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Objectives. Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing
rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in
ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus
(ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM
have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. Methods. We
comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and
Web of Science to investigate the features of ABCC8-NNDM. Results. Based on a comprehensive literature search, we found
that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants,
24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were
confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and
p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with
early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of
microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. Conclusions.
Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further
studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.

1. Introduction

Diabetes mellitus (DM) is a major chronic metabolic disease
in the world, and its prevalence has increased rapidly in
recent years. Genetic and environmental conditions contrib-
ute to DM. The type of monogenic diabetes is the main eti-
ology for diabetes. Maturity-onset diabetes of the young
(MODY) is a kind of monogenic diabetes characterized by
autosomal dominant inheritance. It is reported that the
prevalence of MODY is 1~ 5% [1]. The activating variants
of ABCC8 also could cause MODY. The ABCC8 gene encod-
ing sulfonylurea receptor (SUR), which is the regulatory sub-
unit of KATP channel, plays a key role in regulating insulin
secretion [2, 3]. KATP channel is a hetero-octamer and con-
sists of four inwardly rectifying proteins of the potassium
channel Kir6.2 and four regulatory subunits of the sulfonyl-

urea receptors [4, 5]. The enhanced glucose metabolism
results in a change of ADP/ATP and leads to the closure of
the KATP channel, which in turn induces membrane
depolarization and triggers the opening of the voltage-
dependent Ca2+ channel, which stimulates the release of
insulin [6, 7]. Besides, variants in ABCC8 gene could cause
hyperinsulinemic hypoglycemia (HH) due to inactivating
variants which have an impaired response to magnesium
adenosine diphosphate- (MgADP-) mediated opening of
the channel [6, 8, 9]. Therefore, variants in ABCC8 gene
could cause variable phenotypes: diabetes and HH, due to
the different effects of the variants on channel function
[9–13]. According to the onset age, DM induced by the
ABCC8 variants are classified as two major groups of
disorders—ABCC8-induced nonneonatal diabetes mellitus
(ABCC8-NNDM) and ABCC8-induced neonatal diabetes
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mellitus ABCC8-NDM. Although the features of ABCC8-
NDM have been well evaluated, the studies on the clinical
and genetic features of ABCC8-NNDM were limited. And
these studies were mainly conducted in Europe and Amer-
ica. Bowman et al. first identified ABCC8 missense variants
as a cause of MODY by testing sulfonylurea-sensitive
HNF1A and HNF4A variant-negative MODY cases with no
family history of neonatal diabetes [10]. Then, Johansson
et al. identified a patient with ABCC8-MODY by exome
sequencing in an analysis of variant-negative MODY cases
by Sanger sequencing [14]. Additionally, potential patho-
genic alterations in the ABCC8 gene were also identified in
genetic studies. It has been shown that the prevalence of
ABCC8 variants was estimated to be 0.5~ 1.5% in different
cohorts [15–17]. However, the clinical phenotype has not
been well established. In addition, the development in the
field of ABCC8 gene-related diabetes has included de novo
variants identified by new rapid molecular genetic features,
symptoms, and medical therapy (sulfonylureas, DPP4-
inhibitor).

Therefore, we systematically reviewed the literature
related to ABCC8-NDM and ABCC8-NNDM to comprehen-
sively conclude the genetic and clinical features of ABCC8-
NNDM. The review article has summarized the updated
advance of ABCC8-NNDM and included de novo variants,
clinical symptoms, and medical therapy.

2. Materials and Methods

2.1. Study Subjects. A total of 144 patients with ABCC8-
NNDM were included to analyze the clinical and genetic fea-
tures in previous literature. The literature search has been
conducted until Sep. 2020. We systematically identified all
potentially relevant articles from the following three elec-
tronic databases: MEDLINE, PubMed, and Web of Science.
Search terms about diabetes—such as “maturity-onset diabe-
tes of the young (MODY),” “Neonatal diabetes mellitus,”
“Neonatal diabetes” and “ABCC8-MODY,” and Sulfonylurea
receptor 1, for example, “Sulfonylurea receptor 1,” “ABCC8,”
and “KATP channels”—were used in various combinations
and permutations across the databases. Language restriction
(English) was applied. The criteria for inclusion were
patients with ABCC8-NNDM and those with ABCC8-
NDM in previous studies. We systematically reviewed the
related studies, including population-based studies, reviews,
functional studies, and meta-analysis. The criteria for exclu-
sion were repetitive literature and unavailable data. The
genetic information of ABCC8 gene was as follows: accession
number: NM_000352.4, NP_000343.2.

For data extraction, clinical information, including
demographics, initial presentation, treatment of diabetes,
physical examination results, laboratory test results, and
information of genetic variants of the patients, was
extracted.

2.2. Classification of the Pathogenicity of ABCC8 Variants.
The pathogenicity of the variants was classified according
to the established guidelines of the American College of
Medical Genetics and Genomics and the Association for

Molecular Pathology (ACMG-AMP) [18]. We classified
these variants into the following categories: pathogenic,
likely pathogenic, uncertain significance, likely benign, and
benign. We used two or more lines of computational evi-
dence (PROVEAN (http://provean.jcvi.org), SIFT (http://
sift.jcvi.org/), Polyphen2 (http://genetics.bwh.harvard.edu/
pph2/index.shtml), and MutationTaster (http://mutationtaster
.org)) to support a deleterious effect on the gene for pathogenic
supporting 3 (PP3) according to the guidelines of the ACMG-
AMP. According to the guidelines, each pathogenic criterion
is weighted as very strong (PVS1), strong (PS1–4), moderate
(PM1–6), or supporting (PP1–5).

2.3. Conservation of the Variants. We conducted multiple
sequence alignment (MSA) to align sequences of ABCC8
protein from a few vertebrate species by ClustalW server
(https://www.genome.jp/tools-bin/clustalw) to interpret the
conservation of these sequences. The result of MSA from
ClustalW was plotted using ESPript (Easy Sequencing in
Postscript 3.0, http://espript.ibcp.fr) [19, 20]. The species
and GenBank accession numbers of the ABCC8 sequences
adopted were the following:Homo sapiens—NP_000343.2,Cal-
lithrix jacchus—XP_035121815.1, Chlorocebus sabaeus—XP_
008003585.1, Danio rerio—NP_001166118.2, Sus scrofa—XP_
008003585.1, and Vulpes vulpes—XP_025863953.1. We
followed the methods of Li et al. [21].

2.4. Statistical Analysis. Normally distributed variables were
expressed as mean ± SD, and they were compared using t
-tests. Categorical variables were presented as numbers and
percentages. A Chi-square was adopted for categorical data.
Analyses were performed using SPSS version 23.0.

3. Results

3.1. The Clinical and Genetic Characteristics of Patients with
ABCC8-NDM Described in Previous Studies. We have sys-
tematically reviewed the literature reporting variants in
ABCC8-NDM. 175 probands with ABCC8-NDM (including
139 patients with heterozygous variants, 21 patients with
homozygous variants, one patient with a mosaic variant,
and 14 patients with compound heterozygous variants) var-
iants were found owing to 110 ABCC8 (Table 1). Among
those probands, 66 patients were reported as having tran-
sient neonatal diabetes mellitus, 92 as having permanent
neonatal diabetes, and 17 as having an unknown type of dia-
betes due to a lack of follow-up. These variants caused
ABCC8-NDM with either a dominant or recessive genetic
pattern and were scattered throughout the functional
regions of the gene (Table 1 and Supplementary Figure 1).

All these patients presented with impaired insulin secre-
tion, and 18 of the 110 variants were confirmed to be activat-
ing in functional studies and affect the channel inhibition by
different molecular mechanisms. Then, those variants led to
impaired insulin secretion and diabetes, as shown in Table 1.

The birth weight of 99 probands was available. Thirty-
two probands (32%) had a birth weight < 2,500 g, and only
one proband (1%) had a birth weight of >4,000 g. Forty-
three of the 175 (24.6%) probands with ABCC8-NDM had
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Table 1: Variants of ABCC8 causing neonatal diabetes mellitus reported in previous studies.

Topological
domain

Variant (protein effect) Zygosity Neurological features Reference

TMD0

p.S8R, p.V86A, p.V86G, p.A90V, p.F132V,
p.L135P

Het [50, 58–63]

p.I49F, p.F132L∗ Het DEND [39, 50, 58, 59, 64–66]

p.N72S Mosaic [50, 58, 59, 64, 67]

L0

p.E208K, p.D209E, p.D209N, p.Q211K,
p.D212E, p.D212N, p.D212Y, p.R216C,
p.L225P, p.T229N, p.R285Q, p.G296R

Het [2, 50, 52, 58, 59, 61, 64, 66, 68–71]

p.D212I Het Muscle hypotonia [58, 59, 70]

p.L213P, p.L213R∗, p.R306H Het DEND [40, 50, 59, 72, 73]

p.A269D Het Hypotonia [2, 50]

p.T229I Hom [50, 58, 59]

p.E208K+ p.Y263D CH DEND [58, 59, 64]

TMD1

p.V324M, p.A355T, p.E350D, p.I395F,
p.H410Y, p.S459R, p.Q485H, p.F536L,

p.F577L, p.I585T
Het [2, 13, 50, 53, 59, 65, 73–78]

p.D424V Het Seizure [79]

p.C435R∗, p.L451P, p.V587G Het DEND [40, 50, 59, 80, 81]

p.L582V∗ Het Slow ideation [2, 23, 40, 50, 59]

p.E382K, p.E382V Hom [50, 59, 64, 69, 82]

NBD1

p.V607M, p.R653Q, p.R825W, p.G832C,
p.G832D, p.H862Y, p.R877Q, p.D897V,

p.E939K
Het [24, 61, 62, 66, 75, 82–87]

p.R825W∗ Het iDEND
[2, 24, 50, 52, 54, 58, 59, 63, 68–70,

87]

p.E747X, p.R825W Hom [62, 88]

TMD2

p.H1023Y∗, p.S1053N, p.F1176L,
p.Q1178R∗, p.R1182Q∗, p.R1182W∗,

p.F1181S, p.P1198L∗, p.G1255S
Het

[2, 12, 23, 25, 26, 40, 50, 52, 58, 59,
66, 70, 73, 85, 89–95]

p.N1122D Het Seizure [50, 60]

p.F1067I Hom [96]

p.H1023R∗ Hom [97]

p.F1163L Hom DEND [69, 82, 98]

p.A1184E Hom
Muscle weakness and

seizures
[50, 59, 64]

NBD2

p.R1313H, p.R1379S, p.I1424V∗,
p.E1506Q∗, p.E1506D∗, p.E1506G∗, p.V1522M

Het [2, 13, 26, 40, 50, 58, 59, 76, 89, 99]

p.R1379H Het Hyperkinesia [2, 50, 59, 70, 80]

p.R1379C∗ Het Minor dystonia [23, 40, 50, 52, 59, 70, 76, 100]

p.R1379L∗ Het DEND [50, 58, 59, 100]

p.A1536P Het Motor delay [101]

L0 +NBD1 p.V215I +V607M, p.L225P∗ +D879N CH [58, 102, 103]

L0 +NBD2 p.T229I+ p.V1522L CH [58, 59, 64]

L0 +TMD1 p.P207S+ p.Y179X CH [59, 64]

NBD1+TMD0 p.E747X+ p.E128K CH [88]
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neurological manifestations. In addition, 21 (12.0%) patients
had developmental delay and epilepsy syndrome (DEND), 5
(2.9%) patients had intermediate DEND syndrome, 5 (2.9%)
had seizures, and 12 (6.9%) had other neurological symp-
toms. This was similar to the previous study reporting
approximately 20% of patients with KATP channel variants
developed neurological symptoms [22]. The variants report-
edly associated with the neurological phenotype were across
all functional regions of the ABCC8 gene.

3.2. The Genetic Characteristics of Patients with ABCC8-
NNDM Reported in Previous Studies. After systematical
reviewing the literature related to the ABCC8-NNDM stud-
ies, 87 probands were identified with 71 ABCC8 genetic var-
iant alleles, including 75 patients with heterozygous variants,
four with homozygous variants, and eight with compound
heterozygous variants (Table 2, Supplementary Table 1,
Supplementary Figure 1). The domains where the variants
are located have been displayed in Table 2. By available
data and bioinformatics analysis, 47 and 15 variants of the
71 variant alleles were classified as likely pathogenic and
pathogenic, respectively, while nine variants were of
uncertain significance (VUS) (Supplementary Table 2).

Nine (including p.Y356C, p.R370S, p.L582V, p.R825W,
p.R1182Q, p.P1198L, p.R1418H, p.R1420H, and p.E1506K)
of 71 genetic variant alleles were confirmed to be activating
or inactivating through functional studies (Table 2). Among
them, five activating variants (p.Y356C, p.L582V, p.R825W,
p.R1182Q, and p.P1198L) have been demonstrated that
channel inhibition by ATP was reduced and less insulin
was secreted [15, 23–26]. The remaining four inactivating
variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H)
were found to decrease KATP channel activity and bring

about diabetes [27–30]. The patients with inactivating
variants had hyperinsulinemic hypoglycemia in early life
and progressed to diabetes later.

In addition, twelve variants (including p.A269D,
p.G296R, p.R306H, p.C435R, p.L582V, p.V607M,
p.R825W, p.R1182W, p.R1182Q, p.P1198L, p.F1067I, and
p.R1379H) of ABCC8 were reported both in patients with
ABCC8-NDM and in those with ABCC8-NNDM (Table 2
and Figure 1). The above variants were located in the
domains of the L0 linker region (L0), transmembrane
domain 1 (TMD1), nucleotide-binding domain 1 (NBD1),
transmembrane domain 2 (TMD2), and nucleotide-binding
domain 2 (NBD2) (Figure 1). The same variant could cause
different onset ages of diabetes.

3.2.1. Evolutionary Conservation of Sites of Variants Both in
Patients with ABCC8-NDM and in Those Patients with
ABCC8-NNDM. The conservation analysis was carried out
using ClustalW and ESPript 3.0 tools. Multiple sequence
alignments of ABCC8 in the vertebrate species were selected
for this analysis to show the sequence conservation of amino
acid residues between them (Figure 2). It has been demon-
strated that the amino acid residues of these twelve variants
of ABCC8 both in ABCC8-NDM and ABCC8-NNDM in the
literature were conserved across the organisms queried.

3.2.2. ABCC8-NNDM due to Gain-of-Function and Loss-of-
Function of Variants. Previous studies reported that both
gain-of-function and loss-of-function variants in ABCC8
could cause diabetes. The first loss-of-function ABCC8
variant was a heterozygous inactivating ABCC8 p.E1506K
variant, which presented with HH, followed by glucose intol-
erance and diabetes in later life [31]. This distinct phenotype

Table 1: Continued.

Topological
domain

Variant (protein effect) Zygosity Neurological features Reference

NBD2+TMD2 p.E1327K+ p.V1523A+T1043QfsX74 CH [59, 64, 104]

TMD0+ L0 p.A30V∗ + p.G296R∗ CH [105]

TMD0+NBD1 p.N23H+ p.R825W CH [63]

TMD0+NBD2
p.P45L+ p.G1400R CH

Reduced
consciousness,

seizures
[58, 59, 64, 106]

p.L147R + p.R1379C CH [107]

TMD0+TMD2 p.R168C+ p.G1256S CH [108, 109]

TMD1+TMD2
p.V324M+p.R1394L CH DEND [65]

p.L438F+ p.M1289V, p.I544T+
p.R1214W, p.N426S+ p.R1182Q

CH [13, 59, 66]

TMD2+ L0 A1263V+ I196N CH [52]

ATP-binding cassette transporter subfamily C member 8 (ABCC8) (accession number: NM_000352.4) has 17 transmembrane helices arranged in groups of
five (N-terminal transmembrane domain (TMD0)), six (TMD1), and six (TMD2). Two large cytosolic loops follow TMD1 and TMD2 and contain the
nucleotide-binding domains (NBDs, including NBD1 and NBD2) that are characteristic of ATP-binding cassette (ABC) proteins. The L0 linker region is
located between the TMD0 and the TMD1 domains. ABCC8-NDM: ABCC8 variant-induced neonatal diabetes mellitus; Het: heterozygous; Hom:
homozygous; CH: compound het; DEND: developmental delay and epilepsy syndrome; i-DEND: intermediate DEND syndrome. ∗ indicates that the
variant has been demonstrated to be activating in functional studies.
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Table 2: Variants of ABCC8 causing ABCC8-NNDM reported in previous studies.

Topological
domain

Variant (protein effect) Zygosity
Neurological

features
Reference

TMD0
p.S53C, p.V84I, p.E100K Het [10, 110, 111]

p.L171F Hom [112]

L0 p.P201S, p.A235T, p.A269D#, p.G296R#, p.R306C, p.R306H# Het [15, 16, 32, 111, 113, 114]

TMD1
p.A355T, p.Y356C∗, p.R370S∗, p.C418R, p.C435R#, p.Q485R,

p.V563D, p.L582V∗# Het
[10, 15, 23, 27, 111, 113,

115, 116]

NBD1
p.V607M#, p.R620C, p.G658V, p.D673N, p.N780S, p.R825Q,
p.R825W∗#, p.G832S, p.Q833K, p.H862R, p.E970V, p.A1536T

Het
[15, 16, 37, 83, 87, 111, 113,

117–120]

TMD2
p.G1008S, p.K1022Q, p.L1147R, p.R1182W#, p.R1182Q∗#,

p.P1198L∗#, p.E1205K, p.N1244D
Het [10, 16, 111, 116, 118, 121]

p.F1067I# Hom [96]

NBD2

p.R1352H, p.A1366T, p.R1379H#, p.K1384Q, p.S1385F, p.A1390V,
p.L1430F, p.Q1458E, p.A1472T, p.G1478R, p.R1493G, p.M1504T,
p.E1506K∗, p.A1507P, p.M1513T, p.V1523L, p.A1536V, p.R1538Q

Het
[1, 10, 14–17, 31, 33, 37,

113, 115, 116, 118,
122–127]

p.A1457T Het Epilepsy [36]

p.R1418H∗, p.R1420H∗ Hom [29, 30, 128]

TMD0 p.H103Y+ p.R74Q CH [35]

L0 p.G214R+ p.V222M CH [10]

NBD1 p.R933X+ c.3992-9G>A, p.F793Sfs71 + c.4608+4A>G CH [120, 129]

TMD2
p.L1191LfsX1207 + p.R1250X CH [129]

p.L1147R + p.R1250X CH [129]

NBD2 p.R1420H+F591fs604X CH [128]

ATP-binding cassette transporter subfamily C member 8 (ABCC8) (accession number: NM_000352.4) has 17 transmembrane helices arranged in groups of
five (N-terminal transmembrane domain (TMD0)), six (TMD1), and six (TMD2). Two large cytosolic loops follow TMD1 and TMD2 and contain the
nucleotide-binding domains (NBDs, including NBD1 and NBD2) that are characteristic of ATP-binding cassette (ABC) proteins. The L0 linker region is
located between the TMD0 and the TMD1 domains. “Neurological features” excludes seizures caused by hypoglycemia. ABCC8-NNDM: ABCC8 variant-
induced nonneonatal diabetes mellitus; Het: heterozygous; Hom: homozygous; CH: compound het. ∗ indicates that the damaging effect of the variant has
been demonstrated in functional studies. # indicates that the variants have been reported to cause ABCC8-NDM and ABCC8-NNDM.

A269D
G296R

R306H

C435R
V607M

R825W

NBD1

R1182W
R1182Q

P1198L

R1379H NBD2

Inside

Membrane

Outside
F10671

TMD2

L582V

TMD1TMD0

Figure 1: A schematic of the transmembrane topology of SUR1 showing the location of the variants both in ABCC8-NDM and ABCC8-
NNDM. The transmembrane domains (TMD) include TMD0, TMD1, and TMD2. The nucleotide-binding domains (NBD) are indicated
by NBD1 and NBD2, and the cytosolic linker L0 is between TMD0 and TMD1. ABCC8-NDM: ABCC8-induced neonatal diabetes
mellitus; ABCC8-NNDM: ABCC8-induced nonneonatal diabetes mellitus.
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was demonstrated in a mouse model carrying the p.E1506K
variant of ABCC8 [28] and in patients carrying other rare
variants of ABCC8, such as p.R370S, p.R1418H, and
p.R1420H [29, 30, 32]. Two Japanese probands with hypo-
glycemia in infancy due to heterozygous inactivating vari-
ants progressing to hyperglycemia were also reported [33,
34]. Therefore, the subtype of ABCC8-NNDM due to inacti-
vating variants could implicate the etiology of diabetes.

Among the 87 probands previously reported, 24%
(21/87) carried inactivating ABCC8 variants reported in
hyperinsulinemia, whereas 24% (21/87) carried activating
ABCC8 variants were also associated with NDM. And the

remaining 52% (45/87) carried variants with undetermined
molecular mechanism. In the previously reported cases of
ABCC8-NNDM, it was estimated to be ~25% patients with
activating ABCC8 variants and ~25% with inactivating vari-
ants. The molecular mechanisms of the remaining ~50%
variants were needed further investigation.

3.2.3. The Clinical Characteristics of Patients with ABCC8-
NNDM Reported in Previous Studies. A total of 144 patients
with ABCC8 variants including the probands and their
hyperglycemic relatives (125 Caucasians, 15 East Asians,
three Africans, and one Chinese) were analyzed. The clinical
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Figure 2: Multiple sequence alignment of the ABCC8 gene. Multiple sequence alignment of ABCC8 of a vertebrate species including Homo
sapiens was analyzed. The black font represents strictly conserved amino acid residues, while sites with sequence identities of 70% or more
are in red. Twelve variants identified through this study are highlighted in green.
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and genetic characteristics of them are shown in Table 2 and
Supplementary Table 1. The diagnosed age was reported in
71 probands. Among them, three (4%) were diagnosed
with diabetes when <6 years old, 28 (39%) when 6–18
years old, and 40 (56%) when 18–40 years old. According
to their body mass index (BMI) at diabetes onset, 10 (27%)
of the 37 patients (seven probands and three relatives) who
were diagnosed when ≥18 years old were overweight or
obese. According to the available data, 30 patients were
described using sulfonylureas (SUs) for glucose control.
22/30 (73.3%) patients have shown to be effective with
SUs, while the levels of HbA1c were less than 7.0%. We
found that just three probands with ABCC8 variants,
including compound variants of p.H103Y and p.R74Q and
missense variants of p.A1457T and p.E1506K, had
microalbuminuria [35–37]. Reilly et al. have described that
retinopathy was also common microvascular complication
and that 5 out 10 patients with ABCC8 variants had
diabetic retinopathy [37]. A similar case was reported by
Ovsyannikova et al. [36], where the patient was diagnosed
with diabetes at age 27 years (p.A1457T variant in ABCC8),
and during the initial investigation, he had nonproliferative
retinopathy and a raised microalbumin creatinine ratio.

As is known to all, neurological features are essential for
ABCC8-NDM, and forty-three (24.6%) probands had neuro-
logical manifestations among the 175 reported probands
with ABCC8-NDM according to the published literature.
In the ABCC8-NNDM group, just one proband with the var-
iant of p.A1457T had epilepsy independent of hypoglycemia
[36], and two probands with the variants of p.R1418H and
p.R1420H had seizure due to hypoglycemia [29, 30]. Com-
pared with the ABCC8-NDM group, the frequency of the
neurological phenotype in the ABCC8-NNDM group was
significantly lower (1/87 (1%) vs. 43/175 (24.6%), P<
0.001), and we did not include neurological features due to
hypoglycemia.

We have descripted above that there were 24% probands
carrying activating variants, 24% carried inactivating vari-
ants, and 52% carrying undetermined variants among the
87 probands. Based on the available data, we further com-
pared the clinical features between the probands with acti-
vating and inactivating variants. There was no significant
difference in diagnosed age and BMI between the two groups
(diagnosed age: 28:9 ± 11:6, n = 14 vs. 19:1 ± 10:0, n = 0:981,
P = 0:960; diagnosed BMI: 22:5 ± 3:3, n = 6 vs. 22:5 ± 4:3, n
= 9, P = 0:981). Among the inactivating group, two pro-
bands with the variants of p.R1418H and p.R1420H had sei-
zures due to hypoglycemia [29, 30], while no probands were
reported with neurological symptoms among the activating
group. And one proband with inactivating p.E1506K variant
had microalbuminuria [37]. In addition, the prevalence of
hyperinsulinemia and hypoglycemia was significantly higher
in the inactivating group than the activating group (13/21
(61.9%) vs. 0/21 (0.0%), P < 0:001).

4. Discussion

To the best of our knowledge, it is the first time for our study
to systematically review the literature and comprehensively

investigate the genetic and clinical features of ABCC8-
NNDM. From the previous studies, we identified 144
patients with ABCC8–NNDM and found that ~25% and
~25% of the previously reported ABCC8-NNDM cases had
activating and inactivating ABCC8 variants, while the
remaining ~50% had uncertain functional variants. These
patients had relatively successful glucose control after the
treatment of SUs and might have a relative high risk of
diabetic microvascular complications.

As is known to all, gain-of-function variants in the
ABCC8 gene are one of the main causes of NDM. With the
development of genetic analysis, the ABCC8 variants in
NNDM were also reported. Many potential pathogenic alter-
ations were also identified in ABCC8. A study performed in a
French adult type 2 diabetic outpatient cohort with 139
patients identified two (1.5%) likely causative variants in
ABCC8 [15]. Another study in a large cohort of nonobese
patients with diagnosed age < 40 years and a family history
of diabetes found 8 (8/1564, 0.5%) ABCC8 variants [16]. In
addition, an East Asian study found one (0.9%) ABCC8
variant among 109 suspected monogenic diabetes patients
[17]. The prevalence of ABCC8 variants was estimated to
be 0.5~ 1.5% in different studies. It suggests that the subunit
KATP channel of SUR1 encoding the ABCC8 gene is respon-
sible for a small subset of NNDM.

The ABCC8 gene encodes SUR subunit of KATP
channels, which links cell metabolism to electrical activity
by regulating potassium movement across the membrane
[38]. Closure of the channel as a result of ATP-binding led
to β-cell membrane depolarization and opening of voltage-
dependent and calcium-channels and calcium mediated
release of insulin. Activating variants in the ABCC8 gene
led to an increased probability of opening of the potassium
channel, therefore preventing any activation of the voltage-
dependent calcium channel and any glucose-induced insulin
secretion [39], leading to NDM, early onset diabetes, and
MODY [10, 40]. In previous studies, there are 18 variants
that were confirmed to be activating by functional studies.
However, the pathophysiology of inactivating variants in
ABCC8 means that lack of functional KATP channels leads
to depolarized β-cells and elevation of cytosolic calcium,
which result in continuous insulin secretion and indepen-
dent of plasma glucose concentration [6, 8]. In addition, 21
(24%) probands with dominant loss-of-function variants in
ABCC8 previously reported could cause hyperinsulinism in
the early period and progress to diabetes later. Four inacti-
vating variants (p.R370S, p.E1506K, p.R1418H, and
p.R1420H) have been demonstrated to decrease KATP chan-
nel activity and dysregulation of insulin secretion in func-
tional studies, with the consequence that patients with
these variants progressed to diabetes in later life. As a conse-
quence, both activating and dominantly inactivating variants
have been considered the key cause of ABCC8-NNDM.

The underlying mechanism by which loss-of-function
variants of ABCC8 subsequently cause the remission of HH
and future hyperglycemia is complex and required to be
elucidated. Recently, basal insulin secretion was observed
to be elevated in human islets with inactivating ABCC8 var-
iants, but insulin secretion response to glucose was impaired
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[41]. And apoptotic beta cells increased in transgenic mice
with inactivating KATP channels [42, 43]. Besides, insulin
content and gene expression decreased and led to the disrup-
tion of insulin secretion and glucose intolerance in the
mouse model with an inactivating variant of ABCC8 [28].
The above factors could partly address the mechanism by
which KATP defects cause diabetes in patients with loss-of-
function variants. To date, there have been far-from ade-
quate functional studies to elucidate the exact impact of
the different variants. Further studies are still needed to
account for the complex underlying mechanisms resulting
in the remarkable phenotypic heterogeneity related to inacti-
vating ABCC8 variants.

Great importance is to be attached to the diabetic
complications. It could be seen that just three probands with
variants were reported to have diabetic kidney injury. It is
uncertain whether patients with ABCC8-NNDM had a
higher risk of diabetic kidney disease (DKD). Mice with
the homozygous ABCC8 p.E1506K+/+ variant (an inactivat-
ing variant), presenting with hyperinsulinemia early in life
followed by diabetes and early DKD later in life, were
observed [28, 44]. In the mouse model, glucose could induce
histone modifications, which drove the expression of proin-
flammatory genes and thereby predisposed to diabetic kid-
ney disease. Further studies are also required to confirm
the risk and the precise diabetic kidney disease mechanism
of ABCC8 variants. Besides, the frequency of diabetic reti-
nopathy was ~50 percent among the patients with ABCC8
variants. Although dyslipidaemia, hypertension, and possi-
ble genetic factors contribute to the early manifestation of
diabetes complications, the ABCC8 variants may be respon-
sible for the rapid progression to proliferative retinopathy.
SUR1 is also expressed in the retinal vessels, and glibencla-
mide could inhibit adenosine-induced retinal vasodilation
[45, 46], which occurs by interacting with KATP channels
in retinal vessel pericytes. In models of postinfarct central
nervous system oedema, the SUR1 expression has been
observed to upregulate in injured nervous tissue, and inhi-
biting SUR1-induced ion channel modulation with the drug
glibenclamide could protect the central nervous system from
ischaemia-reperfusion and traumatic brain injury [47].

As we known, neurological features are important fea-
tures for ABCC8-NDM. From the published literature, we
found that sixty (34%) probands had neurological manifes-
tations among 175 reported probands with ABCC8-NDM.
KATP channels are predominately expressed in endocrine
tissues such as the pancreatic islet cells and the nervous
system. The deleterious effect on the nervous system of
KATP channel activating variants is likely related to the
neurological features, including more severe DEND and
iDEND [48, 49]. The reported variants associated with a
neurological phenotype were distributed across all func-
tional regions of the gene, while only one patient had a
neurological manifestation independent of hypoglycemia
(1%) among patients with ABCC8-NNDM [36]. Compared
to the ABCC8-NDM group, the frequency of a neurological
phenotype in the ABCC8-NNDM group was significantly
lower. Activating variants reduce the ability of ATP to inhibit
ion channel activity, thus increasing the magnitude of the

KATP current, which hyperpolarizes brain and muscle cells
and accounts for the neurological phenotype [39, 50, 51].

According to the previous published studies reporting
SUs on the treatment of ABCC8 variants induced diabetes,
we found that 73.3% of the patients owing to ABCC8 vari-
ants with SUs got successful glucose control. As the widely
used drugs for the treatment of patients with type 2 diabetes,
SUs could bind specifically to the SUR1 subunit, then closing
the KATP channel via an ATP-independent mechanism and
therefore increasing the insulin secretion of β cells [52]. Sev-
eral studies observed that patients with NDM were trans-
ferred to SUs successfully after molecular genetic diagnosis
of ABCC8 variants [53, 54]. Up to 90–95% of patients with
NDM due to using ABCC8 and KCNJ11 variants are able
to be taken off of insulin therapy after initiation of SUs
therapy [55, 56]. A recent meta-analysis also showed the
estimated success rate was 90.1% in the SU treatment for
ABCC8-NDM [57]. Therefore, SUs are effective for diabetic
patients due to activating ABCC8 variants. However, due
to different types of variants and variable clinical pheno-
types, the correct treatment may be different. In addition,
the sensitivity to SUs was variable in patients with ABCC8
variants. As majority, but not all, patients were successful
to transfer from insulin to SUs [58]. In addition, two Japa-
nese patients with hypoglycemia in infancy progressed to
diabetes later in life due to the ABCC8 heterozygous inacti-
vating variants and got better glucose control treated with
DPP4 inhibitors [33, 34]. It might be useful for patients with
inactivating variants to be treated with incretin-related
drugs. We need to consider the genetic features and the
response of treatment to facilitate individualized therapy.

Although we systematically reviewed the previous stud-
ies on ABCC8-NNDM, the sample size was limited. More
studies are needed to better summarize its characteristics.
In addition, we found that a few patients in the case reports
were effective for new hypoglycemic drugs, but there was a
lack of randomized controlled trials and longitudinal
follow-up studies to help us determine the long-term efficacy
and the impact on complications and neuropathy. Although
we used the ACMG guideline to interpret the pathogenicity
of ABCC8 variants, the precise molecule mechanisms are
still needed to clarify in vivo and vitro studies.

5. Conclusion

Our study comprehensively concluded the genetic and clin-
ical features of ABCC8-NNDM. The variants of ABCC8-
NNDM consist of activating and inactivating ones. The phe-
notypes of these patients varied with good effect for SUs and
had a risk of diabetic complications. It is also essential to
make a precise genetic diagnosis for appropriate treatment
of them to reduce episodes of hypoglycemia and diabetic
complications. Next generation sequencing (NGS) enables
a rapid and cost-effective diagnosis, and it should be taken
into consideration for the ABCC8 gene in early onset diabe-
tes. In the future, studies are needed to account for the
mechanisms resulting in the remarkable phenotypic hetero-
geneity related to ABCC8 variants.
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