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The immune and inflammatory responses of platelets to human immunodeficiency virus 1
(HIV-1) and its envelope proteins are of great significance to both the treatment of the
infection, and to the comorbidities related to systemic inflammation. Platelets can interact
with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated
inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can
facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1
replication, or the virus can temporarily hide from the immune system inside platelets,
whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the
host defence system, and transient reservoirs of the virus. Such reservoirs may be of
particular significance during combination antiretroviral therapy (cART) interruption, as it
may drive viral persistence, and result in significant implications for treatment. Both HIV-1
envelope proteins and circulating inflammatory molecules can also initiate platelet
complex formation with immune cells and erythrocytes. Complex formation cause
platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-
1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively
short lifespan, platelets are important signalling entities, and could be targeted more
directly during HIV-1 infection and cART.
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INTRODUCTION

Globally, human immunodeficiency virus 1 (HIV-1) 38.0 Million people are living with HIV (WHO
and UNAIDS 2019 data) and this number have increased with 24% relative to 2010 (1). HIV-1
expresses structural genes (gag, pol, and env), regulatory genes (rev and tat) and accessory
genes (vpu, nef, vpr, and vif) (2). The various gene products drive virus infection in cells that
express CD4 (cluster of differentiation 4) membrane glycoprotein receptors on their plasma
membranes (3). After initial attachment of HIV-1 to the CD4 receptor, a series of sequential
steps will follow, resulting in viral replication (see Figure 1). HIV targets are mainly CD4+ T cells,
macrophages and dendritic cells; however, it can also pursue CD8+ T cells, B cells and natural killer
(NK) cells (9), haematopoietic progenitor cells, astrocytes, platelets (10–12), macrophages and
monocytes (13) and can also engage with neutrophils (14). Interestingly, megakaryocytes, but not
platelets, express the CD4 receptor for HIV-1 attachment (15). However, platelets do have various
org April 2021 | Volume 12 | Article 6494651
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other receptors that can directly bind to either intact HIV-1, or to
its envelope protein inflammagens (16).

The immune and inflammatory responses of platelets to HIV-
1 and its envelope protein inflammagens are of great significance
to both the treatment of the infection itself, and to the
comorbidities related to systemic inflammation (12). Platelets
play crucial roles in primary haemostasis and thrombosis. In
addition, their complex reactions to viral (and bacterial) signals
result in immune responses, and may be protective, or may
Frontiers in Immunology | www.frontiersin.org 2
contribute to significant systemic inflammation (17–24). Platelet
receptors allow them to survey and interact with signals from
pathogens (pathogen-associated molecular patterns; PAMPs)
and also signals from damaged cells (damage-associated
molecular patterns; DAMPs) (24). Platelet receptor interactions
with PAMPs and DAMPs result in platelet-platelet, platelet-
leukocytes or platelet-erythrocyte aggregates, leading to their
depletion (25) and eventually thrombocytopenia (24). Typically,
platelets have a lifespan of 8 to 10 days, but in HIV-1 infection
FIGURE 1 | A generic illustration of the initial attachment of HIV-1 to a CD4+ cell, resulting in in a series of sequential steps that allows viral replication. Initial HIV-1
cell contact result in the interaction of viral envelope glycoprotein gp120 with CD4 receptors, to form a (1) gp120/CD4 complex on the host cell surface (4). This
interaction induces a conformational change in the envelope protein that exposes a chemokine receptor binding site. (2 and 3) Association of gp120 with chemokine
receptor CC chemokine receptor 5 (CCR5) or chemokine receptor 4 (CXCR4), promotes a rearrangement of the transmembrane envelope protein gp41, resulting in
the (4) fusion of the viral and cellular membranes and the entry of the viral capsid into the cell (4–6). CXCR4 and CCR5 were initially identified for their role in HIV-1
entry of CD4+ T cells through its interaction with gp120 (7). CCR5 is a G protein-coupled receptor (8), with seven transmembrane segments and an eighth a-helix
parallel to the plasma membrane (6). (5) Viral RNA is now released into the cell, followed by (6) reverse transcriptase to HIV-1 DNA; (7) integration and transcription in
the nucleus; (8) translation and assembly in the cell cytoplasm; followed by (9) budding and release and maturation. Diagram created with BioRender (https://
biorender.com/).
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this lifespan might be halved (26) or even decreased by two thirds
(27). Thrombocytopenia in HIV-1 infected patients can be the
result of a combination of shortening of platelet life span,
doubling of splenic platelet sequestration, as well as direct
impairment in platelet formation by HIV-infected marrow
megakaryocytes (27). It is also known that megakaryopoiesis
may be altered during the course of HIV-1 infection (28) and
affect the erythroid lineage (29). Immune thrombocytopenia
purpura may also occur in HIV-1 infection (30, 31). Platelets
(with viral loads) are cleared from the circulation and have
shortened survival rates, which ultimately also result in
thrombocytopenia (32–34). Additionally, platelets can adhere
to endothelial cells, creating an adhesion molecule-dense area
with which leukocytes can interact and perform immune
functions (35).

Platelets can interact with the HIV-1 virus itself or with viral
proteins like Tat (transactivator of transcription), or with
inflammatory molecules in circulation due to HIV-1 infection.
These various interactions may lead to four distinct
physiological processes:

1. The inhibition of HIV-1 infection via endogenously-
produced inhibitors of HIV-1 replication.

2. HIV-1 can temporarily hide from the immune system inside
platelets, whereby platelets act as HIV-1 reservoirs. The use of
combination antiretroviral therapy (cART) has significantly
reduced mortality and morbidity in HIV patients (36).
However, during cART interruption, HIV-1 may re-appear
from HIV-1 reservoirs within platelets, resulting in viral
persistence. This phenomenon may have significant
implications for treatment.

3. HIV-1, its envelope protein inflammagens and also
circulating inflammatory molecules from the disease and its
comorbidities, can trigger platelet complex formation and
hypercoagulation.

4. Sustained HIV-1 infection may result in platelet depletion
and eventually thrombocytopenia.
PLATELETS INTERACT DIRECTLY
WITH HIV-1

Platelets greatly contribute to host defence by multiple
mechanisms, including forming immune complexes and
aggregates, shedding their granular content, internalising
pathogens and subsequently being marked for removal. The
process whereby platelets internalize HIV-1 was first described
in 1990 (37). Platelets can also activate and recruit leukocytes to
sites of infection and inflammation, and modulate leukocyte
behaviour to support the leucocyte’s ability to phagocytose and
kill the virus. Direct HIV-1 binding and interactions with platelets
lead to platelet (hyper)activation (38), microparticle formation
(39, 40), platelet reactivity (41) and aggregation to themselves, to
blood vessels, immune cells and also to erythrocytes. Figure 2 is a
scanning electron microscopy micrograph plate showing
hyperactivated platelets and an erythrocytes-platelet complex in
Frontiers in Immunology | www.frontiersin.org 3
patients with HIV-1; raw data taken from (42). Platelet-
erythrocyte complexes are known to bind HIV-1 (18, 43).

Platelet Receptors Bind HIV-1 Directly
There are four subfamilies of chemokine co-receptors, CC, CXC,
CX3C and XC (44) and they are part of the G-protein coupled
receptor family that are integral membrane proteins. Platelets
express various chemokine co-receptors (45, 46). In platelets,
chemokine receptor CXCR1, CXCR2, and CXCR4, as well CCR1,
3 and 4 can directly bind to HIV-1 (16). Some of these co-
receptors can also be transferred to HIV-negative cells through
platelet microparticles (18). It was found that microparticles
derived from both platelets and megakaryocytes containing the
co-receptor CXCR4, and may transfer CXCR4 to CD+/CXCR4-
null cells (47). This process may play an important role in
spreading HIV-1. DC-SIGN (a C-type lectin receptor) is also
present on platelets (48) and can bind HIV-1 (16, 17). In
addition, platelets express CLEC2 (a C-type lectin-like
receptor), a well-known activation and modulating platelet
FIGURE 2 | Scanning electron microscopy micrograph plate from patients
with HIV and with deep vein thrombosis and on primary treatment
(emtricitabine, tenofovir and efavirenz) (cART). (A) Hyperactivated platelets
with pseudopodia, spreading and microparticle formation (white arrow).
(B) Platelet-erythrocyte complex, yellow arrow: platelet forming pseudopodia
that attaches to an erythrocyte membrane (raw data taken from (42).
April 2021 | Volume 12 | Article 649465
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receptor (49). CLEG2 is also a receptor for HIV-1 (16, 50, 51).
See Figure 3 for a simplified diagram that shows platelet/HIV-
1 interactions.

After platelets internalize HIV-1, the virus can either be
sheltered (unaltered), with potential transfer of the virus into
target organs, or they can come in contact with platelet secretory
products. Intact HIV-1 are present in enclosed endocytic
vesicles, were they are sheltered from platelet secretory
products. However, HIV-1 that are present inside the surface-
connected canalicular system, have been in contact with platelet
secretory products (52). Platelet secretory products, mainly from
a-granules, may lead to its destruction and ultimately
facilitated platelet clearance (52). Activated platelets can inhibit
HIV-1 replication through the secretion of platelet factor 4
(PF-4) (also known as CXCL4) (53). PF-4 is a chemokine that
is stored in platelet a-granules (17), see Figure 3.

Platelet Complex Formation Due to HIV-1
Platelets have the ability to form platelet-cell complexes with
various circulating blood cells, including with each other, CD4+
Frontiers in Immunology | www.frontiersin.org 4
and CD8+ T cells, neutrophils monocytes and also macrophages.
These complexes are mediated by membrane-membrane
interactions via receptor binding. Platelets can also form
complexes with adhesive proteins including fibrinogen and von
Willebrand factor (VWF) (54). Such platelet-cell and platelet
adhesive protein complexes form part of platelet activation
mechanisms and vascular remodelling (54) and impacts on
platelet structure, granule secretion, surface glycoprotein
expression, and molecular activation pathways of platelets
(24, 55).

During HIV-1 infection, activated platelets can also form
aggregates, conjugates or complexes with CD4+ and CD8+ T cells
(56, 57), and in particular with memory T cells that are HLA-
DR+ and CD38+ (17). HLA-DR and CD38 are activation
markers on T cells during HIV-1 infection (58). Platelets
with engulfed virus particles may also form aggregates with
CD16+ inflammatory monocytes (17). Human monocytes are
classified into two subtypes, based on the expression of CD16:
classical CD14+CD16− monocytes and the proinflammatory
CD14+CD16+ monocytes (59).
FIGURE 3 | HIV-1 interact with platelets, resulting in (hyper)activation and microparticle formation. Platelet receptors that are known to bind viruses (16): C-C
chemokine receptor type 1, 2 and 4 (CXCR1, CXCR2, CXCR4), as well as C-C chemokine receptor type 1, 3 and 4 (CCR1, CCR3 and CCR4). Diagram created with
BioRender (https://biorender.com/).
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Funderburg and co-workers in 2012 found that in HIV-1
infection, non-classic (CD14+CD16++) and intermediate (CD14++

CD16+) monocytes are increased and also express high levels of
tissue factor and P-selectin (CD62P) (60). P-selectin is another
protein that is central in facilitating complex formation between
platelets and T cells, and platelets and monocytes. P-selectin
expression on platelet membranes is a very complex process, and
can also result due to platelet activation by dysregulated
proinflammatory molecules in circulation. After virus
endocytosis, platelets express P-selectin on their membranes.
Simpson and co-workers in 2020 found that platelet activation
can enhance viral uptake, as well as facilitates the transfer of
infectious virus from platelets to susceptible CD4+ T cells (57).
This happens in part because of the expression of surface-bound
P-selectin, that drives platelet-CD4+ T cell complex formation
(57). When P-selectin is present on platelet membranes, it acts as
receptors that are able to bind to P-selectin glycoprotein ligand-1
(PSGL1) on T cells. PSGL1 protein is expressed by all T cells;
however, the affinity to bind its ligand is determined by the
degree of glycosylation. PSGL1 is not functional in naive T cells
(61). Platelets are also recognised by macrophages, causing
platelet clearance from the circulation. Platelet clearance may
ultimately result in thrombocytopenia, which is a major
complication of HIV-1 infection (62–64). Phagocytosis of
platelets by macrophages depends on surface exposure of the
phosphatidylserine (PS) and clustering of GPIba, but neither one
appears involved in binding (65). Possible candidates for P-
selectin-independent binding to macrophages are CD36, the
avb3 vitronectin receptor, and the ligand receptor pair CD40-
CD40L (65). Zapata and co-workers in 2014, mentioned that
viral activation of platelets induces an increased expression of P-
selectin that functions as a receptor for macrophages; and
platelet-leukocyte aggregation may result inf phagocytosis by
macrophages (66). HIV-1 may also activate platelets to express
P-selectin which then acts as a receptor for macrophages (52).
Circulating platelets bound by autoantibody are also targeted for
removal by low-affinity Fc-receptors predominantly expressed
on splenic macrophages (67). FcgRIIa, as well as other Fc-
receptors on macrophages mediates platelet phagocytosis and
clearance from the circulation (68, 69).

Soluble (s)CD40L is increased during HIV-1 infection (70),
and present in plasma of HIV patients (71). Elevated sCD40L
may induce immunosuppression during HIV infection (72).
CD40 is a glycoprotein and a member of the tumour necrosis
factor superfamily and is found on the cell surface, either as a
monomer, a dimer or trimer (73). It is expressed on the surface of
activated T cells and involved in complex formation between
platelets and immune cells. Despite the conventional association
of CD40 expression with CD4+ T cells, there are reports that
shows that CD8+ T cells are likewise capable of expressing
CD40L (74).

CD40L originates from platelet a-granules. CD40L exists
either as a transmembrane form or a soluble form (75). CD40L
is released from platelets following activation by thrombin, ADP,
or collagen (76). After its release from the a-granules, it migrates
to the platelet membrane. It can also be shed as sCD40L which
Frontiers in Immunology | www.frontiersin.org 5
can then in turn, bind to the receptors CD40, aIIbb3, a5b1, or
Mac-1 (neutrophil integrin aMb2) (77). CD40–CD40L coupling
plays a crucial role in different aspects of the immunity system,
such as the activation of kinases (73). Both the receptors aIIbb3
(76), and CD40 are also expressed on platelet membranes (77),
and sCD40L in circulation can in turn also activate platelets (78).
When sCD40L binds to the platelet aIIbb3 receptor, it promotes
platelet spreading and thrombus formation, as the process allows
for the migration of P-selectin to the platelet membrane. The P-
selectin on the membranes of sCD40L-activated platelets can
form complexes with monocytes via the P-selectin receptor on
the platelets and PSGL-1 on the monocytes (78).

Platelet-neutrophil complexes is the result of platelet
glycoprotein Iba (GP1ba) binding to Mac-1 or because of
platelet P-selectin binding to neutrophil PSGL-1 (79). In
addition, integrin aIIbb3 also serves as a binding partner for
Mac-1 on neutrophils via a bridge of soluble fibrinogen (80, 81).
Neutrophils detect HIV-1 by Toll-like receptors (TLRs) TLR7
and TLR8, which recognize viral nucleic acids (82). Downstream
effects of the platelet-neutrophil interaction result in amongst
others, generation of neutrophil extracellular traps (NETs).
NETs trap pathogens (including HIV-1), preventing their
amplification and dissemination (83). Recently it was also
found that NETs may restrain HIV-1 production in
macrophages (84). See Figure 4 for a simplified diagram that
shows platelet complex formation.
HIV-1 PROTEINS AND THEIR BINDING TO
ENDOTHELIAL CELLS AND PLATELETS

Platelet hyperactivation and endothelial cell damage are closely
linked. The interface of platelet-endothelial cell interactions
result in the release of various inflammatory and mitogenic
substances. These substances alter the chemotactic, adhesive
and proteolytic properties of endothelial cells (85). Tat (trans-
activator of transcription) play major roles in both platelet
activation (86) and endothelial dysfunction (87, 88). When Tat
and gp120 binding happens, inflammatory and mitogenic
substances are released. Tat enhances viral transcription (89),
and has been detected in the sera of patients with HIV (90) even
during cART (91). It is released from cells with active HIV-1
replication, or from latently HIV-1-infected cells into
neighbouring uninfected cells, even in the absence of active
HIV-1 replication and viral production due to effective cART
(92). Activation by Tat requires the chemokine receptor CCR3
and b3-integrin expression on platelets, as well as the activation
of a calcium flux. In turn, Tat binding to platelet receptors
causes platelet microparticle formation (16) and sCD40L
release (93) [sCD40L in turn drives cellular complex formation
(as described earlier)].

Endothelial Cells and HIV-1 Protein
Interactions
Endothelial damage and dysfunction is a risk factor for
cardiovascular events in HIV-1 (94). Although HIV-1 itself do
April 2021 | Volume 12 | Article 649465
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not actively replicate in endothelial cells, endothelial dysfunction
depends on the release of both HIV-encoded proteins, as well as
inflammatory mediators into the microenvironment by HIV-
infected cells (87). Because endothelial function, structure and
healthiness are closely linked to platelet functions, and because
Tat can trigger endothelial dysfunction, this section briefly
discussed endothelial cell and HIV-1 protein interactions.

Tat and the envelope glycoprotein, gp120 are actively
secreted into the endothelial cell micro-environment during
Frontiers in Immunology | www.frontiersin.org 6
HIV infection (87). Tat can bind to the integrin receptor
avb3 on endothelial cells to trigger endothelial dysfunction (95).
Urbinati and co-workers in 2012 found that immobilized Tat
induces actin cytoskeleton organization, formation of
avb3 integrin(+)focal adhesion plaques, and recruitment of
vascular endothelial growth factor receptor-2 (VEGFR2) in the
ventral plasma membrane of adherent endothelial cells (96). Tat
binding to the endothelial cells may also directly contribute to
atherosclerosis and cardiovascular disease in patients with HIV (97).
FIGURE 4 | (1) After virus endocytosis, platelets express P-selectin on their membranes, followed by platelet-T cell complex formation (2); P-selectin on platelet
membranes are also recognized by macrophages, possibly by the Fcg-receptor; clearance may result due to either receptor binding or phagocytosis (3). CD40L is
released from platelets and can migrate to membranes or shed as soluble (s)CD40L (4). sCD40L can bind to both the aIIbb3 or CD40 receptors (5) The P-selectin on
the membranes of sCD40L-activated platelets can also form complexes with monocytes (6). Platelet-neutrophils also form complexes (7) Diagram created with
BioRender (https://biorender.com/).
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gp120 can also bind to CXCR4 and CCR5 on endothelial cells.
When gp120 bind to these receptors, it potentially might
promote endothelial cell senescence. Hijmans and co-workers
in 2018 showed that HIV-1 gp120 can induce cell senescence, but
the authors did not prove it was due to a direct interaction of
HIV-1 with CCR5 or CXCR4 (98). Gp120 binding to endothelial
cells facilitates upregulation of pro-inflammatory cytokines such
as IL-6 and IL-8 (87, 99). In addition, Gp120 binding to
endothelial cells also increases endothelial permeability (100)
and down-regulation of tight junction proteins (101). For a
detailed review of HIV-1 protein interactions with endothelial
cells with the resulting pathophysiology, see (102). Figure 5
shows a simplified diagram of HIV-1 proteins binding to
platelets and endothelial cells.
Frontiers in Immunology | www.frontiersin.org 7
THE INDIRECT PATHOPHYSIOLOGY OF
PLATELET DURING HIV-1 INFECTION

Thrombo-embolic events cardiovascular disease, and
microvascular disease are well-known to occur during HIV-1
infection (42, 103–107). Cytokines and biomarkers of impaired
coagulation (fibrinogen, fibrin, thrombin D-dimer and VWF) are
all dysregulated in HIV-1 (108). These molecules and their
pathophysiological effects on platelets during HIV-1 infection
may have significant effects on platelet activation and may also
drive thrombo-embolic events and microvascular disease during
HIV-1 infection (109). These inflammatory molecules may be
involved in both primary and secondary haemostatic events
during HIV-1 infection. Primary haemostasis happens as a
FIGURE 5 | HIV-1 and its trans activating factor (Tat) particles interacting with platelets and endothelial cells. Atherosclerotic plaque formation is known to cause
endothelial damage and shown here to indicate an area of endothelial damage. Tat is expressed by HIV-1 infected cells and activates platelets through chemokine
receptor CCR3 and integrin b3 (86) (1). Tat binds to endothelial cell integrin receptor avb3 (2). gp120 binds to endothelial cell receptors CXCR4 and CCR5 (3).
Diagram created with BioRender (https://biorender.com/). Cells are not drawn to scale.
April 2021 | Volume 12 | Article 649465

https://biorender.com/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pretorius Platelets in HIV
response to vascular injury or damage, resulting in platelets
adhering to the damaged endothelial wall. Secondary
haemostasis results in formation of the clot and enzymatic
activation of coagulation proteins. The next paragraphs will
briefly discuss events involving circulating inflammatory
biomarkers and coagulation proteins during HIV-1 infection.

During HIV-1 infection an exaggerated systemic
inflammatory response (110) guides platelet dysfunction, where
platelets are inappropriately activated, followed by
immunological destruction, followed by HIV-1-related
thrombocytopenia. Dysregulated inflammatory cytokines
during HIV-1 infection, include IL-1 (a/b), IL-2, IL-6, TNF-a,
IFN-a/b, NF-kB and IFN-g (111). TNF-a in particular, is a
prominent pro-inflammatory cytokine that plays a critical role
in HIV-1 pathogenesis (112).

During HIV-1 infection, platelets attach to the exposed or
damaged sub-endothelium with the platelet GPIb-IX-V receptor
complex; and also with platelet GPVI adhesion receptors to
exposed collagen from damaged endothelial cells (24, 35, 113).
The HIV-1 matrix protein p17 (p17), secreted from HIV-1-
infected cells (114) and platelets, can directly interact with the
endothelium, and may cause the release of soluble endothelial
pro-inflammatory molecules, including sVCAM-1, sICAM-1
and VWF. When VWF enters the circulation or attaches to
areas of (damaged) vessel walls, it self-assembles into strings and
fibres, enabling platelet adhesion (115). sVCAM-1, sICAM-1 and
VWF are known to be elevated in circulation in HIV-1 infected
patients, and their presence are associated with thrombosis (116–
118). Increased circulating VWF levels have been linked to
recurrent venous thrombo-embolic events in patients with
HIV-1 (106). This spiral of events ultimately cause
thrombocytopenia and support the development of
microvascular and arterial thromboses.

Molecules like VWF, thrombin, fibrin, fibrinogen (and D-
dimer, are associated with (hyper)coagulation, and closely linked
to the development of coagulopathies, thrombocytopenia and
microvascular disease noted in HIV-1 infections (42, 103–105).
Increased D-dimer concentrations found in HIV-1 infection
(119) are also associated with poor cardiovascular and other
clinical outcomes in people with HIV-1 infection (120).
Similarly, an increase in thrombin and coagulation factors are
also present in HIV patients, while decreased levels of anti-
thrombin and protein C, and increased levels of Factor V, Factor
VIII, were also previously noted (121). Thrombin was also found
to facilitate HIV-induced cell fusion, probably by activating
gp120 (122). For a comprehensive review on the effects of
hypercoagulation in HIV-1 see (24). Thrombin is a well-
known activator of platelets, and can cause platelets to show
Ca2+ influx, integrin aIIbb3 activation and phosphatidylserine
exposure disintegrate into cellular fragments containing
organelles, such as mitochondria, glycogen granules, and
vacuoles (123). Metabolic ATP depletion and impairment of
platelet contractility along with significant cytoskeletal
rearrangements, also occurs simultaneously with platelet
disintegration (123). In addition, ADP plays a significant role
in platelet activation. ADP-induced platelet aggregation is
Frontiers in Immunology | www.frontiersin.org 8
mediated by P2Y1 and P2Y12 G-protein-coupled receptors
(124). ADP also plays a key role in platelet recruitment to the
blood vessel wall, while adenosine and high concentrations of
ATP inhibit ADP-induced platelet aggregation (125). These
molecules also facilitate the progression of platelet activation in
HIV-1 infection (125). Platelet aggregation play a key role in
cardiovascular events. It has been shown that the integrase
inhibitor raltegravir (RAL) may reduce persistent HIV-induced
platelet hyperreactivity and aggregation (126).
PLATELETS DURING HIV-1 TREATMENT

A variety of cART drug therapies are currently available by
prescription and their main goal is to prevent the virus from
replicating and reduce viral load, thereby reducing to possibility
of transmission of HIV-1 to others. These therapies also aims to
restore CD4 counts and immune function, to reduce
comorbidities from HIV-1, and to ultimately improve survival
rate. Research shows that platelets from patients with HIV-1 still
show hyperactivation, even while they are on cART drug
therapies. Platelets derived from HIV-infected individuals
under stable cART exhibit a phenotype of increased activation,
activation of the intrinsic pathway of apoptosis and undermined
granule secretion in response to thrombin (127).

HIV-1 reservoirs are significant obstacles in HIV-1 treatment
and eradication. These reservoirs allow persistence of
replication-competent HIV-1 for prolonged periods of time in
patients on optimal cART regimens (128). The main HIV
cellular reservoir is composed of resting CD4+ T-cells (129),
and unfortunately, replication-competent provirus from latent
reservoirs is capable of reigniting infection, if therapy is
interrupted (130). Peripheral Vg9Vd2 T cells are a novel
reservoir of latent HIV-1 infection (131). It is also known that
megakaryocytes can also contain HIV-1 and that these cells may
play a role in persistence of HIV-1. HIV-1 was also shown to
integrate in terminally differentiated astrocytes, suggesting that
astrocytes could be a permanent reservoir of provirus in brain
(132, 133). HIV-1 may also be present in cerebrospinal fluid
(CSF) (134), and can replicate there, with development of CSF
HIV-1 resistance resulting in acute or subacute neurological
manifestations (135).

Macrophages also harbour HIV-1 DNA, but whether this
reflects active infection or phagocytosis of infected CD4+ T cells
is still not clear (128). It has now also been reported that human
platelets harbouring HIV-1, can indeed spread the virus to
macrophages. Real and co-workers in 2020 isolated platelets
from patients with HIV-1, and on antiretroviral therapy (12).
Fifteen of the patients had a detectable viral load in their blood,
whereas in 27 individuals, the viral load was below the detection
limit (12). The authors found that 10 of the 27 patients with
suppressed viral load had detectable HIV RNA in their platelets,
and further analysis showed that these platelets indeed contained
intact virions. Megakaryocytes also contained HIV-1, suggesting
that these cells were the likely origin of the platelet-associated
virus (12). In addition, incubation of platelets from these patients
April 2021 | Volume 12 | Article 649465
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with a reporter cell line, showed that the virus was indeed
replication competent. This study confirmed that platelets may
be transient carriers of HIV-1 and may provide an alternative
pathway for HIV-1 dissemination in HIV-infected individuals
on cART with viral suppression, and poor CD4+ T cell recovery
(12). These results are particularly significant as it shows that
platelets with replication-competent HIV-1 can propagate
infection to macrophages (10–12). However, is should be noted
that the viral reservoir in platelets may be limited (about 10 viral
RNA copies per million of platelets) (11). The HIV-1 reservoir in
platelets is therefore small in comparison with latently infected
cells in lymphoid tissues. In a 2016 viewpoint paper, various
experts in the field discussed the constitution of HIV-1 viral
reservoirs, how to measure the various reservoirs’ viral content,
and how best to eradicate reservoirs (128). In this 2016 review
paper, it was stressed that the only true HIV-1 reservoirs, are
resting CD4+ T cells (128).
CONCLUSION

Platelets are now recognized to play a complex and dynamic role
in HIV-1 infections, as they act as both the guardians of host
defence, as well as transient reservoirs of the virus. During HIV-1
infection viral envelope protein inflammagens and numerous
inflammatory cytokines shed in the inflammatory HIV-1 milieu,
have a severe impact on platelet function, ultimately leading
to platelet hyperactivation, clearance and eventually
thrombocytopenia. Their role in platelet complex formation
can also contribute to pathophysiological inflammatory
processes, endothelial dysfunction, arthrosclerosis and
Frontiers in Immunology | www.frontiersin.org 9
immunopathology. Although lower platelet counts are
associated with worse prognosis, platelets may also be a
transient reservoir for HIV-1.

Because of their relatively short lifespan, platelets are
important signalling entities and could be targeted more
directly during HIV-1 infection and cART, to closely evaluate
and track the course of the infection. Novel approached like
transcriptomics and single-cell monitoring could enable new
discoveries on how platelets (and megakaryocytes) function in
human health and disease (136). Although relatively low viral
copies have been found in platelets (on average 9.92 HIV RNA
copies per million platelets) (12); therapies targeting specifically
platelets during HIV-1 infection could possibly prevent HIV-1
hiding in them. In addition therapies that might prevent platelet
hyperactivation and ultimately thrombocytopenia, could also
have an impact on the effects of platelet depletion, noted
during HIV-1 infection.
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26. Van Wyk V, Kotzé HF, Heyns AP. Kinetics of indium-111-labelled Platelets in
HIV-infected Patients With and Without Associated Thrombocytopaenia. Eur J
Haematol (1999) 62:332–5. doi: 10.1111/j.1600-0609.1999.tb01911.x

27. Cole JL, Marzec UM, Gunthel CJ, Karpatkin S, Worford L, Sundell IB, et al.
Ineffective Platelet Production in Thrombocytopenic Human
Immunodeficiency Virus-Infected Patients. Blood (1998) 91:3239–46. doi:
10.1182/blood.V91.9.3239

28. Tsukamoto T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of
HIV/AIDS. Front Cell Infect Microbiol (2020) 10:60. doi: 10.3389/
fcimb.2020.00060

29. Morini S, Musumeci G, Bon I, Miserocchi A, Alviano F, Longo S, et al. Hiv-1
gp120 Impairs the Differentiation and Survival of Cord Blood CD34+ Hpcs
Induced to the Erythroid Lineage. New Microbiol (2016) 39:13–23.

30. Shah I. Immune Thrombocytopenic Purpura: A Presentation of HIV
Infection. J Int Assoc Provid AIDS Care (2013) 12:95–7. doi: 10.1177/
1545109712462068

31. Hollak CE, Kersten MJ, van der Lelie J, Lange JM. Thrombocytopenic
Purpura as First Manifestation of Human Immunodeficiency Virus Type I
(Hiv-1) Infection. Neth J Med (1990) 37:63–8.

32. Deressa T, Damtie D, Workineh M, Genetu M, Melku M. Anemia and
Thrombocytopenia in the Cohort of HIV-infected Adults in Northwest
Ethiopia: A Facility-Based Cross-Sectional Study. Ejifcc (2018) 29:36–47.

33. Marchionatti A, Parisi MM. Anemia and Thrombocytopenia in People
Living With HIV/AIDS: A Narrative Literature Review. Int Health (2021)
13(2):98–109. doi: 10.1093/inthealth/ihaa036

34. Akdag D, Knudsen AD, Thudium RF, Kirkegaard-Klitbo DM, Nielsen C,
Brown P, et al. Increased Risk of Anemia, Neutropenia, and
Thrombocytopenia in People With Human Immunodeficiency Virus and
Well-Controlled Viral Replication. J Infect Dis (2019) 220:1834–42. doi:
10.1093/infdis/jiz394

35. Jenne CN, Kubes P. Platelets in Inflammation and Infection. Platelets (2015)
26:286–92. doi: 10.3109/09537104.2015.1010441

36. Baumer Y, Weatherby TM, Mitchell BI, SahBandar IN, Premeaux TA,
Michelle LD, et al. Hiding in Plain Sight - Platelets, the Silent Carriers of
HIV-1. Platelets (2020) 1–5. doi: 10.1080/09537104.2020.1849606

37. Zucker-Franklin D, Seremetis S, Zheng ZY. Internalization of Human
Immunodeficiency Virus Type I and Other Retroviruses by
Megakaryocytes and Platelets. Blood (1990) 75:1920–3. doi: 10.1182/
blood.V75.10.1920.bloodjournal75101920

38. Pretorius E, Smit E, Oberholzer HM, Steyn E, Briedenhann S, Franz RC.
Investigating the Ultrastructure of Platelets of HIV Patients Treated With the
Immuno-Regulator, Canova: A Qualitative Scanning ElectronMicroscopy Study.
Histol Histopathol (2009) 24:399–405. doi: 10.14670/HH-24.399
Frontiers in Immunology | www.frontiersin.org 10
39. Mayne E, Funderburg NT, Sieg SF, Asaad R, Kalinowska M, Rodriguez B,
et al. Increased Platelet and Microparticle Activation in HIV Infection:
Upregulation of P-selectin and Tissue Factor Expression. J Acquir Immune
Defic Syndr (1999) 59(2012):340–6. doi: 10.1097/QAI.0b013e3182439355

40. Pretorius E, Oberholzer HM, Smit E, Steyn E, Briedenhann S, Franz CR.
Ultrastructural Changes in Platelet Aggregates of HIV Patients: A Scanning
Electron Microscopy Study. Ultrastruct Pathol (2008) 32:75–9. doi: 10.1080/
01913120802034793

41. Satchell CS, O’Halloran JA, Cotter AG, Peace AJ, O’Connor EF, Tedesco AF,
et al. Increased Platelet Reactivity in HIV-1-infected Patients Receiving
Abacavir-Containing Antiretroviral Therapy. J Infect Dis (2011) 204:1202–
10. doi: 10.1093/infdis/jir509

42. Jackson BS, Nunes Goncalves J, Pretorius E. Comparison of Pathological
Clotting Using Haematological, Functional and Morphological
Investigations in HIV-positive and HIV-negative Patients With Deep Vein
Thrombosis. Retrovirology (2020) 17:14. doi: 10.1186/s12977-020-00523-3

43. Beck Z, Jagodzinski LL, Eller MA, Thelian D, Matyas GR, Kunz AN, et al.
Platelets and Erythrocyte-Bound Platelets Bind Infectious HIV-1 in Plasma
of Chronically Infected Patients. PLoS One (2013) 8:e81002–2. doi: 10.1371/
journal.pone.0081002

44. Hughes CE, Nibbs RJB. A Guide to Chemokines and Their Receptors. FEBS J
(2018) 285:2944–71. doi: 10.1111/febs.14466

45. Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggiolini M,Wells
TN. Functional Expression of CCR1, Ccr3, CCR4, and CXCR4 Chemokine
Receptors on Human Platelets. Blood (2000) 96:4046–54. doi: 10.1182/
blood.V96.13.4046

46. Cognasse F, Hamzeh-Cognasse H, Berthet J, Damien P, Lucht F, Pozzetto B,
et al. Altered Release of Regulated Upon Activation, Normal T-cell
Expressed and Secreted Protein From Human, Normal Platelets:
Contribution of Distinct HIV-1MN gp41 Peptides. Aids (2009) 23:2057–9.
doi: 10.1097/QAD.0b013e328330da65

47. Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M,
et al. Platelet- and Megakaryocyte-Derived Microparticles Transfer CXCR4
Receptor to CXCR4-null Cells and Make Them Susceptible to Infection by
X4-HIV. Aids (2003) 17:33–42. doi: 10.1097/00002030-200301030-00006

48. Boukour S, Masse JM, Benit L, Dubart-Kupperschmitt A, Cramer EM.
Lentivirus Degradation and DC-SIGN Expression by Human Platelets and
Megakaryocytes. J Thromb Haemost (2006) 4:426–35. doi: 10.1111/j.1538-
7836.2006.01749.x

49. Badolia R, Inamdar V, Manne BK, Dangelmaier C, Eble JA, Kunapuli SP. Gq
Pathway Regulates Proximal C-type Lectin-Like Receptor-2 (CLEC-2) Signaling
in Platelets. J Biol Chem (2017) 292:14516–31. doi: 10.1074/jbc.M117.791012

50. Watson AA, Brown J, Harlos K, Eble JA, Walter TS, O’Callaghan CA. The
Crystal Structure and Mutational Binding Analysis of the Extracellular
Domain of the Platelet-Activating Receptor CLEC-2. J Biol Chem (2007)
282:3165–72. doi: 10.1074/jbc.M610383200

51. Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, et al.
Dc-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1
Capture by Platelets. J Virol (2006) 80:8951–60. doi: 10.1128/JVI.00136-06

52. Flaujac C, Boukour S, Cramer-Bordé E. Platelets and Viruses: An
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