeast Isu1 and Ile in the Isu1 suppressor mutant (S2 Table).

Sorting on this position revealed highly interesting groupings. Firstly, we found that Isu1/
IscU sequences with Met were present almost exclusively in eukaryotic species (302 of 307 en-
tries, S2 Table). The converse was also true i.e. eukaryotic species had Isu1/IscU with Met pres-
ent in almost all cases. The proteins with Met at position X were found in the most diverse
branches of eukaryotes, including Excavata that lack classical mitochondria, Chromalveolata,
various yeasts including Zygomycota, Basidiomycota, Ascomycota, land plants, photosynthetic
single-celled organisms, various metazoans including worms, fish, flies, mice and humans (Fig
6). The only significant exceptions to the rule that Isu1/IscU with Met occurs in eukaryotes
were several proteobacterial rickettsial species, including Holospora undulata, Neorickettsia ris-
ticii, Neorickettsia sennetsu, and Orientia tsutsugamushi. These organisms are intracellular par-
asites that are the closest living relatives of mitochondria. Interestingly, all these species have
retained frataxin in their genomes [1], suggesting that IscU-Met and frataxin may have been
co-inherited with the rest of the Fe-S cluster assembly machinery during the endosymbiotic
event that gave rise to mitochondria (Fig 6) [1].

The lists of Isu1/IscU proteins using Cys, Ile, Leu, and Val at position X, i.e. those amino
acid substitutions of yeast Isu1 conferring frataxin-bypass activity, included predominantly
prokaryotic organisms. The Cys list had only 6 entries, all from bacteria, including several Clos-
tridium species and an uncultured archeon (S2 Table). For the Ile list, almost all of the species
were from prokaryotes (171 of 178 entries). The exceptions, i.e. eukaryotic species on this list,
were interesting in that they often possessed more than one Fe-S cluster assembly scaffold
gene. For example, the eukaryotic bumble bee, cucumber, armadillo and a single type of Medi-
terranean fly each carried Isu1 proteins with Ile at position 141, but the same organisms pos-
sessed another gene which used Met, as is typical for almost all eukaryotes. The Val column
had almost exclusively prokaryotic or archaeal species (341 of 348 entries). In this column, the
only eukaryotic species included Entamoeba histolytica and Giardia intestinalis, organisms that
are known to have acquired Fe-S cluster assembly components from bacteria by gene transfer
[44]. A single eukaryotic plant species, wheat or Aegilops tauschii, was found in this column.
However, wheat also had another Isu gene using Met, and so it follows the theme of retaining
more than one type of Isu, perhaps for adaptive advantages. Along the same lines, Bos mutus, a
yak with a high altitude habitat, carried an Isu with Ile but also retained the more typical eu-
karyotic Isu with Met. The IscU proteins with leucine were found predominantly in prokaryot-
ic species (181 of 199 entries). The outlier eukaryotic species on this list included selected
apicomplexa (e.g. Plasmodium falciparum, P. vivax, P. yoelli), fungi (e.g. Cryptococcus and As-
pergillus species) and mitosome containing microsporidia (e.g. Nematocida parisii).

The diversity of Isu1/IscU proteins is further increased by the expression of different splice
forms in some species. Alternatively spliced forms of the scaffold protein genes were found in hu-
mans and armadillo. In humans, the X1 splice form inserts an Arg, and isoform X4 inserts a Lys
at position X. The Lys containing isoform has been associated with destabilized protein and de-
velopment of a human disease characterized by exercise intolerance and mitochondrial myopa-
thy [45]. The substitutions of the Met 141 in yeast Isu1 with Lys and Arg were tested, and neither
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Fig 6. Cosegregation of Isu1/IscU-M and frataxin in global taxonomy. Distribution of species containing M (red letter) versus C I L V (blue letters) at the X
position of the motif LPPVK LH CSX LA and correlation with the presence of frataxin. The presence of frataxin is indicated by a red colored box next to each
species in the taxonomic tree. The depicted species were chosen to maximize diversity. The species are displayed using the NCBI Taxonomy browser
according to their positions in the NCBI Taxonomy Database. The arrow connecting shaded areas in Proteobacteria and Eukaryota represents the direction
of possible horizontal gene transfer occurring during mitochondrial creation.

doi:10.1371/journal.pgen.1005135.g006
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one was able to support scaffold activity or frataxin-bypass activity (Fig 1B). Nonetheless, it is
still possible that these splice forms with Lys or Arg amino acid substitutions could serve a special
function or afford an adaptive advantage under some special circumstances or in specific tissues.

In summary, Isu1/IscU amino acid sequences with Met at position X of the motif LPPVK
LH CSX LA were predominantly found in eukaryotes but also occurred in several Rickettsia
species. All contained frataxin in their genomes. Isu1/IscU proteins with the amino acids Cys,
Ile, Val or Leu at position X were present primarily in prokaryotes, some with and some with-
out frataxin in their genomes (Fig 6).

Discussion
Frataxin was initially identified by reverse genetics after the Friedreich’s ataxia disease gene
was cloned in 1996 [2]. Soon afterwards the protein was linked to iron metabolism by charac-
terization of the striking iron homeostatic phenotype of the yeast deletion strain [23]. However,
a more detailed understanding of frataxin’s function has been elusive. Recently, frataxin has
been convincingly implicated in mitochondrial Fe-S cluster assembly [10]. Frataxin interacts
with components of the mitochondrial Fe-S cluster machinery, including Nfs1, Isd11 and Isu1
[5]. It is vital for formation of Fe-S cluster intermediates on the Isu1 scaffold, a key step in the
Fe-S cluster assembly process [3]. A suppressor Isu1 carrying the amino acid substitution Met
to Ile at position 141 can correct or bypass most of the Δyfh1 phenotypes that result from lack
of frataxin [28]. The change introduces the amino acid used by E. coli in the highly homologous
IscU protein. The Δyfh1 yeast deletion strain is severely compromised and slow growing,
whereas the E. coli strain deleted for the homologous frataxin protein is mildly compromised
and grows normally. Here we have delved into the phenomenon of bypass of frataxin deletion,
performing a number of genetic and biochemical experiments.

The suppressor Isu1 acts as a genetic dominant and requires Nfs1 for its
activity
The suppressor ISU1-Ile bypassed the requirement for YFH1 when it was introduced on a plas-
mid. Similarly, the corresponding substitution in a plasmid carrying the paralogous ISU2-Ile
conferred bypass activity. The effects were observed with chromosomal ISU1 and ISU2 genes
remaining intact, thereby reflecting genetic dominance and suggesting a gain of function. It is
therefore interesting to consider more specifically the nature of the gained function. One expla-
nation could be that Nfs1/Isd11 exhibits only basal cysteine desulfurase activity, and that fra-
taxin is needed to act as a positive effector, thereby inducing the optimal activated level of
cysteine desulfurase [13,29]. The wild-type Isu1 has no stimulatory activity on its own and may
even be inhibitory [13,33], but the suppressor Isu1-Ile is able to substitute for frataxin by stimu-
lating the Nfs1/Isd11 cysteine desulfurase [29,30]. If both wild-type Isu1 and suppressor
Isu1-Ile are present in the cell simultaneously, the stimulatory effect of the suppressor is the
dominant effect, providing bypass activity. An implied consequence of this scenario is that the
suppressor Isu1-Ile will require an active form of Nfs1 for it to be effective. Thus it makes sense
that the hypomorphic allele of NFS1, nfs1-14 [46], with decreased cysteine desulfurase activity,
would not support bypass. The results provide genetic support for the hypothesis that frataxin
and the bypass Isu1 work to produce their effects on Fe-S cluster assembly, at least in part, by
boosting the activity of the cysteine desulfurase.

The suppressor Isu1 was shown to stimulate persulfide formation on Nfs1, similar to frataxin
[29,30]. Subsequently, sulfur for Fe-S cluster synthesis must be transferred to the Isu1 scaffold
and assembled with iron to form the Fe-S cluster intermediate. It is generally assumed that this
process occurs in a protein complex with other Isu1 molecules present [35,36]. Therefore, we
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wondered if the Nfs1 stimulatory effect of the suppressor Isu1 could promote Fe-S cluster forma-
tion in trans on a normal copy of Isu1 or Isu2. However, at least in a series of genetic experi-
ments, this was not the case. The survey of all the possible M141 amino acid substitutions
identified a set of best scaffolds, moderate scaffolds and poor scaffolds, based on complementing
activity in theGAL1-ISU1/Δisu2 strain (Fig 1B). The same set of plasmids, scored for frataxin-
bypassing capability, identified activity for M141 with Cys, Ile, Leu or Val changes, and these all
fell into the top category for scaffold activity. Furthermore, if a second site substitution abolish-
ing scaffold activity (e.g. changing a critical Cys to Ala) was introduced into the M141I-Isu1 pro-
tein sequence, and the doubly substituted Isu1 was introduced into a Δyfh1 shuffle strain with
wild-type ISU1 and ISU2 present, bypass activity was abrogated (Fig 1C). Thus most likely the
suppressor Isu1 does not productively interact with the wild-type Isu1 to mediate bypass, but in-
stead it replaces the wild-type Isu1 in providing both bypass and scaffold functions.

Prokaryotic versus eukaryotic cysteine desulfurases
Eukaryotic and prokaryotic Fe-S cluster machineries are highly conserved. Both yeast and E.
coli utilize cysteine desulfurases, scaffold proteins and frataxin homologs. However major dif-
ferences in the frataxin deletion phenotypes have been reported, with essentiality or severely
deleterious phenotypes in the eukaryotic case [4], and normal growth and relatively mild phe-
notypes in E. coli [27]. Why the difference? One possibility is that E. coli possesses a redundant
Fe-S cluster assembly system, the SUF system, which may compensate for lack of frataxin [47].
However this does not entirely account for the phenotypic differences, because the SUF system
is not generally deployed under standard growth conditions. Significantly, the cysteine desul-
furases show key differences. Most prokaryotic cysteine desulfurases such as IscS are constitu-
tively active, although some regulatory changes in activity have been described [15]. The
eukaryotic cysteine desulfurases, on the other hand, seem to be largely inactive in their basal
state. Activation is required, and this activation involves frataxin. Purified Nfs1 is able to bind
the substrate cysteine in its PLP containing substrate-binding site. However, binding is ineffi-
cient, and frataxin interaction increases exposure and utilization of substrate-binding sites of
the enzyme [29]. The suppressor Isu1-Ile protein is able to generate a similar alteration of
Nfs1, mimicking the effect of frataxin on Nfs1, and providing a plausible explanation for its fra-
taxin-bypass activity. Nfs1 enzyme with the substrate bound must still undergo another activa-
tion step, mediated by Isd11. Isd11 triggers a conformational change and persulfide formation,
thereby generating the intermediate for Fe-S cluster assembly [29]. Here we have seen that not
only the Ile but also the Cys, Val, Leu substituted forms of Isu1 are able to stimulate persulfide
formation on Nfs1 in the absence of frataxin. Thus these bypassing alleles of Isu1 activate Nfs1
independently of frataxin, rendering the mitochondria more prokaryote-like.

Frataxin-bypassing amino acid substitutions in Isu1 and how they may
work
More than 17,000 amino acid changes of ISU1 were surveyed, but only a small subset of those
conferred bypass activity. In all cases, the active changes altered the amino acid at position 141
of Isu1, introducing the amino acids Cys, Ile, Leu, or Val. The mutagenesis was not exhaustive,
but nonetheless, the data support the very restricted nature of the changes that confer this ac-
tivity. The biochemical features of these newly discovered bypass mutants (Isu1 with Cys, Leu,
or Val substituted at position 141) were similar to the original one (Isu1 with Met replaced by
Ile). The various mutant forms of Isu1 conferred improved growth in the absence of frataxin
and more efficient Fe-S cluster assembly in mitochondria. The persulfide-forming activity was
increased in mitochondria lacking frataxin, indicating enhanced cysteine desulfurase activity.
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How does the Isu1 suppressor work? Isu1 is a central component of the Fe-S cluster assem-
bly complex consisting of Nfs1/Isd11/Isu1/Yfh1. The components are highly conserved with
their bacterial homologs, with the exception of Isd11. Structural information has been obtained
only for the bacterial components [11,36]. For Isu1/IscU the structure includes alpha helices
framing a platform of beta sheets, with three conserved cysteines oriented towards a binding
pocket in the core and able to coordinate the Fe-S cluster intermediate (Fig 7). The amino acid
motif LPPVK is found towards the beginning of a long C-terminal alpha helix [11,39]. Interest-
ingly, the PVK motif (Fig 7, green in Fe-S scaffold) was shown to include the frataxin-binding
site [33]. The suppressor residue Ile (Fig 7, red ball-and-stick) is predicted to lie on an exposed
surface of this helix, opposite the Fe-S liganding Cys, which is found on the opposite interior
face of the helix (Fig 7, blue ball-and-stick). Thus the Met to Ile amino acid change near to this
frataxin-binding site on Isu1 might mimic the effects of frataxin binding. Substitutions of Cys,
Val, or Leu would be predicted to produce similar changes.

Conformational changes of the Fe-S cluster assembly complex facilitating Fe-S cluster inter-
mediate formation might ensue. Nfs1 might be altered in a way that exposes substrate-binding
sites for interacting with cysteine [29]. (Fig 7, yellow balls for PLP in the binding site). The sul-
fur intermediate, converted to a persulfide and bound to the flexible loop of Nfs1 (Fig 7,

Fig 7. The Fe-S cluster assembly complex of E. coli. The Protein Data Bank (PDB) file of the bacterial Fe-S cluster assembly complex [36] was kindly
provided by Annalisa Pastore (King’s College London). The image was drawn using the Stanford Chimera program. The cysteine desulfurase is IscS for E.
coli or Nfs1 for yeast; frataxin is CyaY for E. coli or Yfh1 for yeast; the Fe-S scaffold is IscU for E. coli or Isu1/Isu2 for yeast. Highlighted features of IscU/Isu1
are the suppressor amino acid Ile (red), the Fe-S cluster cysteine ligands (blue), and the PVK frataxin-binding site (green). The reciprocal interaction site on
frataxin includes a tryptophan (green). The PLP cofactor of IscS/Nfs1 is shown as yellow spheres, and a dotted purple line is used to indicate the approximate
position of the active site mobile loop, which is not seen in the structures.

doi:10.1371/journal.pgen.1005135.g007
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magenta dotted line and adjacent residues), might be more readily transferred to the modified
Isu1. The Cys 139, an Fe-S cluster ligand on Isu1, that is one helix turn away from the Ile sup-
pressor residue, might be rendered more accessible for persulfide transfer (Fig 7). Iron delivery
remains the least characterized step in Fe-S cluster formation. Frataxin might facilitate iron
entry into the Fe-S cluster assembly complex by initiating a conformational change that pro-
motes transfer of mitochondrial iron from a physiological ligand (still undefined) to Isu1. Al-
ternatively, frataxin might play a more direct role in binding iron and delivering it to Isu1 as
has been shown for Yfh1 [19]. The Isu1-Ile protein (or bacterial IscU) might accomplish a sim-
ilar function by exposing iron-binding sites on Isu1 [19]. The iron delivery step in Fe-S cluster
assembly will need to be better understood to support or to refute these possibilities.

Iron homeostasis and heme
Iron homeostasis was improved, correlating with the improvements in cytochrome c, a mito-
chondrial heme protein. In previously published work, cytochromes were virtually absent in
Δyfh1 and restored by the ISU1-Ile allele as assessed by low temperature spectra of whole cells
[28]. Other heme proteins such as cytochrome c peroxidase, Ccp1, were similarly affected [30].
Heme synthesis, measured by 55Fe incorporation into porphyrin in isolated mitochondria, was
very low in Δyfh1 and recovered in the presence of the substituted ISU1 [28]. What is the mech-
anistic connection between a change in the Fe-S cluster assembly scaffold and these effects on
heme synthesis? Heme synthesis occurs inside mitochondria and involves the insertion of iron
into porphyrin by the enzyme ferrochelatase to make protoheme. Porphyrin and ferrochelatase
activity are not lacking, and in fact, zinc protoporphyrin accumulates in the Δyfh1mutant [25].
Instead iron is the likely source of the trouble. Iron accumulating in Δyfh1mitochondria (and
in other Fe-S cluster deficient cells) exhibits changes in its physical properties and solubility
that could lead to loss of bioavailability [25]. The data suggest that Fe-S cluster synthesis acts
upstream of heme synthesis in promoting iron bioavailability for heme synthesis, although
many mechanistic details are still lacking.

Taxonomy of Isu1/IscU sequences with or without frataxin
Isu1/IscU amino acid sequences sorted according to the amino acid appearing in position 141
fall into clearly defined grouping, underscoring the importance of this residue for Isu1/IscU
function. The amino acid Met appeared almost exclusively in eukaryotic organisms. The only
significant exceptions were several prokaryotic Rickettsia species, which were classified as pro-
teobacteria. In all of these organisms with IscU-Met, frataxin was also present in their genomes.
We can imagine a scenario in which IscU-Met and frataxin originated together in proteobac-
terial ancestors of mitochondria such as Rickettsia, and from there gave rise to modern mito-
chondria via horizontal gene transfer during the endosymbiotic event (Fig 6). A key point is
that the Met amino acid was found only in organisms with frataxin, as if Met serves to “lock
in” frataxin by ensuring frataxin dependence of Fe-S cluster assembly. The co-dependence of
these two elements, the IscU-Met and frataxin, appears to be quite profound, as they have been
retained together throughout all the eukaryotic branches of the tree of life. In the prokaryotic
world, on the other hand, various IscU variants were found, and various amino acids were
found at position X adjacent to the PVK frataxin-binding motif of the IscU homologs. The
amino acids Cys, Ile, Leu, or Val which conferred frataxin-bypass in biochemical experiments
in yeast, were found in IscU proteins of species with or without frataxin homologs (Fig 6).
Thus the evolutionary record suggests that these amino acids may be associated with relative
frataxin independence of Fe-S cluster assembly. The advantages of retaining IscU-Met and
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frataxin versus IscU-Ile and no frataxin remain to be ascertained, as both arrangements are
able to support efficient and regulated Fe-S cluster assembly.

Implications for Friedreich's ataxia
Friedreich’s ataxia is a progressive degenerative disease affecting neurons such as dorsal root
ganglia and cardiomyocytes, and certain other tissues. The disease is caused by frataxin defi-
ciency in affected tissues and is associated with defective Fe-S cluster assembly [24,48]. The ef-
ficacy of frataxin-bypass in yeast can be viewed as a reprogramming of mitochondrial Fe-S
cluster assembly to a more prokaryotic type, such that the cysteine desulfurase and other fea-
tures of the assembly process become more frataxin-independent. The discovery of several sub-
stitutions, changes to Cys, Ile, Leu, or Val, that are able to confer frataxin-bypass suggests that
there may be common structural features of these Isu proteins that could be mimicked by
small molecules [49]. The genetic dominance of the suppressor activity in the Δyfh1 yeast also
suggests that such an approach could be effective in a therapeutic setting in human mitochon-
dria where frataxin is deficient and normal Isu1 is still present.

Materials and Methods

Construction of Isu1 mutant plasmids and yeast strains
A set of plasmids was generated containing modified versions of the Isu1 coding sequence (be-
tween NdeI and XhoI), carried between the native Isu1 promoter (700 bp between EagI and
NdeI) and terminator (200 bp between BamHI and SacI) on a centromere based plasmid,
YCplac22. Residue 141 of the full length Isu1 precursor protein was changed from M to each of
the other 19 amino acids, using QuikChange mutagenesis (Agilent Technologies Inc.). In addi-
tion, N123D and N123A mutants were generated. Cysteine mutants of the Isu1 coding se-
quence were constructed in which C69, C96 and C139 were each changed to A. The M141I
change was then introduced into each of these cysteine mutants, creating plasmids
C69A-M141I, C96A-M141I, and C139A-M141I. A cysteine swap mutant was created in which
C139A was combined with M141C in the full length Isu1. The various mutant forms of Isu1
were tested for Yfh1-bypassing function and scaffold function by transforming into strains
YFH1 shuffle and GAL1-ISU1/Δisu2, respectively (Table 1). For testing genetic dominance of
the ISU1 bypass suppressor, the suppressor allele (YCplac22-ISU1-M141I) was introduced into
strain 70–31 containing genomic copies of ISU1 and ISU2 (Table 1), and the covering YFH1
plasmid was removed by fluoroorotic acid (FOA) treatment. For testing ISU2 function, the na-
tive ISU2 sequence was amplified from plasmid pGP564-ISU2 including 700 bp 5’ and 200 bp
3’ of the coding sequence, and cloned between restriction sites HindIII and BamHI in
YCplac22, making plasmid YCplac22-ISU2. The M133 was changed to Ile by site directed mu-
tagenesis, creating YCplac22-ISU2-M133I. The ISU2 coding sequence was inserted into
NdeI-XhoI sites in place of the ISU1 coding creating YCplac22-ISU2coding. The M133 was
changed to Ile by site directed mutagenesis creating plasmid YCplac22-ISU2coding-M133I.

Mutant strains expressing alleles of Isu1 (Cys, Ile, Leu, or Val) in single
copy
Strain GAL1-ISU1/Δisu2 was transformed with plasmid YCplac22-ISU1 in which M141 was
changed to C, I, L or V and the chromosomal GAL1 promoter was turned off by shifting cells
from galactose to glucose as the carbon source. The YFH1 gene was deleted by transforming
with plasmid pRS405-gamma-yfh1 linearized with BamHI, and selecting for transformants on
defined leucine drop-out medium in an argon-filled chamber. These low oxygen conditions
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were previously shown to mitigate the mutant phenotype and allow for stable propagation of
the knockouts [30]. The knockouts were confirmed by PCR of the YFH1 locus. The strains
were denoted Δyfh1 [ISU1] (115–26), Δyfh1 [ISU1-Cys] (116–54), Δyfh1 [ISU1-Ile] (115–28),
Δyfh1 [ISU1-Leu] (116–53), and Δyfh1 [ISU1-Val] (116–51). Congenic wild-type strain YFH1
[ISU1] was included as a control.

The strains were thawed from -80°C vials and inoculated to CSM-Trp/2% raffinose defined
medium agar plates kept in an argon-filled jar. Cells were inoculated from the plates into liquid
medium of the same composition. In general, small cultures of 50 ml were grown in argon-
filled bottles for two days without shaking, expanded to 100 ml cultures while shaking in air,
and then diluted again into 1 L cultures supplemented with 10 μM ferrous ascorbate. The 1 L
cultures were grown at 30°C for 16 h, and the total time exposed to air was approximately 24 h
for the slow-growing strains.

Iron measurements and enzyme assays
Cellular and subcellular iron levels were determined by growing cells for at least four doublings
in standard defined medium supplemented with 58 nM 55FeCl3, 10 μM unlabled ferric chloride
and 100 μM ascorbic acid. Cells were washed free of unincorporated iron, and then they were
ruptured by vortexing with glass beads in the presence of 50 mMHepes/KOH, pH 7.5, 150 mM
NaCl, 0.6 M sorbitol. Differential centrifugation was used to remove unbroken cells and to sepa-
rate the remainder into mitochondrial and post-mitochondrial fractions [50]. The post-mito-
chondrial fraction included both cytoplasm and vacuoles, as no effort was made to separate
these two cellular components. Mitochondria were shown to be mostly intact by evaluation of
mitochondrial marker proteins, which remained with the mitochondrial fraction. Mitochondria
were lysed for 10 min at room temperature in the presence of 0.1% Triton X-100 in hypotonic
buffer (50 mMHepes/KOH, pH 7.5, 150 mMNaCl). The supernatant (soluble) and pellet (in-
soluble) portions were separated by centrifugation at 20,000 x g for 30 min. Iron content was de-
termined by scintillation counting for 55Fe, and protein content was measured by bicinchoninic
acid assay (BCA, Pierce) [28]. For whole cells, iron content was reported as pmol iron per mil-
lion cells, whereas for the cellular fractions iron content was reported as pmol iron per micro-
gram protein. An in-gel activity assay for aconitase was performed. Briefly, mitochondria were
lysed in buffer consisting of 50 mM Tris-HCl pH 8, 50 mMNaCl, 1% TX-100, 10% v/v glycerol,
2 mMNa-citrate and 15 U catalase. Samples were loaded on a native acrylamide gel containing
132 mM Tris base, 132 mM boric acid, 3.6 mM sodium citrate. The signal was developed in the
gel by incubating in developing buffer containing 100 mM Tris-HCl, pH 8, 1 mMNADP, 2.5
mM cis-aconitic acid, 5 mMMgCl2, 1.5 mMmethylthiazolyldiphenyl-tetrazolium bromide
(MTT), 0.3 mM phenazine methosulfate, and 5 U/ml isocitrate dehydrogenase [51,52].

Organelle assays for persulfide and Fe-S cluster synthesis
Persulfide formation on Nfs1 present in intact mitochondria was measured as described [16].
Isolated mitochondria were depleted for endogenous nucleotides and NADH by incubation for
10 min at 30°C in buffer (20 mMHepes/KOH, pH 7.5, 0.6 M sorbitol). These mitochondria
were incubated with 35S-cysteine (10 μCi) for 15 min at 30°C. Mitochondria were recovered,
proteins were separated by non-reducing SDS gel, and the persulfide was viewed by radioau-
tography. Fe-S cluster formation was measured as described [12]. Mitochondria were incubat-
ed with 35S-cysteine for 30 min in the presence of added ATP (4 mM), GTP (1 mM), NADH (5
mM) and iron (10 μM ferrous ascorbate). Mitochondria were recovered and the soluble pro-
teins were released by freeze-thaw and sonication and separated on a native gel. The signal as-
sociated with newly formed [Fe-35S] aconitase was visualized by radioautography.
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Genetic screen for Isu1 alleles with bypass activity
Pools of mutagenized linear fragments of 1443 bp including the coding region of the ISU1 gene
were generated by mutagenic PCR in the presence of 1 mMMnCl2 and altered nucleotide con-
centrations (2 mM dATP, 2 mM dGTP, 10 mM dTTP, 10 mM dCTP). The primers used were:
A (5’ TTTTTTCGGCCGTTCTTTTCTTTTTCTTGCACTACC 3’) and B (5’ TGATTT
GAGCTCagcacgtccgtcccgctttcaccctgg 3’), and the templates were different YCplac22-ISU1
plasmids with M, Y, H or F at position 141 of the coding region. Each mutagenized pool was
co-transformed with a gapped plasmid (pRS416-ISU1 digested with MscI and BamHI) into the
YFH1 shuffle strain 109–9 (Δyfh1::TRP1 Δisu1::HIS3MX6 ISU2 cyh2 [pRS318-CYH2--
LEU2-YFH1], Table 1). After selecting for transformants on uracil drop-out medium with glu-
cose as the carbon source, the colonies were replicated to uracil drop-out, cycloheximide
medium with glucose or raffinose as the carbon source. The large colonies appearing after sev-
eral days on the raffinose plates were analyzed further. Colony PCR was used to check for ab-
sence of YFH1. Transformants still harboring YFH1 after counterselection were discarded. The
remaining clones were expanded, and the plasmid-borne ISU1 alleles were rescued in E. coli
and the DNA was sequenced.

E. coli IscU constructs and yeast strains for mitochondrial targeting
The coding region of E. coli IscU was amplified from genomic E. coli DNA from strain DH5
alpha and inserted into the XbaI and XhoI sites of a YCplac22 derived plasmid. In this plasmid,
the ISU1 promoter consisting of 700 bp, is followed by the first 22 amino acids of the cyto-
chrome c oxidase subunit IV (CoxIV) mitochondrial signal sequence [53], and 200 bp of ISU1
terminator. The resulting plasmid was checked by DNA sequencing and confirmed to code for
a CoxIV-IscU fusion protein with amino terminus as follows: MLSLRQSIRFFK-
PATRT^LCSSRHMAYSEKVID. The caret indicates the predicted signal sequence cleavage
site by the mitochondrial processing peptidase, and the bolded letters indicate amino acids of
E. coli IscU. The rest of the IscU sequence was confirmed to be the same as listed in Genbank
accession No. AAJU02000016.1. The amino acid I108 of IscU (equivalent to M107 in signal-
cleaved mature Isu1 or M141 in the full length precursor form of Isu1) was changed from I to
M by QuikChange mutagenesis, generating a plasmid for expressing IscU-Met in mitochon-
dria. The mitochondrial-targeted iscU plasmids were introduced into strain GAL1-ISU1/Δisu2,
generating strains YFH1 [iscU] and YFH1 [iscU-Met]. YFH1 was deleted in these strains by
transforming with pRS405-gamma-yfh1, linearized at BamHI, followed by selection on leucine
drop-out medium in an argon-filled anaerobic jar. This created strains Δyfh1 [iscU] and Δyfh1
[iscU-Met] (Table 1). Deletion of YFH1 was verified by PCR. Strain GAL1-ISU1/Δisu2 trans-
formed with YCplac22-ISU1 served as the control strain YFH1 [ISU1]. All strains were grown
in an argon-filled chamber or in argon-bubbled medium, and cells were then exposed to air in
defined raffinose medium for iron labeling and mitochondrial isolation.

Bioinformatic analysis of Isu1/IscU protein sequences
Isu1/IscU related sequences were collected by using BLAST similarity to the Isu1 of Saccharo-
myces cerevisiae S288c from the RefSeq non-redundant database. All related entries in RefSeq
(6064) were aligned using the Muscle program [43], according to the amino acid at position X
(equivalent to Isu1 residue 141) of the amino acid motif LPPVK LH CSX LA. The lists were
manually edited, and duplicates were removed, retaining one entry for each species. For each
entry, the sequence was scored + if it contained 8 or more amino acids identical to the query,
and 0 if contained 7 or less. The sequences were scored � for exceptions if they deviated from
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the rule that eukaryotic Isu proteins use only methionine at that amino acid position and pro-
karyotic Isu proteins do not use methionine at that position.

Supporting Information
S1 Fig. Frataxin-bypass by ISU2-Ile. The Δyfh1 shuffle strain 70–31 strain was transformed
with ISU2-containing plasmids and control plasmids, and the covering YFH1 plasmid was re-
moved by FOA treatment. The plasmids are: 1) YCplac22-ISU2coding-Met, 2) YCplac22-
ISU2coding-Ile 3) YCplac22-ISU2-Met, 4) YCplac22-ISU2-Ile, 5) YCplac22, 6), YCplac22-
ISU1-Met, 7) YCplac22-ISU1-Ile, 8) YCplac22-YFH1. Frataxin-bypass was observed for ISU2-
Ile and ISU2coding-Ile in which the mutated coding sequence of ISU2 was expressed from the
ISU1 promoter.
(TIF)

S1 Table. List of randomly generated mutations of ISU1 selected for frataxin-bypass activi-
ty. The ISU1 coding sequence was amplified by error-prone PCR from the native sequence
(M141) or from mutated sequences plasmids (Y141, H141 or F141) and co-transformed with a
gapped ISU1 plasmid into the YFH1 shuffle strain. Following removal of the YFH1 plasmid,
clones with improved growth were identified, and the plasmid borne ISU1 sequence was deter-
mined. The table lists amino acid changes in the ISU1 coding of the “hits” with improved
growth and the corresponding nucleotide sequence of the codon at position 141 of ISU1.
Among the hits, M141I was selected 6 times, M141V was selected 24 times, M141L was selected
4 times, and M141C was selected 17 times. No selected clones had the wild-type sequence,
M141. As a control, 42 unselected clones were evaluated from the randomized pool starting
with M141, and these all retained the M141 codon.
(XLSX)

S2 Table. Bioinformatic survey of Isu1/IscU sequences. Isu1/IscU proteins from the RefSeq
non-redundant database (total number of 6064) were aligned according to the amino acid at
position X of the 12 amino acid motif LPPVK LH CSX LA. In all, 21 lists were collected, one
for each amino acid at position X and a no-alignment list. The lists were manually edited, re-
taining one entry for each species. For each entry, columns were annotated with the species
name, accession number, taxonomic category, and the sequence of the 12 amino acid motif.
The sequences were scored + if they contained 8 or more amino acids identical with the motif
present in yeast Isu1 and 0 if they contained 7 or less identical amino acids. The sequences
were scored � for exceptions if they deviated from the rule that Isu1/IscU proteins use methio-
nine at position X and prokaryotic proteins do not use methionine at that position.
(XLSX)
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