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Visual motion perception underpins behaviors ranging
from navigation to depth perception and grasping. Our
limited access to biological systems constrains our
understanding of how motion is processed within the
brain. Here we explore properties of motion perception
in biological systems by training a neural network to
estimate the velocity of image sequences. The network
recapitulates key characteristics of motion processing in
biological brains, and we use our access to its structure
to explore and understand motion (mis)perception. We
find that the network captures the biological response
to reverse-phi motion in terms of direction. We further
find that it overestimates and underestimates the speed
of slow and fast reverse-phi motion, respectively,
because of the correlation between reverse-phi motion
and the spatiotemporal receptive fields tuned to motion
in opposite directions. Second, we find that the
distribution of spatiotemporal tuning properties in the
V1 and middle temporal (MT) layers of the network are
similar to those observed in biological systems. We then
show that, in comparison to MT units tuned to fast
speeds, those tuned to slow speeds primarily receive
input from V1 units tuned to high spatial frequency and
low temporal frequency. Next, we find that there is a
positive correlation between the pattern-motion and
speed selectivity of MT units. Finally, we show that the
network captures human underestimation of low
coherence motion stimuli, and that this is due to pooling
of noise and signal motion. These findings provide
biologically plausible explanations for well-known
phenomena and produce concrete predictions for future
psychophysical and neurophysiological experiments.

Introduction

The transduction of changing patterns of light
into the perception of motion underpins adaptive
behaviors ranging from depth estimation to navigation
and grasping. For motion perception to guide these
behaviors effectively, changes in visual input must be

translated into accurate estimation of both direction
and speed. This—uniquely—requires combining
information across space and time. Many biological
systems appear to be highly proficient at this task; for
example, humans can reliably discriminate differences
in speeds between 5% to 7% (de Bruyn & Orban,
1988; McKee, 1981) and over a century of research on
motion processing has expanded our understanding
of the neural computations that underlie this ability.
However, the biological basis for many aspects of speed
estimation remain unknown. A primary constraint
on our understanding of these (and other) neural
mechanisms is imposed by the limited access we have to
biological systems. For example, we can measure the
output of the system in response to different inputs (i.e.,
psychophysics), gross population activity (e.g., fMRI or
EEG), or point measurements (i.e., cell recordings), but
combining this information to extract the underlying
neural computations and principles remains a
challenge.

We recently demonstrated the potential of taking an
artificial systems approach to bolster understanding
of how biological systems function. In particular, we
trained a shallow neural network (“MotionNet”) to
classify the velocity of motion sequences generated
from natural images (Rideaux & Welchman, 2020).
Using this approach, we revealed novel relationships
between speed and direction encoding and explained
drivers of biases in population tuning and perception.
Here we sought to extend this approach to test aspects
of motion processing in relation to spatial and temporal
frequency characteristics. Moreover, the architecture
of the neural network used in our previous study
constrained the units in the output layer that we
described as being analogous to the middle temporal
area (MT) in the primate visual system. This stood in
contrast to the units in the layer corresponding to V1,
which were unconstrained and therefore allowed us to
gain valuable insights into population characteristics
(e.g., tuning biases) that were chosen by the network
to best estimate velocity. In this article we used a
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new neural network that did not predefine the V1
or MT stages of the model. Specifically, we train
a new neural network (“MotionNetxy”) to estimate
continuous measures of horizontal and vertical velocity
by including an additional regression layer. This does
not constrain the properties of the MT layer units,
allowing them to develop characteristics that best serve
the task of velocity estimation.

Using this artificial systems approach we examine
how spatiotemporal information is combined to
produce our (mis)perceptions of image velocity.
For instance, when image contrast is reversed the
between motion frames, this produces a corresponding
reversal in perceived motion direction (Anstis, 1970).
Electrophysiological work shows that this perceptual
illusion is also reflected in the responses of macaque
V1 and MT neurons: their preferred direction is
inverted (Duijnhouwer & Krekelberg, 2016). After
verifying this behavior in the artificial system, we
explore how these changes influence the calculation
of speed. Unpublished observations suggest that
observers over and underestimate the speed of slow and
fast reverse-phi motion, respectively (Parthasarathy,
2019; Ruda, Riesen, & Hock, 2016). We find that the
network exhibits the same biases, and then use our
access to the system to show that this is due to the
similarity between reverse-phi motion and the receptive
fields of spatiotemporal neurons tuned to opposite
directions.

We then examine how spatial and temporal
information is combined to compute speed.
Electrophysiological work shows that V1 neurons are
tuned to a range of spatial and temporal frequencies
(Friend & Baker, 1993; Holub &Morton-Gibson, 1981;
Tolhurst & Movshon, 1975), but their tuning for these
properties are independent. By contrast, some MT
neurons appear to show speed tuning, requiring joint
encoding of spatial and temporal frequency (Perrone
& Thiele, 2001; Priebe, Cassanello, & Lisberger, 2003).
It has been proposed that MT neurons tuned to slow
speeds receive input from V1 neurons sensitive to
high spatial and low temporal frequencies, while the
opposite is true for MT neurons tuned to high speeds.
This notion is supported by some neurophysiological
evidence (Priebe et al., 2003), but remains a challenge
to directly test in biological systems due to the difficulty
of tracking synaptic connections between brain
regions. By contrast, the connections between layers
in the artificial system are equally accessible as all its
architecture; thus we test this possibility and find that
the relationship predicted between spatiotemporal V1
and MT neurons in biological systems is evident in the
network.

Although some MT neurons appear achieve speed
selectivity by pooling V1 activity, neurophysiological
work suggests that many MT neurons exhibit selectivity
indistinguishable from V1 neurons, that is, separable

tuning to spatial and temporal frequency (Priebe et
al., 2003). Similar diversity across MT neurons is also
observed for direction selectivity, that is, whether a
neuron responds to the individual components or
combined pattern of a moving object (Movshon,
Adelson, Gizzi, & Newsome, 1986). These two
properties index the complexity of the information
that is encoded by MT neurons in terms of speed and
direction, and we find that they are positively correlated
in the network, that is, MT units tuned to speed are
more likely to be also tuned to pattern motion.

Finally, we show that the network recapitulates
neural and psychophysical performance in response
to reduced motion coherence (Britten, Shadlen,
Newsome, & Movshon, 1992), exhibiting the same
speed opponency, noise reduction, mechanisms
observed in biological systems (Mikami, Newsome, &
Wurtz, 1986). In particular, we show that MotionNetxy
underestimates the speed of low coherence motion
stimuli (Schütz, Braun, Movshon, & Gegenfurtner,
2010) and demonstrate that this is due to pooling of
(net velocity = 0) noise and signal motion.

Method

Naturalistic motion sequences

To train a neural network to estimate image velocity,
we generated motion sequences using 200 photographs
from the Berkeley Segmentation Dataset (https://www2.
eecs.berkeley.edu/Research/Projects/CS/vision/bsds/).
Images were grayscale indoor and outdoor scenes
(converted from RGB using MATLAB’s (The
MathWorks, Inc., Matick, MA) rgb2grey function).
Motion sequences (six frames) were produced by
translating a 32- × 32-pixel cropped patch of the image
(Figure 1a). Motion direction and speed were randomly
assigned from uniform distributions between 0° to
360° and 0.8 to 3.8 pixels/frame, respectively. Images
were translated in polar coordinates, for example,
an image moving at a speed of 1 pixel/frame in 0°
(right) direction was translated by +[x = 1,y = 0] per
frame, whereas an image moving at the same speed in
45° direction was translated +[x = .7071,y = .7071].
Image translation was performed in MATAB using
Psychtoolbox v3.0.11 subpixel rendering extensions
(Brainard, 1997; Pelli, 1997) (http://psychtoolbox.org/).
The speeds used to train the network were selected
because they did not exceed the image dimensions
(32 × 32 pixels) and matched those used in our previous
study (Rideaux & Welchman, 2020). We generated
32,000 motion sequences, which were scaled so that
pixel intensities were between –1 and 1, and randomly
divided into training and test sets, as described in the
Training Procedure section.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://psychtoolbox.org/
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Figure 1. MotionNetxy architecture. (a) MotionNetxy was initialized with an input layer, convolutional and dense layers representing
V1 and MT, respectively, and an output regression layer. (b) After training on motion sequences, kernels (V1 units) that were
initialized as Gaussian noise formed three-dimensional Gabors; nine examples, selected at random, are shown.

MotionNetxy architecture

All the networks described in the study were
implemented in Python v.3.6.4 (https://python.org)
using TensorFlow (www.tensorflow.org), a library for
efficient optimization of mathematical expressions. We
used a convolutional neural network that comprised
(i) an input layer, (ii) one convolutional-pooling layer,
(iii) one dense layer, and (iv) an output regression layer
(Figure 1a).

Inputs were image patches (32 × 32 × 6 pixels; the
last dimension indexing the motion frames; Figure 1a,
input layer). In the convolutional layer, inputs passed
through 64 three-dimensional kernels (6 × 6 × 6 pixels)
producing 64 two-dimensional output maps (27 × 27
pixels; Figure 1a, V1 layer). This resulted in 18,496
units (64 maps of 27 × 27 pixels) forming 10,077,696
connections to the input layer (64, 27 × 27 × 6 × 6 × 6
pixels). Because mapping is convolutional, this required
that 13,888 parameters were learned for this layer (64
filters of dimensions 6 × 6 × 6 plus 64 offset terms). We
chose units with rectified linear activation functions to
model neurophysiological data (Movshon, Thompson,
& Tolhurst, 1978). The activity, a, of unit j in the kth
convolutional map was given by:

a(k)j =
(
w(k)s j + b(k)j

)
+

(1)

where w(k) is the 6 × 6 × 6 dimensional 3D kernel of
the kth convolutional map, sj is the 6 × 6 × 6 motion
sequence captured by the jth unit, bj is an offset term and
(.)+ denotes a linear rectification non-linearity (ReLU).
Parameterizing the motion image frames separately, the
activity a(k)j can be alternatively written as:

a(k)j =
((∑

w(tnk)stnj
)

+ b(k)j

)
+

(2)

where w(tnk) represent the kth kernels applied to motion
image frames (i.e., receptive fields at times 1 to 6), while
stnj represent the input images captured by the receptive
field of unit j.

A dense layer (1,183,776 connections; 23,328
per feature map, resulting in 1,183,744 parameters
including the 64 offset terms; Figure 1a, MT layer)
mapped the activities in the pooling layer to 64 fully
connected units. The vector of dense layer activities r
was obtained by mapping the vector of activities in the
convolutional layer via the weight matrixW and adding
the offset terms b:

r = Wa + b (3)

Finally, a regression layer (128 connections, 64
for each of the two regression units, resulting in 130
parameters including the two offset terms; Figure 1a,
output layer) mapped activities from the dense
layer to two regression units, which represented
the x and y velocity of the motion sequence.
The regression unit activities were obtained using
Equation (3).

Training procedure

Motion sequences were randomly divided into
training (75%, n = 24,000) and test (25%, n = 8000)
sets. No sequences were simultaneously present in
the training and test sets. To optimize MotionNetxy,
only the training set was used. We initialized the
weights of the convolutional layer as Gaussian noise
(mean, 0; SD, 0.001). The weights in the dense and
regression layers and all offset terms were initialized to
zero.

MotionNetxy was trained using mini-batch gradient
descent with each batch comprising 32 randomly

https://python.org
http://www.tensorflow.org
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selected examples. For each batch, we computed
the derivative of the mean squared loss function
with respect to parameters of the network via
back-propagation, and adjusted the parameters
for the next iteration accorded to the update
rule:

wi+1 = wi − α
∂L

∂w(Di )
(4)

where α is the learning rate, and ∂L
∂w(Di)

is the average over
the batch Di of the derivative of the loss function with
respect to the w, evaluated at wi. The learning rate α was
constant and equal to 1.0 × 10−4. After evaluating all
the batches once (i.e., completing one epoch), we tested
MotionNetxy using the test image dataset. We repeated
this for 25 epochs.

Generation of test stimuli

A range of stimuli were used to test the response
of the network after it had been trained on natural
images. With the exception of sinewave and plaid
stimuli, which were generated in Python using
in-house scripts, all stimuli were generated using
the Python toolbox Psychopy (Peirce, 2007) v1.90.3
(http://www.psychopy.org).

Decoding direction and speed

To avoid issues associated with using a circular
variable to train a regression output, the network was
trained to estimate the x and y velocity of motion
sequences. These estimates were then converted to
speed ρ and direction φ with the following:

ρ =
√

vx2 + vy2 (5)

φ = arctan2
(
vx, vy

)
(6)

where vx and vy denote x and y velocity vectors.

Component- and pattern-motion selectivity

To compare the component- and pattern-motion
selectivity of MotionNetxy units to those of neurons
in macaque V1 and MT (extracted and replotted
neurophysiological data from Figures 11-13 of
Movshon et al., 1986), we measured the activity of
V1/MT units in response to sinewave gratings and
plaids (135° separation) moving in 16 evenly spaced
directions between 0° and 360° at its preferred spatial
and temporal frequency (Figure 2c).

To classify each unit as component-selective (i.e.,
selective for the motion of the individual components
comprising a plaid pattern), pattern-selective (i.e.,
selective for the motion of the plaid pattern), or
unclassed (Figure 2c), we used the method described
in (Movshon et al., 1986). Briefly, we compared the
unit responses to ideal “component” and “pattern”
selectivity using goodness of fit statistics. Because
the component and pattern selectivity responses may
be correlated, we used the partial correlation in the
form:

Rp =
(
rp − rcrcp

)
√((

1 − r2c
) (

1 − r2cp
)) (7)

where Rp denotes the partial correlation for the
pattern prediction, rp is the correlation of the data
with the pattern prediction, rc is the correlation of
the data with the component prediction, and rcp is
the correlation of the between the two predictions.
The partial correlation for the component prediction
was calculated by exchanging rc for rp and vice versa.
We labeled units as “component” if the component
correlation coefficient significantly exceeded either zero
or the pattern correlation coefficient, whichever was
larger. Similarly, we labeled units as “pattern” if the
pattern correlation coefficient significantly exceeded
either zero or the component correlation coefficient.
Units were labeled as “unclassed” if either (i) both
pattern and component correlations significantly
exceed zero, but do not differ significantly from one
another, or (ii) neither correlation coefficient differed
significantly from zero. To demonstrate the consistency
in training outcomes, we trained 10 networks and
in Figure 2 present the cumulative distribution of all
10 networks.

To compare the distribution of pattern-motion
selectivity among V1 and MT units in MotionNetxy
with those of our previous network (“MotionNet”;
Rideaux & Welchman, 2020) and V1 and MT neurons,
we projected the values shown in Figures 2b and 2c,
in addition to data from Figure 3e our previous study
(Rideaux & Welchman, 2020) along the diagonal to
establish a unified estimate of pattern-motion selectivity
for each unit (Figures 2d-2f). We then compared the
responses of component- and pattern-motion selective
MT units to grating and plaid stimuli. We selected the
16MT units with the highest and lowest pattern-motion
selectivity index andmeasured their response to gratings
and plaids (135° separation) moving in 16 direction
between 0° to 360° (temporal frequency: 0.265; spatial
frequency: 0.085).

http://www.psychopy.org
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Figure 2. Biological and artificial visual system direction selectivity. (a) Illustration of how two “component” sinewave gratings moving
in different directions form a plaid “pattern” that moves in a (different) third direction. (b) Data from Movshon et al., 1986 showing
single neuron responses in V1 (top) and MT (bottom) to a sinewave grating versus a plaid stimulus. The distribution plot shows the
population of single neuron responses, and whether they are classified as component-motion or pattern-motion selective. (c) The
same as (b), but for MotionNetxy; single polar plots (top and bottom) both show responses of MT units classified as either
component- or pattern-motion selective. (d) Proportion of the previous “MotionNet” (Rideaux & Welchman, 2020) V1 and MT units
as a function of pattern index. (e, f) Same as (d), but for neurophysiological data (Movshon et al., 1986) and the new MotionNetxy
network. (g) Average normalized response of component and pattern motion–selective MT units to drifting grating and plaid stimuli.
Shaded regions indicate standard deviation among 10 networks. (h) The average weights from MotionNet’s V1 to MT units organized
by preferred V1 direction, maximum excitation, and maximum inhibition. (i) Same as (h), but for MotionNetxy.
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Figure 3. Biological and artificial visual system responses reverse-phi motion. (a) Illustration of phi and reverse-phi motion: between
time zero and one all of the dots move to the right. For reverse-phi motion, the dots also reverse in polarity and are typically
perceived as moving in the opposite direction. (b, c, left) Replotted data from Duijnhouwer and Krekelberg (2016) showing V1
component-motion and MT pattern-motion cell responses to standard- and phi-motion stimuli. (b, c, right) Average responses of
MotionNetxy V1 and MT units to equivalent stimuli. (d) Speed estimated by MotionNetxy in response to phi and reverse-phi motion
stimuli as a function of dot displacement speed. (e, f) The average activity of (e) V1 and (f) MT units that prefer motion in the
direction of dot displacement (+vx) or the opposite direction (−vx), in response to phi and reverse-phi motion, as a function of
displacement speed. Dashed and solid lines indicate response to phi and reverse-phi motion, respectively. (g) Illustration of simulation
demonstrating misestimation of reverse-phi displacement. (g, left) Phi and reverse-phi edge stimuli with three different displacement
distances are cross-correlated with four spatiotemporal filters tuned to rightward (+vx) and leftward (−vx) motion, with either
dark-light (DL) or light-dark (LD) polarity arrangement. (g, right) Average rectified cross-correlation values, normalized to the
maximum value. Stacked bars indicate the combined cross-correlation with opposite polarity filters tuned to the same direction.
Rightward and leftward cross-correlation values are bordered in red and blue, respectively, and phi and reverse-phi results are
underlined in green and magenta, respectively. Shaded areas in (b, c, right) and error bars in (d) indicate standard deviation of
average responses across 10 networks.
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Figure 4. Biological and artificial visual system spatiotemporal tuning properties. (a, b, left) Replotted data from O’Keefe et al. (1998)
showing the proportion of spatiotemporal cells in owl monkey V1 tuned to a range of spatial (a) and temporal frequencies (b). (a, b,
right) Same as (a, b, left), but for V1 units of MotionNetxy. (c, d, left) Reanalyzed data fromWang and Movshon (2016) showing the
proportion of spatiotemporal cells in macaque MT tuned to a range of spatial (c) and temporal frequencies (d). (c, d, right) Same as (c,
d, left), but for MT units of MotionNetxy. (e, f) Same as (a, b, right), but split into V1 units most strongly connected to MT units tuned
to slower or faster speeds. Colored arrows in (e and f) indicate the distributions means.

Reverse-phi motion responses

To compare the phi and reverse-phi responses of
MotionNetxy units to those of neurons in macaque V1
and MT (extracted and replotted neurophysiological
data from Figures 3a and 4a of Duijnhouwer &
Krekelberg, 2016), we measured the activity of V1/MT
units in response to dot motion. Dot motion stimuli in
the phi condition consisted of 5 randomly positioned
white dots (pixel value, 1.0; radius, 4 pixels) on a
mid-gray background (pixel value, 0.0), which were
allowed to overlap (with occlusion) and wrapped
around the image when their position exceeded the
edge. Of the six motion sequence frames presented, only
the first two frames comprised dot motion, whereas
the last four were presented as uniform mid-gray. For
each V1/MT unit, we presented dot motion stimuli
moving in 16 evenly spaced directions (0-360°), at their
preferred speed. The reverse-phi dot motion stimuli
were the same as those used in the phi condition, except
the contrast of the dots was reversed (from white to

black) on the second frame. The responses of V1 and
MT units from 10 networks were aligned to a common
preferred direction and the average for each are shown
in Figures 3b-c.

To test how MotionNetxy estimated the speed
of reverse-phi stimuli, we compared the speed
decoded by the network in response to the phi and
reverse-phi stimuli described above over a range of
speeds (five linearly spaced speeds between 1.0 and
3.5 pixels/frame). We tested 10 networks and the
average and standard deviation of their estimated speed
is shown in Figure 3d. To explore why MotionNetxy
misjudges the speed of reverse-phi stimuli, we separated
the V1 and MT units in two groups, those that were
more tuned to the displacement direction and those
that were more tuned to the opposite-to-displacement
direction, by assessing whether they were positively or
negatively weighted to the vx regression output unit,
respectively. This classification was straightforward for
MT units, which are directly connected to the regression
layer, but for V1 units we used the classification of the
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MT unit for which each V1 unit was most positively
weighted. We then measured the average activity of
these subpopulations of V1 and MT units in response
to the phi and reverse-phi stimuli. Finally, to explain
why the speed of reverse-phi motion is misjudged,
we ran a simulation on a simplified version of the
phenomena. The simulation consisted of computing
the cross-correlation between phi and reverse-phi
stimuli (16 × 16 × 2 [x,y,t] pixel image sequence)
comprising a white [pixel value, 1] and black [pixel
value, -1] vertical edge centered on the midline at time
0, and moving at one of 3 displacements speeds (1,
2, and 3 pixels) to the right (+vx) at time 1) and a
bank of four spatiotemporal filters (8 × 8 × 2 [x,y,t]
pixels comprising a white and black vertical edge
centered on the midline at time 0 and moving at the
same displacement speed as the phi/reverse-phi stimuli
to the right (+vx) or to the left (−vx) at time 1). The
reverse phi stimulus was the same as the phi stimulus,
except that it reversed polarity at time 1, and both
combinations of light-dark and dark-light edge filters
were used. For each cross-correlation we calculated
the average of value. To emulate the computations of
MotionNetxy, only positive and valid cross-correlation
values were included.

Spatiotemporal tuning properties

To compare the properties of V1 and MT units
that emerged within MotionNetxy to those of V1
and MT neurons in biological systems, we extracted
neurophysiological data of owl monkey V1 neurons
from Figure 9A and Figure 10A of (O’Keefe, Levitt,
Kiper, Shapley, & Movshon, 1998) and re-analyzed
data of macaque MT neurons from (Wang &Movshon,
2016). To establish the spatial and temporal frequency
tuning preferences of MotionNetxy V1 and MT units
we tested the network with drifting sinewave gratings.
The direction and spatiotemporal tuning preference of
each unit was determined as the stimulus movement
direction, spatial frequency, and temporal frequency
that produced maximal activity (Figures 4a-c, right).
Sixteen directions (linearly spaced between 0°-360°),
10 spatial frequencies (logarithmically spaced between
8 and 25 pixels/cycle), and 10 temporal frequencies
(logarithmically spaced between 4 and 25 cycles/frame)
were tested, resulting in 1600 (16 × 10 × 10) stimulus
types. For each stimulus type, we computed the average
activation of 32 gratings at evenly spaced starting phase
positions between 0° and 360°.

To assess the input from the V1 layer to MT units
tuned to different speeds, we first established the
preferred speed of MT units ρMT with:

ρMT = t fMT

s fMT
(8)

where sfMT and tfMT denote the preferred spatial
and temporal frequency of the MT unit. Then, for
each V1 unit, we established the MT unit to which it
was maximally connected and used a median split to
separate the V1 units into those maximally connected
to MT units that preferred slower or faster speeds.
Finally, we compared the preferred spatial and temporal
frequency tuning of these distributions (Figures 4d-e).
To demonstrate the consistency in training outcomes,
we trained 10 networks and in Figure 4 present the mean
values with error bars showing standard deviation.

Separable and covariate spatiotemporal tuning
properties

To compare the separable spatial/temporal-frequency
and speed- selectivity of MotionNetxy’s units to those
of neurons in macaque MT (extracted and replotted
neurophysiological data from Figures 5b to 5d of
Priebe et al., 2003), we measured the activity of
V1/MT units in response to sinewave gratings moving
in their preferred direction at six spatial frequencies
(logarithmically spaced between 8 and 33 pixels/cycle),
and six temporal frequencies (logarithmically spaced
between 4 and 500 cycles/frame), resulting in 36 (6 × 6)
stimulus types. This method yielded spectral responses
maps for each V1/MT unit in the network. We used
the method described by Perrone and Thiele (2001) to
fit a two-dimensional Gaussian model to the spectral
response maps according to the following equation:

G (x, y) = p+ A exp
(
−

(
a(x − x0 )2 + 2b (x − x0 ) (y − y0 ) + c(y − y0 )2

))
(9)

where G(x, y) denotes the unit response at location (x,
y), p is a constant offset, A is the amplitude of the peak,
(x0,y0) is the location of the center of the peak, and a,
b, and c are positive-definite and defined as

a = cos2θ
2σ 2

x
+ sin2θ

2σ 2
y

, b = sin2θ
4σ 2

x
+ sin2θ

4σ 2
y

, c = sin2θ
2σ 2

x
+ cos2θ

2σ 2
y

(10)

where θ denotes the orientation of the peak, and σ x and
σ y indicate the width of the peak in x and y dimensions,
respectively. To classify the units as independently
tuned to spatial-/temporal frequency, speed tuned, or
unclassified, we used the method described by (Priebe
et al., 2003); that is, we compared the correlation of
the each unit’s spectral response map to the model
fit described in Equation (9) where the orientation is
either zero (independent tuning) or at an angle that
aligns the peak to the origin (speed tuning). Using these
values, we performed the same assay as was conducted
to determine the component- and pattern-motion
selectivity to establish their independent and speed
selectivity (Figure 5d).
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Figure 5. Biological and artificial visual system speed selectivity. (a) Data from Priebe et al. (2003) showing responses of macaque MT
neurons, that have separable (top) or speed (bottom) selectivity, to sinewave gratings at different spatial and temporal frequencies.
The distribution plot shows the population of single neuron responses, and whether they are classified as separable or speed
selective. (b) Same are (a) but for MotionNetxy V1 and MT units; single polar plots (top and bottom) both show responses of MT units
classified as either separate or speed selective. (c, d) Proportion of (c) macaque MT neurons (Priebe et al., 2003) and (d) MotionNetxy
V1 and MT units as a function of their speed index. (e) Scatter plot showing the relationship between speed and pattern selectivity for
MotionNetxy MT units.

To compare the distribution of speed selectivity
among MT units in MotionNetxy to that among MT
neurons, we projected the values shown in Figure 5a
and Figure 5b along the diagonal to establish a unified
estimate of speed selectivity for each unit (Figures 5c,
5d). To assess the relationship between pattern-motion
and speed selectivity of MotionNetxy units we
computed the Pearson correlation between pattern and
speed indices of MT units (Figure 5e). In line with
previous neurophysiological work (Priebe et al., 2003),
units that were unclassified in both dimensions were
omitted from the correlation analysis. To demonstrate
the consistency in training outcomes, we trained 10
networks and in Figure 5 present the values of all 10
networks.

Speed opponency

To compare the direction discrimination performance
of MotionNetxy at varying levels of motion coherence
to neurophysiological recordings from macaque
(extracted and replotted neurophysiological data
from Figures 9a and 11a of (Mikami et al.,
1986)), we measured individual MT unit activity
in response to dot motion stimuli (dot pixel value,
1.0; background pixel value, −1.0; dot radius,
4 pixels) moving in either the preferred or nonpreferred
direction at eight logarithmically (base 2) spaced
speeds between the minimum (0.8 pixels/frame) and
maximum (3.8 pixels/frame) speeds used to train the
network.
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Figure 6. Biological and artificial visual system mechanisms of speed opponency. (a, b, left) Replotted data from Mikami, Newsome,
and Wurtz (1986) showing the response of two MT neurons to a dot moving either in its preferred or non-preferred direction over a
range of speeds. (a, b, right) The same as (a, b, left), but for the responses of selected MotionNetxy MT units.

Motion coherence

To compare the direction discrimination
performance of MotionNetxy at varying levels
of motion coherence to neurophysiological and
psychophysical recordings from macaque (extracted
and replotted neurophysiological/psychophysical data
from Figures 4 and 6 of (Britten et al., 1992)), we
measured the direction estimates of the network in
response to dot motion stimuli. Dot motion stimuli
consisted of 333 randomly positioned white dots (pixel
value, 1.0; radius, 2 pixels) on a black background
(pixel value, -1.0), which were allowed to overlap (with
occlusion) and wrapped around the image when their
position exceeded the edge. A proportion of the dots
moved in the signal direction, while the remaining
dots moved in directions randomly sampled from
0 to 360°; all dots moved at 3 pixels/frame. Seven
coherence levels were tested, logarithmically spaced
between 0.001 to 0.2. For each coherence level, 100
trials were performed and estimates within ±90° of the
signal direction were considered correct. In line with
(Britten et al., 1992), we fit a Weibull function to the
mean performance to estimate the threshold. Using

a similar approach, we compared the speed estimates
of MotionNetxy at varying levels of motion coherence
with psychophysical data from humans (extracted
and replotted psychophysical data from Figures 8b of
Schütz et al., 2010). For this test, dot motion stimuli
consisted of 10 randomly position dots, and we used
five linearly-spaced coherence levels between 0.2 and
1.0. To test if the MotionNetxy underestimated the
speed of partially coherent dot motion stimuli because
of pooling noise and signal, we computed the Pearson
correlation between the mean activity of MT units
across 10 networks in response to 0% and 100% noise,
with the activity in response to 50% noise.

Data reanalysis

Data in Figures 2b, 2e, 3b, 3c, 4a-4d, 5a, 5c,
and 7b-7d were extracted from published article
(Britten et al., 1992; Duijnhouwer & Krekelberg,
2016; Mikami et al., 1986; Movshon et al., 1986;
O’Keefe et al., 1998; Priebe et al., 2003; Schütz
et al., 2010) using WebPlotDigitalizer. Data in
Figures 4c and 4d are a reanalysis of archived data
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Figure 7. Biological and artificial visual system responses to reduced motion coherence. (a) Illustration of global dot motion stimulus
at varying degrees of motion signal correlation. (b) Replotted data from Britten et al. (1992) showing a neurometric function that
describes the sensitivity of an MT neuron to motion signals of increasing correlation. (c) Same as (b) but for psychophysical
performance of a macaque (and MotionNetxy) on a direction discrimination task. The blue circles and red squares indicate mean
performance and the corresponding colored lines show the Weibull function used to determine threshold performance. (d) Replotted
data from Schütz et al., 2010 showing human speed estimates, relative to the signal speed, of dot motion stimuli at different levels of
signal correlation. The blue dots in (d) show MotionNetxy’s relative speed estimates for similar stimuli. (e) The activity of
MotionNetxy’s MT units in response to a 50% coherence motion stimulus, as a function of the activity predicted by averaging their
responses to 0% and 100% coherence stimuli.

(https://archive.nyu.edu/handle/2451/34281) from the
published article by Wang & Movshon, 2016.

Data availability

We performed analyses in Python using
standard packages for numeric and scientific
computing. All the code and data used for
model optimization, and implementations of the
optimization are freely and openly available at
repository.cam.ac.uk/handle/1810/317333.

Results

Network architecture and training

We created an artificial system, which we refer to
as “MotionNetxy”, tasked with decoding the velocity
of image sequences (Figure 1a). The network input

comprised a sequence of image frames (x-y) depicting a
scene moving through time (t). This was convolved with
three-dimensional kernels (x-y-t). The resultant activity
was then passed to a dense layer of units. Finally, the
activity of the dense layer was read out by two output
units, to produce estimates of horizontal (vx) and
vertical velocity (vy). We referred to the convolutional
and subsequent dense layer as V1 and MT, respectively,
as their hierarchy was analogous to their namesake in
biological systems.

We trained MotionNetxy to decode the velocity
of natural images moving at a range of speeds
(0.8–3.8 pixels/frame) and directions (0-360°); image
sequences resembled viewing a translating natural image
through a window. After training, there was a high
correlation between the network’s estimates and the
velocity of novel motion sequences (vx, r = .89; vy, r =
.93). V1 units were initialized with Gaussian noise, but
after training they resembled (Figure 1b) receptive fields
in primary visual cortex (Movshon et al., 1978; Rust,
Schwartz, Movshon, & Simoncelli, 2005). However,
unlike spatiotemporal receptive fields of neurons in V1,

https://archive.nyu.edu/handle/2451/34281


Journal of Vision (2021) 21(2):11, 1–18 Rideaux & Welchman 12

the receptive fields of MotionNetxy’s V1 units do not
gradually decline in amplitude as a function of time.
This is likely because the image sequences used to train
the network consisted of constant rigid motion; it is
possible that localized receptive fields would emerge if
image sequences containing localized motion were used
during training.

Component- and pattern-motion selectivity

To judge an object’s movement, motion signals must
be integrated across the stimulus as local motions
are often ambiguous (“the aperture problem”).
Experimental tests of motion integration often use
plaid patterns composed of two sinewave components
(Figure 2a). The individual components can move in
different directions from the overall plaid (Movshon
et al., 1986) and V1 neurons signal motion of the
components (Gizzi, Katz, Schumer, & Movshon,
1990; Movshon et al., 1986). For example, the V1
neuron shown in Figure 2b responds most strongly
to a leftwards moving grating; but when shown a
plaid, it responds most strongly to motion above
or below leftwards such that one of the component
gratings moves leftwards. By contrast, some MT
neurons show pattern-motion selectivity (Figure 2b,
bottom)—responding to the plaid’s features, rather
than the individual components. The response of a
neuron to sinewave and plaid stimuli can be used to
classify it as either component- or pattern-motion
selective. Applying this classification to a population
of neurons shows that V1 neurons are exclusively
component-motion selective, whereas MT contains a
mixture of neurons selective to component and pattern
motion (Figure 2b). We applied the same analysis to the
units of MotionNetxy and found a similar pattern of
results (Figure 2c).

We previously showed a similar pattern of selectivity
emerged in a neural network (“MotionNet”) trained
to make discrete velocity classifications (Rideaux &
Welchman, 2020); however, these results differed from
biological findings in that MT units were exclusively
pattern-motion selective (rather than containing a
mixture of selectivity; Figure 2d). This is likely because
in the previous network, which performed discrete
velocity classifications, MT units were constrained
to represent specific velocities. By comparison, units
in the MT layer of this network, like the units in V1,
were unconstrained and could form characteristics that
best served the output regression layer. As a result,
here we found a pattern of selectivity that more closely
resembled that found in biological systems (Figure 2e):
V1 units were component-motion selective whereas
units in the MT layer had a mixture of component- and
pattern-selectivity (Figure 2f). A possible explanation
for the emergence of component-motion selective

units in MT, rather than uniform pattern-motion
selectively, is that these units provide better direction
estimates of simple motion, such as a bar of light, than
pattern-motion selective units. Consistent with this
explanation, we found that although the tuning curves
of component-motion selective units were broader
than pattern-motion selective units in response to plaid
stimuli, they were narrower in response to grating
stimuli (Figure 2g). Thus, by populating MT with both
component- and pattern-motion selective units, the
network can achieve more accurate direction estimation
of both simple and complex images.

How are signals transformed between V1 and
MT layers? A popular model of motion processing
proposed a readout scheme from V1 to MT that
followed a von Mises distribution, with the maximum
excitatory connections between V1 and MT units of
the same direction preference (Rust, Mante, Simoncelli,
& Movshon, 2006). By contrast, we previously found
that the pattern of weights between MotionNet’s
V1 and MT formed a bimodal distribution when
aligned by the preferred V1 unit’s direction (Figure 2h,
black circles), which resembled the shape found when
weights were aligned by the direction of maximum
inhibition (Figure 2h, blue squares), whereas aligning
by the direction of maximum excitation produced a
second derivative Gaussian distribution (Figure 2h,
red triangles). In support of our previous finding,
we measured the weights between V1 and MT of
MotionNetxy and found the same pattern of results
(Figure 2i). However, here we found the readout weights
were more balanced between inhibition and excitation
and more sharply tuned (especially in the case of
alignment to maximum excitation). This is likely due
to differences in the architecture required to support
classification (MotionNet) compared to that required
for regression (MotionNetxy); however, the sharper
tuning may also reflect a more diverse MT layer.

Reverse-phi motion

The direction selectivity of neurons can be
dramatically altered, as in the case of “reverse-phi”
motion, in which the contrast of images in a sequence
is reversed between frames (Figure 3a). Perceptually
this leads to the impression of movement in the
opposite direction from true movement (Anstis, 1970).
It has been shown that neurons in V1 and MT will
exhibit inverted preferences in this situation, such they
respond maximally to reverse-phi stimuli moving in the
non-preferred direction (Duijnhouwer & Krekelberg,
2016; Figures 3b, 3c, left). We found that the activity
of MotionNetxy’s V1 and MT units were similarly
reversed in response to reverse-phi stimuli (Figures
3b, 3c, right). It is encouraging to see the network
recapitulates this well-known phenomenon, but how
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does it estimate the speed of these stimuli? We tested
the network with phi and reverse-phi motion stimuli
over a range of displacement speeds. We found that for
phi motion, the network consistently underestimated
the speed of stimuli, which is likely because the network
was trained on motion sequences comprising six
frames, whereas our phi stimuli comprised only two
(Figure 3d, cyan markers). By contrast, we found that
the speed of reverse-phi stimuli was overestimated for
low displacement speeds and underestimated for high
speeds (Figure 3d, orange markers). Some evidence for
the same pattern of behavior in humans has previously
been found (Parthasarathy, 2019; Ruda et al., 2016),
but more work is needed to explicitly investigate this
phenomenon in biological systems.

To understand why this phenomenon occurs in the
network, we measured the activity of V1 and MT units
tuned to either the displacement (+vx) or opposite-
to-displacement direction (−vx), in response to phi
and reverse-phi motion at different speeds (Figures
3e, 3f). For phi motion, the activity of the V1 +vx
subpopulation stays approximately the same as speed
was increased, while that of V1 −vx subpopulation
is reduced. This increasing difference in activity
between subpopulations of V1 units is propagated
to the MT units to produce a divergent pattern of
activity. As the difference between subpopulations
responses increases, the balance of activity shifts
toward the displacement direction, evoking a faster
estimate of speed in this direction (Figure 3d, cyan
markers). This pattern of responses is consistent with
our previous work (Rideaux & Welchman, 2020),
where we showed that low-speed motion sequences
moving in different directions are highly correlated;
thus directions are less distinguishable than high-speed
sequences.

The responses evoked by reverse-phi are markedly
different. First, as expected from evidence of the reversal
of direction selectivity, the V1 −vx subpopulation are
more active than the V1 +vx subpopulation. Second,
the activity of both V1 subpopulations is lower than
seen for phi motion at the slowest speed and increases
with displacement speed. This reflects the evolutionary
adaptation of receptive fields to frequently occurring
(phi) motion compared with infrequent (reverse-phi)
motion. Finally, both subpopulations increase at
approximately the same rate, so the relative difference
between their activity reduces with displacement
speed. To explain why this occurs, we simulated a
simplified version of the phenomenon in which we
measure the cross-correlation between a phi and a
reverse-phi edge stimulus at three displacement speeds
with four spatiotemporal filters tuned to leftward
and rightward displacement with either light-dark
or dark-light polarity arrangement (Figure 3g, left).
At the lowest displacement speed (vx = 1), the
cross-correlation for reverse-phi is both attenuated

and reversed compared to the cross-correlation for
phi (Figure 3g, right). However, the relative difference
between the cross-correlation for −vx and +vx filters
is larger for reverse-phi. With increasing displacement
(vx = 2 and vx = 3), the relative difference between −vx
and +vx filters increases for phi, while decreasing for
reverse-phi.

Spatiotemporal tuning distributions and
connections

In biological visual systems the tuning of
spatiotemporal neurons in V1 and MT to spatial and
temporal frequency follows a log-normal distribution
(O’Keefe et al., 1998; Wang & Movshon, 2016; Figures
4a-4d, left). Similarly, we found that the preferred
spatial and temporal frequencies of V1 and MT units
in MotionNetxy also followed a log-normal distribution
(Figures 4a-4d, right). Speed is determined by the
ratio of spatial and temporal frequency, meaning
that different combinations of spatial and temporal
frequencies could be used to achieve the same speed
selectivity. For example, the same speed could be
produced by a combination of low spatial and temporal
frequency, or high spatial and temporal frequency. How
might this be implemented in terms of the readout of
V1 activity by speed-selective MT units? We established
the preferred speed to which MotionNetxy’s MT
units were tuned and separated these into “low” or
“high” speed groups using a median split. We then
compared the spatiotemporal tuning distributions
of V1 units to which each group was maximally
connected (Figures 4e, 4f), that is, weights with the
highest positive values. We found that compared to MT
units tuned to fast speeds, slow tuned units primarily
received input from V1 units tuned to high spatial
frequency and low temporal frequency. These results
are consistent with work showing that the preferred
speed of macaque MT neurons, as measured using
dot motion stimuli, is negatively correlated with their
preferred spatial frequency and positively correlated
with their preferred temporal frequency (Priebe
et al., 2003).

Separable and covariate spatiotemporal tuning

Just as neurons can be classified according to their
direction selectivity (i.e., component-/pattern-motion),
they can be classified by their spatiotemporal selectivity.
In particular, neurophysiological evidence shows
that V1 neurons are separately tuned to either
spatial or temporal frequency. That is, they respond
most strongly to a particular spatial frequency,
regardless of the temporal frequency, or vice versa
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(Foster, Gaska, Nagler, & Pollen, 1985; Priebe,
Lisberger, & Movshon, 2006; Tolhurst & Movshon,
1975). By contrast, some MT neurons are tuned to
object speed, such that their sensitivity to spatial
frequency is dependent on temporal frequency (Perrone
& Thiele, 2001; Priebe et al., 2003). To identify whether
a neuron has separable tuning or speed tuning, its
response can be measured for a range of spatial and
temporal frequencies. If the neuron has separable
spatiotemporal tuning, the peak responses will align
either horizontally or vertically with a particular spatial
or temporal frequency (Figure 5a, top). By comparison,
if a neuron is tuned to speed, the peak responses will
extend radially from the origin, with the angle indicating
the speed to which the neuron is tuned (Figure 5a,
bottom). The fit of a two-dimensional Gaussian that
is either aligned cardinally (horizontally/vertically) or
radially to this activity can be used to quantitatively
classify neurons as either separable or speed tuned
(Figure 5a, left). That is, in the same way as the
response of a unit to plaid stimuli can be classified as
component- or pattern-motion selective based on its
alignment to the plaid versus sinewave directions, we
can use the radial versus cardinal alignment of a unit’s
responses to different spatial and temporal sinewaves
to classify it as either separable- or speed-tuned.
We performed this classification analysis on the V1
and MT units in MotionNetxy and found that, in
line with biological systems (Priebe et al., 2003),
V1 units were separably tuned, whereas MT units
showed a mixture of independent and speed tuning
(Figure 5b).

Just as is observed in macaque (Figure 5c), we found
a diverse range of MT units that were component-
/pattern-motion selective and showed separable/speed
tuning (Figure 5d). It is possible that direction and
speed selectivity properties are related among MT
units, that is, a unit selective for complex direction
(pattern-motion) may be more likely to be selective for
complex speed. We tested this in MotionNetxy found a
positive correlation between pattern and speed indices
of MT units (n = 568, Pearson r = .72, p = 1.9 ×
10−93; Figure 5e).

How do motion signals interfere with each
other?

We next considered situations in which motion
signals can degrade or may interfere with each other.
First, we tested how the response to a moving dot
pattern is affected by superimposing dots moving
at different speeds. Biological visual systems exhibit
inhibitory mechanisms that are thought to reduce noise
and sharpen activity in response to visual features.
For instance, experimenters have presented moving

dot patterns and then overlaid dots moving in a
different direction. V1 neurons are not substantially
affected by this manipulation; however, MT neurons
show direction opponency and are suppressed by
dots moving in a non-preferred direction (Qian &
Andersen, 1994; Rust et al., 2006; Snowden, Treue,
Erickson, & Andersen, 1991). We previously found
comparable responses within a neural network trained
to classify image velocity (Rideaux &Welchman, 2020).
However, MT neurons also exhibit speed opponency
and are suppressed by dots moving in a nonpreferred
speed (Mikami et al., 1986; Figures 6a, 6b, left). We
tested whether this noise reduction mechanism was
also present in MotionNetxy and found the same
patterns of responses among MT units (Figures 6a, 6b,
right).

We then tested MotionNetxy with random dot
stimuli that have been widely used to study motion.
Using these stimuli, it is possible to precisely titrate
the relationship between dots moving in a particular
direction (the signal) and dots moving in a randomly
chosen direction (noise). We tested the ability of
MotionNetxy to correctly estimate the direction of
motion by varying the proportion of signal and noise
dots in the stimulus (Figure 7a). Like individual
neuronal responses (Britten, Shadlen, Newsome, &
Movshon, 1992; Figure 7b) and macaque monkey
psychophysical judgments (Figure 7c, blue markers),
we found graceful degradation in estimates of motion
direction (Figure 7c, red markers). We showed that
reducing motion coherence reduces the accuracy of
direction estimates, but how are speed judgements
influenced? Previous psychophysical evidence shows
that humans underestimate the speed of dot motion
with reduced coherence (Schütz et al., 2010; Figure 7d,
orange markers). We tested howMotionNetxy estimated
the speed of dot motion at different coherence levels
and found the same pattern of results (Figure 7d, cyan
markers).

As the directions of noise dots are uniformly
distributed around 360°, the average velocity of the
noise is zero. The underestimation of the speed of
partially coherent dot motion stimuli appears to adhere
to a linear trend that is equal to the weighted average
of noise (zero) and signal (nonzero) speed, where the
weights are equal to the proportion of noise and signal
dots. Thus, a possible explanation for this bias is that
it is produced by pooling of noise and signal by the
network. We reasoned that if the bias is produced by
pooling of noise and signal, then we would expect
that the response of the network to 50% coherence
motion to be similar to the pooled responses to 0% and
100% coherence. Consistent with this explanation, we
found that the average activity of MT units in response
to 50% coherence motion could be predicted with
high accuracy by averaging their responses to 0% and
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100% coherence (n = 64, Pearson r = .99, p = 1.4 ×
10−50; Figure 7e).

Discussion

The ability to see movement underpins adaptive
behaviors ranging from depth estimation to navigation
and grasping. Here we explore and explain the neural
computations that support motion estimation in
biological systems by investigating the structures that
emerge in an artificial system trained to estimate the
velocity of image sequences. Using complete access to
the artificial system, we reveal aspects of the neural
architecture that instantiates the motion estimation,
producing concrete predictions for future empirical
study. Specifically, we show that (i) the network
overestimates the speed of slow reverse-phi motion
while underestimating the speed of fast reverse-phi
motion because of the correlation between reverse-phi
motion and the spatiotemporal receptive fields tuned
to motion in opposite directions, (ii) compared to MT
units tuned to fast speeds, those tuned to slow speeds
primarily receive input from V1 units tuned to high
spatial frequency and low temporal frequency, (iii) there
is a positive correlation between the pattern-motion
and speed selectivity of MT units, and (iv) the network
recapitulates human underestimation of low coherence
motion stimuli, which is explained by pooing of noise
and signal motion.

Reverse-phi motion is perceived as moving in the
opposite direction to the actual movement (Anstis,
1970). The manner in which this image manipulation
influences the preferred direction of neurons and the
perceived direction of movement has been documented
(Duijnhouwer & Krekelberg, 2016). Here we show that
in addition to these effects related to direction, this
manipulation may also produce biases in perceived
speed. Furthermore, we lay bare the computational
mechanism explaining this new phenomenon. That is,
the similarity between reverse-phi motion and receptive
fields of spatiotemporal units tuned to opposite
velocities. Although some behavioral evidence for this
bias has previously been documented (Parthasarathy,
2019; Ruda et al., 2016), future psychophysical and
neurophysiological work is needed to directly test these
predictions.

We previously showed that multiple physiological
and psychophysical phenomena in motion processing
are recapitulated by a network trained to classify
the velocity of moving image sequences (Rideaux &
Welchman, 2020). For example, we found that the
anisotropic distribution of direction preferences in units
in a layer representing V1 matched that of neurons
in mouse V1. Here we found that the distribution of
spatial and temporal frequency tuning also matched

that found in macaque V1 and MT (i.e., log-normal
distribution of neuronal frequency preference).
Previous electrophysiological work suggested that the
MT neurons tuned to low speeds primarily receive
input from V1 neurons tuned to high spatial frequency
and low temporal frequency, whereas the opposite
pattern of transmission was true for MT neurons
tuned to high speed (Priebe et al., 2003). This evidence
was based on the activity of MT neurons, because
measuring connections and preferences of neurons
across cortical regions on a sufficiently large scale is
beyond the limitations of current biological techniques.
By contrast, this analysis is made possible within the
artificial system, and we find evidence consistent with
previous hypotheses: slow-tuned MT units receive more
input from high spatial and low temporal frequency V1
units than fast-tuned MT units.

Considerable work has been undertaken to
understand how the properties of spatiotemporal
neurons in MT are distinguished from those in V1, as
this knowledge can provide insight into the hierarchical
computations that underlie motion processing.
Neurons can be classified by their direction selectivity
(i.e., component-/pattern-motion) or spatiotemporal
selectivity (i.e., separate/speed). V1 only contains
neurons selective for component-motion and separate
spatiotemporal frequencies, while neurons selective
for pattern-motion and speed are found in MT. This
dichotomy supports the notion that “simple” motion
signals fromV1 are pooled inMT, yielding selectivity for
more “complex” signals. However, neurophysiological
work shows that the selectivity of many MT neurons
is indistinguishable from those in V1. We found the
same pattern of results for MotionNetxy: the MT layer
comprised a mixture of units tuned to component- and
pattern-motion, and separate spatiotemporal frequency
and speed. We further showed that component-motion
selectively in MT is likely retained to preserve sensitivity
for simple image motion, such as a bar of light.

Our results indicate that rather than MT units either
being separately tuned to a particular spatial/temporal
frequency or speed, the distribution of speed selectivity
in MT reflected a continuum along this dimension. This
tuning diversity is consistent with neurophysiological
evidence from macaque (Priebe et al., 2003) . We also
found a positive relationship between direction and
speed selectivity of MT units, indicating that units
tuned to complex motion signals in one domain (e.g.,
direction) were more likely to be tuned to complex
signals in the other (e.g., spatiotemporal). Given that
the complexity of the selectivity for both direction
and speed is derived from the same characteristic, i.e.,
diversity of connection weights between V1 and MT,
it seems reasonable to expect that these properties
would be related. However, in contrast, previous
neurophysiological work did not find evidence for
this relationship in macaque (Priebe et al., 2003).
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A possible explanation for this conflict is that there
was an insufficient range of speed selectivity in the
neurophysiological sample to detect the relationship.
In our data, we recorded units ranging almost the
entire speed selectivity continuum, whereas the
neurophysiological data accounted for approximately
half this range (possibly due to noise within the
biological system reducing the effectiveness of the
classification technique). More neurophysiological
work is needed to test this possibility.

We previously demonstrated that the tendency
for humans to underestimate the speed of objects
moving at low visibility could be explained by the
lawful relationship between spatiotemporal contrast
and speed in natural image sequences, rather than
exposure to a non-uniform distribution of motion
speeds in the environment, that is, the “slow-world”
bias (Rideaux & Welchman, 2020). There have been
multiple psychophysical demonstrations of the bias
under conditions of reduced contrast (Hürlimann,
Kiper, & Carandini, 2002; Sotiropoulos, Seitz, & Seriès,
2014; Vintch & Gardner, 2014; Weiss, Simoncelli,
& Adelson, 2002); however, there is also evidence
that humans underestimate the speed of dot motion
stimuli with reduced signal coherence (Schütz et al.,
2010). This could be interpreted as evidence for the
slow-world account, because reducing signal coherence
likely reduces estimation certainty. However, we tested
MotionNetxy and found the same pattern of results:
the network underestimated the speed of dot motion
stimuli with reduced signal coherence. Importantly,
this phenomenon was an outcome of pooling signal
and noise together, and unrelated to the mechanism
that produces underestimation of low contrast motion
signals.

Using an artificial systems approach, here we
explored several aspects of motion processing; however,
many avenues remain for future work. There are
multiple ways in which the training image sequences
could be altered to address remaining questions. For
example, image sequences containing localized motion
could be used to train the network to determine the
influence of using rigid motion on the characteristics
that emerge within the network. Alternatively,
training images could be initially filtered with kernels
representing center-surround receptive fields to
represent ganglion inputs to V1. There is also scope
to increase the complexity of the network to explore
how more complex motion signals are processed. For
example, by adding another layer, analogous to MST,
future work could explore estimation of complex optic
flow, such as rotation.

In recent years, deep neural networks comprising
many layers have surpassed human performance on
many tasks, for example, object recognition (He, Zhang,
Ren, & Sun, 2016; Russakovsky et al., 2015). However,
their scale and complexity often obscures inspection;

limiting understanding of their internal processes as
much as in biological systems. Here, we constrain
the size of the artificial system, allowing us to apply
in silico electrophysiological techniques that lay bare
and understand the processes that underlie perceptual
(mis)estimation of velocity. We demonstrate how
optimizing motion estimation in an artificial network
using natural images recapitulates a diverse array of
neurophysiological and perceptual phenomena. More
importantly, we use this technique to explain the
computational basis of existing perceptual phenomena
and generate predictions for some yet to be tested.

Keywords: motion perception, neural network, speed
and direction, reverse-phi, V1 and MT
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