
Quantifying acute physiological biomarkers of transcutaneous 
cervical vagal nerve stimulation in the context of psychological 
stress

Nil Z. Gurela,*, Minxuan Huangb, Matthew T. Wittbrodtc, Hewon Junga, Stacy L. Laddc,d, Md. 
Mobashir H. Shandhia, Yi-An Koe, Lucy Shallenbergerb, Jonathon A. Nyed, Bradley Pearceb, 
Viola Vaccarinob,f, Amit J. Shahb,f,g, J. Douglas Bremnerc,d,g, Omer T. Inana,h

a School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 
USA

b Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA

c Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 
Atlanta, GA, USA

d Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA

e Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, 
USA

f Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA

g Atlanta VA Medical Center, Decatur, GA, USA

h Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Background: Stress is associated with activation of the sympathetic nervous system, and can 

lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic 

stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator 

of autonomic nervous system function, however currently available implantable devices are 

limited by cost and inconvenience.

Objective: The purpose of this study was to assess the effects of transcutaneous cervical VNS 

(tcVNS) on autonomic responses to stress.

Methods: Using a double-blind approach, we investigated the effects of active or sham tcVNS on 

peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 

healthy human participants with a history of exposure to psychological trauma. Participants were 
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exposed to acute stressors over a three-day period, including personalized scripts of traumatic 

events, public speech, and mental arithmetic tasks.

Results: tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease 

in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured 

by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 

4.2 ms (95% CI 1.6–6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by 

increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4–

94.5%, p < 0.05), a 9% decrease in respiratory rate (−14.3 to −3.7%, p < 0.01). Similar effects 

were seen when tcVNS was applied after other stressors and in the absence of a stressor.

Conclusion: Wearable sensing modalities are feasible to use in experiments in human 

participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.
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Introduction

Traumatic stress is associated with activation of the sympathetic nervous system (SNS), and 

can be associated with lasting alterations in autonomic function and in extreme cases 

symptoms of posttraumatic stress disorder (PTSD) [1]. Re-exposure to traumatic memories 

can be associated with a re-activation of the SNS, which can lead to symptoms of PTSD [2–

6]. Vagal nerve stimulation (VNS) effectively modulates autonomic nervous system function 

and thus represents a potential treatment option for PTSD [7,8], however, implementation is 

limited by the implantation procedure. Wide-spread implementation of VNS has been 

limited by invasiveness of the therapy and high costs typically not covered by medical 

insurance [9–11]. Transcutaneous vagal nerve stimulation (tVNS) devices applied to cervical 

or auricular portions of the vagus nerve potentially offer substantially enhanced feasibility 

and tolerability [12–16], but their effects on physiology are not well understood.

The vagus nerve is a complex neural structure that contains descending efferent fibers that 

regulate peripheral organs and autonomic nervous system activity, and ascending afferent 

fibers to the brain via the nucleus tractus solitarus (NTS) [7]. The NTS projects to other 

brain areas such as the amygdala, hippocampus, locus coeruleus, and prefrontal cortex that 

play important roles in emotion regulation and have been implicated in stress-related mental 

disorders, including PTSD [17,18]. Efferent fibers modulate cardiovascular function and 

peripheral autonomic tone, which can also be modulated by afferent fibers via brain areas 

with effects on these parameters including the prefrontal cortex and insula [19]. Electrical 

stimulation of the vagus nerve, using implantable devices (direct VNS), has been 

demonstrated to be efficacious for the treatment of epilepsy and refractory major depression, 

and is approved by the Food and Drug Administration (FDA) for the treatment of these 

disorders [10,20–26]. The effects of direct VNS on autonomic imbalance likely explains 

much of its efficacy for these disorders, as well as its applicability to cardiovascular 
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disorders [27,28]. The effects of direct VNS on enhancement of memory and neuroplasticity 

also suggest a role for treatment of cognitive disorders, stroke, and other conditions [29–34].

tVNS devices that target the auricular (taVNS) or cervical (tcVNS) portion of the vagus 

nerve have recently been developed that, due to their low cost and on-demand usability, have 

the potential to be widely implemented for rehabilitation, treatment of mental disorders, and 

performance improvement [35,36]. taVNS and tcVNS technologies are considered 

separately as they target different portions of the vagus nerve: the auricular branch is 

accessed from the ear and the cervical branch from the right or left side of the neck. Brain 

imaging studies reveal that taVNS devices can modulate the vagal afferents [15,37–39], 

along with studies that report improved vagal tone through heart rate, heart rate variability, 

and microneurography [40,41], increased salivary alpha amylase, and decreased salivary 

cortisol [42]. Beneficial outcomes have been noted by multiple groups on episodic migraine 

[39], epilepsy seizure frequency [14], major depression [43,44], and chronic tinnitus [45].

While fewer studies exist focused on tcVNS, several important results have been 

demonstrated. Imaging studies noted vagal afferents are accessible with tcVNS [46] and, 

recently, a multi-scale image-derived model of tcVNS was developed predicting the fiber 

activation due to tcVNS [47]. The downstream effects were observed in serum cytokines, 

chemokines, and cardiac vagal tone [48,49]. Clinically relevant outcomes for tcVNS were 

noted for trigeminal allodyna and migraine [50,51]. Analyses on the effects of taVNS and/or 

tcVNS on cardiovascular and autonomic function have produced mixed outcomes 

[40,48,51–53]. These studies used basic parameters such as heart rate (HR), heart rate 

variability (HRV) and blood pressure (BP), that are easy to attain, but are influenced by 

sympathetic and parasympathetic nervous systems along with subsequent peripheral vascular 

resistance, and therefore do not provide information on specific target pathways and 

physiological systems [54,55]. New advances in wearable sensing devices, incorporating 

seismocardiography, electrocardiography, ballistocardiography, movement, and peripheral 

vascular constriction, have improved specific assessment of sympathetic, parasympathetic, 

cardiovascular, and peripheral vascular function in conjunction with tasks such as mental 

stress, and could be applied to neuromodulation [56–58]. VNS results in changes in 

cardiovascular and peripheral function, reflected by a dynamic interplay between the 

activation of descending efferents and ascending afferents [59]. Due to this complex 

interplay, the effects of neuromodulation on both sympathetic and parasympathetic 

autonomic systems must be considered. Assessment of the effects of VNS on autonomic 

function also has clinical relevance as maladaptive autonomic regulation is the hallmark of 

many psychiatric disorders including PTSD.

Autonomic function plays a critical role in the stress response, but little is known about the 

effects of VNS on autonomic responses to stress. Exposure to traumatic events can produce 

strongly encoded intrusive memories associated with alterations in autonomic function that 

can persist in certain vulnerable individuals, and be associated with long-term changes in 

brain circuits involved in stress response, and possibly lead to PTSD [60,61]. Studying 

autonomic correlates of traumatic stress memories has clinical implications for patients with 

PTSD [62]. Both traumatic stress [63,64], and other stressors such as public speech or 

mental arithmetic [65–67] can be produced in the laboratory. These paradigms have been 
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shown to reliably produce behavioral and physiological responses consistent with a stress 

response [65–68], although clinically there are fundamental differences between traumatic 

stress recall and “neutral” mental stress paradigms. Due to the role of traumatic reminders 

(conditioned fear) in PTSD, traumatic stress paired with direct or transcutaneous VNS has 

been studied in animal models and humans. In animal models, direct VNS with cuff 

electrodes has been shown to lead to improvements in fear response and pathological neural 

activity [8,69,70]. Human subject studies reported improvements in vagal tone in patients 

with PTSD through taVNS [71]. Some groups, through subjective scales, have reported 

improvements in fear and worry responses for taVNS for healthy populations [52,72,73], but 

no improvements in high worriers [53]. No changes were observed in physiological indices 

based on HR and HRV for fear and worry studies for taVNS, and pairing the less commonly 

used tcVNS with stress has not been explored. In the current study, we examined the effects 

of tcVNS applied in tandem with acute traumatic and mental stress on autonomic function in 

real time as measured with cardiovascular, peripheral, autonomic, and respiratory changes 

following tcVNS or sham administration with or without acute stress. We previously 

presented preliminary data from the initial participants of the current sample of traumatized 

healthy human participants without PTSD showing that tcVNS modulates autonomic 

responses to stress as measured by systolic time intervals and blood volume pulse [74,75]. In 

this study, we extended our measurements to electrocardiography (ECG), 

seismocardiography (SCG), photoplethysmography (PPG), respiration (RSP), electrodermal 

activity (EDA), and blood pressure (BP) signals, comparing two groups of participants 

receiving either active or sham tcVNS stimuli in conjunction with exposure to the stress of 

personalized traumatic scripts, mental arithmetic, and public speech tasks.

Materials and methods

Human subjects study

The study was performed under a protocol approved by the institutional review boards of 

Emory University (#IRB00091171), Georgia Institute of Technology (#H17126), SPAWAR 

Systems Center Pacific, and the Department of Navy Human Research Protection Program. 

The study took place in Emory University School of Medicine between May 2017 and 

October 2018 (ClinicalTrials.gov # NCT02992899). Participants included healthy adults 

between ages 18–65 with a history of psychological trauma but without current 

posttraumatic stress disorder (PTSD) or other major psychiatric disorder. Participants were 

recruited and provided written, informed consent for participation. Fig. S1 presents the 

Consolidated Standards of Reporting Trials (CONSORT) diagram for the study, and Table 

S1 provides demographic data on the participants. Exclusion criteria were: pregnancy, 

traumatic brain injury (TBI), meningitis, active implanted device, current history of PTSD or 

other major psychiatric disorder including schizophrenia, schizoaffective disorder, bipolar 

disorder, severe major depression, bulimia or anorexia based on Diagnostic and Statistical 

Manual-5 (DSM-5) criteria [76] and the Structured Interview for DSM (SCID) [77], 

evidence or history of serious medical or neurological illness, post-menopausal status, 

positive toxicology screen, and carotid atherosclerosis. The Clinician Administered PTSD 

Scale (CAPS) was administered to evaluate for presence and severity of both possible 

current and lifetime PTSD [78] and participants who met criterion for current PTSD based 
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on the CAPS were excluded. Among 46 individuals who were screened for eligibility, six 

declined to participate and 13 did not meet inclusion criteria. The remaining 27 were 

randomized to active or sham stimulus. Data were not available in three participants due to 

technical problems or withdrawals. This study presents data obtained from 24 participants 

including 12 females. Mean age of the participants was 31 (±9 SD). Sample size was pre-

determined with power analysis. The active group and sham group participants were similar 

in age and sex. The active group participants (n = 12) had a mean age of 29 (±7 SD) and 

included five females; sham group participants (n = 12) had a mean aged of 32 (±11 SD), 

with seven females. SCID was used to evaluate for possible psychiatric diagnosis other than 

the diagnoses in exclusion criteria. In this sample, four (17%) met criteria for past 

depression, one (4%) for past PTSD, two (8%) for generalized anxiety disorder, one (4%) 

for past panic disorder, two (8%) for past alcohol abuse or dependence, and one (4%) for a 

past history of history of drug abuse or dependence.

Study design

Each participant was asked to write their traumatic events; later, personalized voice 

recordings based on these scripts were prepared using methods previously described [79]. 

The protocol consisted of three subsequent days for each participant, Fig. 1 presents the 

details for each day. The first day included six traumatic recall scripts and six neutral scripts 

presented audibly through headphones to participants inside a high-resolution positron 

emission tomography (HR-PET) scanner at 20 °C temperature (Fig. 1A), starting 

approximately at 8AM. All scripts were 60 s in duration. The neutral scripts were designed 

to induce positive feelings to the participant, such as the description of pleasant scenery, 

designed for the imaging part of the study. Traumatic scripts included personalized traumatic 

memories. Stimulation (active or sham) was applied immediately after the termination of the 

personalized traumatic script for 2 min by a research associate. On the same day two 

stimulation administrations (active or sham) were applied without any stressor. The second 

and third days were identical to each other, at 25 °C temperature (Fig. 1B), starting 

approximately at 8:30AM: First, the participants underwent a public speech task for which 

they were required to provide a 2-min long defense statement in a scenario where they were 

accused of theft. After hearing the scenario details, they were given 2 min to prepare their 

defense and 2 min to present their statement. Stimulation was applied immediately after the 

public speech task. Later, the participants rested for 8 min in silence. At the end of the 8 

min, the participants were given another task for which they were required to answer series 

of arithmetic questions for 3 min. A researcher provided negative feedback for incorrect 

answers and delayed response times. A second stimulation was applied immediately after 

the arithmetic task. After two mental stressors and two stimulation administrations, the 

participants were given a 90-min break. After the break, another stimulation was 

administered without any stressor.

Blinding

The participants were randomized into either active tcVNS or sham stimulus groups with an 

online randomizer using simple randomization. The devices were pre-numbered by the 

manufacturer who were not involved in the research, and random allocation was conducted 

by an individual who did not take part in enrollment, data collection or analysis. Enrollment 
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was done by clinical staff. The participants and clinical staff were blinded to the stimulus 

type, and each of the participants received only one type of stimulus. The researchers, who 

were also blinded to the stimulus type, conducted the questionnaire assessments, data 

collection, signal processing, and parameter extraction. Statistical analyses were carried out 

by a biostatistician who did not take part in data collection or processing. Stimulus grouping 

(active or sham) was un-blinded for the interpretation of statistical analysis.

Transcutaneous cervical vagal nerve stimulation

Both active tcVNS and sham stimuli were administered using hand-held devices 

(GammaCore, ElectroCore, Basking Ridge, New Jersey) with identical placement and 

operation. tcVNS or sham was applied using collar electrodes on the left side of the neck. 

The treatment area on the neck was located by finding the pulse on the carotid artery for 

each participant (Fig. 2B). Conductive electrode gel (GammaCore, ElectroCore, Basking 

Ridge, New Jersey) was used to maintain good contact between the skin and the electrodes. 

Active tcVNS devices produce an AC voltage signal consisting of five 5 kHz sine pulses, 

repeating at a rate of 25 Hz. Sham devices produce an AC biphasic voltage signal consisting 

of 0.2 Hz square pulses that delivers a mild buzzing sensation similar to the active device but 

does not result in stimulation of the vagus nerve. Both active and sham device operation 

stops automatically after 120 s. The stimulation intensity was adjustable using a roll switch 

that ranged from 0 to 5a.u. (arbitrary units) with a corresponding peak output ranging from 0 

to 30 V (~0–60 mA) for active tcVNS, and from 0 to 14 V (~0–60 mA) for sham device. 

During each application, the stimulation intensity was increased to the maximum the 

participant could tolerate, without pain. At the start of stimulation, the intensity was 

increased gradually until each participant instructed to stop. The stimulation continued at the 

selected intensity. The amplitude levels participants received were 18 V (±4.8 SD) for active 

tcVNS, and 12.6 V (±2.8 SD) for sham stimulus.

Physiological monitoring

Physiological data were collected by the measurement of the following signals: 3-lead 

electrocardiography (ECG), respiration (RSP), seismocardiography (SCG), 

photoplethysmography (PPG), electrodermal activity (EDA), and blood pressure (BP). Fig. 

2A shows the test setup employed for each participant. The ECG, RSP, PPG, and EDA 

signals were measured using wireless Bionomadix RSPEC-R and PPGED-R amplifiers 

(Biopac Systems, Goleta, CA). Adhesive Ag/AgCl electrodes were used for ECG recording. 

A respiration belt was used to measure thoracic expansion and contraction while breathing 

in order to measure RSP signal. For SCG measurement, a low-noise 356A32 accelerometer 

was used on the mid sternum (PCB Electronics, Depew, NY). Only the SCG signals in the 

dorsoventral direction were used in this study. Transmissive PPG measurement was taken 

from the index finger. EDA measurement was taken from the same hand where the PPG 

measurement was taken, using the inner palm. An isotonic electrode gel (GEL101, Biopac 

Systems, Goleta, CA) and pre-gelled isotonic electrodes (EL507, Biopac Systems, Goleta, 

CA) were used for EDA recording. All data were transmitted to the Biopac MP150 16-bit 

data acquisition system at a sampling rate of 2 kHz. Non-continuous systolic (SBP) and 

diastolic blood pressure (DBP) values were recorded periodically with an Omron blood 

pressure cuff during the rest, all stressors, and stimulation administrations.
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Signal processing & parameter extraction

The signal processing and parameter extraction were carried out in MATLAB (R2017b, 

Natick, MA). The following parameters were extracted: heart rate (HR), pre-ejection period 

(PEP), amplitude of PPG, pulse arrival time (PATFOOT, PATPEAK), respiration rate (RR), 

width (RW), respiration prominence (RP), low frequency and high frequency heart rate 

variability (LF HRV, HF HRV), skin conductance level [80], skin conductance response [81], 

frequency of non-specific skin conductance responses (fNSSCR), and latency of skin 

conductance response (LSCR).

Pre-Processing: Fig. 2C shows sections from collected physiological signals from a 

participant and the parameters computed from these signals. The ECG, SCG and PPG 

signals were filtered with finite impulse response [77] band-pass filters, with cut-off 

frequencies 0.6–40 Hz for ECG, 0.6–25 Hz for SCG, and 0.4–8 Hz for PPG, respectively, to 

preserve the waveform shape and cancel the noise outside their bandwidths [82,83]. The 

phasic component of EDA (for computing the parameters related to skin conductance 

response) was obtained using an FIR 0.15 Hz equiripple high-pass filter. The slowly varying 

RSP signal was used as is, as the module applies 10 Hz low-pass filter internally. The R-

peaks of the ECG signals were detected using thresholding, and were used to calculate HR, 

HRV. SCG and PPG signals were ensemble averaged according to the R-peaks, using beat 

lengths of 150 ms for SCG and 600 ms for PPG. These lengths were sufficient to detect the 

fiducial points of each SCG and PPG beats. To reduce the effects of motion artifacts on the 

individually segmented beats, exponentially weighted moving ensemble averaging of 

successive beats was implemented for some parameters described below [82]. Exponentially 

decreasing weighting gives more emphasis to the more recent beats, while still providing 

noise reduction based on the averaging. Additional beat exclusion criteria were checked 

inside the algorithms, such as the identification of unrealistic timing intervals or unexpected 

morphology that may be caused by motion artifacts or momentary noise on the signal. For 

each parameter extraction, the beats were monitored to ensure that the time points were 

located correctly and the beats had acceptable morphology. The reader is referred to Fig. S2 

for sample step-by-step PPG amplitude extraction from ECG and PPG signals. Similar 

ensemble averaging and feature extraction to extract amplitude and timing intervals were 

used for all continuous beat-by-beat signals.

Pre-Ejection Period: PEP, measured by the latency between the start of electrical 

depolarization of the ventricles to the opening of the aortic valve, is a non-invasive measure 

of cardiac contractility and cardiac sympathetic activity [84]. PEP provides limited insight 

on its own regarding baseline sympathetic tone or contractile state of the heart – two people 

with the same level of contractility may have different baseline PEP values due to 

differences in preload and afterload, which also impact the time it takes for the heart to 

proceed through isovolumetric contraction to systolic ejection of blood. However, changes in 

PEP have been associated with changes in contractility, specifically with a decrease in PEP 

indicating an increase in contractility. The increase in contractility leads to an increase in the 

maximal derivative of left ventricular pressure during isovolumetric contraction (i.e., dP/

dtmax), and thus leads to a shortened PEP. In this work, we are examining the acute changes 

in PEP either associated with a stressor (e.g., traumatic stress) or tcVNS, or both, and thus 
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are using PEP as an indicator of acute changes in cardiac contractility and thus sympathetic 

tone. The SCG signal provides high quality PEP estimation when combined with the ECG, 

computed by the time difference between the R-peak of the ECG to the second peak in SCG 

beat (aortic opening, AO point), known as R-Ao [57]. R-Ao values were computed following 

a three-beat exponential moving averaging procedure for noise reduction.

PPG Amplitude and Pulse Arrival Times: The PPG signal is known to be affected by 

sympathetic and vasomotor activity [83], therefore different parameters were extracted using 

this signal. Firstly, as a measure of peripheral sympathetic activity and vasomotor activity at 

the area of signal collection (index finger), the amplitude of each PPG beat was extracted. 

Secondly, pulse arrival time (PAT), representing the time delay from the electrical 

depolarization of the heart to the arrival of the pressure wave to the index finger was 

calculated from two reference points [85]. The first reference point was the foot of PPG 

signal, which was located by finding the maximum of the second derivative of the pulse 

wave before the maxima (PATFOOT). The second reference point was the peak (maxima) of 

the PPG signal (PATPEAK). A time constant of five beats was used for both PATFOOT and 

PATPEAK calculation.

Respiratory Measures: The respiratory parameters extracted were respiratory rate (RR), 

respiration width (RW), and respiration prominence (RP). Due to the loosening of the 

respiration belt over time while the participant was inside the PET scanner, the respiration 

signal occasionally had a DC offset. To remove this offset, a sixth order polynomial was fit 

to the signal in each interval (i.e. rest or stress), and the signal was detrended. From the 

detrended signal, the peaks representing inhalation and exhalation were located using 

thresholding. The rate of the peak appearance was extracted as RR. RR was considered as a 

continuous index of parasympathetic activity [86]. For RW, the width of each peak was 

computed as the distance between the points to the left and right of the peak, where the 

descending signal intercepts a horizontal reference line. The reference line was positioned 

beneath the peak at a vertical distance equal to half the peak prominence. The points 

themselves were found by linear interpolation. RP measured the prominence of a peak, i.e. 

how much the peak stands out due to its intrinsic height and its location relative to other 

peaks. It was calculated as the minimum vertical distance that the signal descends on either 

side of the peak before either climbing back to a level higher than the peak or reaching an 

endpoint.

Heart Rate Variability Measures: Two techniques were used to extract multiple HRV 

measures: Frequency-domain analysis and joint time-frequency analysis (Poincaré method). 

The first method, frequency-domain HRV, is the most commonly studied method for 

quantifying the sympathetic and parasympathetic branches of the autonomic nervous system, 

obtained from the non-constant R-R intervals from ECG R-peaks [87]. While the power in 

the high-frequency range (HF HRV, 0.15–0.4 Hz) is considered a measure of 

parasympathetic activity for humans, the low-frequency portion (LF HRV, 0.04–0.15 Hz) is 

mostly used for assessing the changes related to both sympathetic and parasympathetic 

influences [87]. The ratio of the two power bands (LF/HF) is often considered as a measure 

of sympathetic tone, while there are discrepancies in the literature [86,88]. For the second 
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HRV analysis (Poincaré method), three standard indices were computed from the scatter plot 

of each R-R interval (R-Rn) versus the next R-R interval (R-Rn+1). In this procedure, an 

ellipse is fitted to the line-of-identity of the scatter plot (R-Rn versus R-Rn+1). Three indices 

were extracted from the fitted ellipse: standard deviation of points perpendicular to the axis 

of line-of-identity (SD1), standard deviation of points along the axis of line-of-identity 

(SD2), and their ratio (SD1/SD2). SD1 measures short-term HRV which correlates with 

baroreflex sensitivity (BRS, change in the inter-beat interval duration per unit change in BP) 

and HF HRV. SD2 measures short- and long-term HRV and correlates with BRS and LF 

HRV. The ratio SD1/SD2 (the unpredictability of R-R intervals) is an indicator of the 

autonomic balance [89,90]. For both frequency-domain HRV and Poincaré analyses, ECG 

signals from the start and end of the days (longer than 5 min), ECG signals during stress 

(one to 3 min), stimulation (2 min), and post-stimulation (two to 8 min) were used. For each 

interval, the ECG signal was inspected visually to avoid ectopic, noisy beats and 

arrhythmias.

Despite the wide use of these HRV indices, there is still ambiguity in the research 

community emerging from the lack of clear documentation, validation, and standardization 

of different HRV signal processing methods. Here for HRV analysis, we used a MATLAB-

based open source HRV toolbox that was previously validated with a variety of HRV 

measurement techniques and platforms to calculate LF HRV, HF HRV, LF/HF HRV, SD1, 

SD2, SD1/SD2 [91].

Electrodermal Activity Measures: The EDA signal is composed of two main 

components. The slow tonic component (skin conductance level, SCL) shows the general 

trend of the signal. The faster tonic component (skin conductance response, SCR) is 

superimposed onto the tonic component. Electrodermal activity parameters extracted were 

SCL, SCL slope, SCR, frequency of non-specific skin conductance responses (fNSSCR), and 

latency of skin conductance response (LSCR) [92]. For SCL, the DC level of EDA signal was 

extracted and the mean, minimum, maximum, standard deviation, slope of the first order 

polynomial fit (SCL slope), and area under curve properties were derived. SCR was 

analyzed in a similar manner to SCL. The peaks in SCR were located by thresholding, and 

the number of peaks per interval was computed to calculate fNSSCR, excluding the first peak 

in the signal which corresponds to a specific event (i.e. stress start instance). For LSCR, the 

latency from the start of the interval to the first peak appearance was calculated. The 

determination of the minimum peak amplitude was required to define the response 

occurrence. Although a minimum of 0.05 μS is common with hand scoring of SCR 

responses, this threshold is largely task- and subject-specific, and can be as low as 0.01 μS 

[92]. We determined the minimum peak amplitude to be two times the rest SCR mean 

amplitude for each participant, resulting in a mean of 0.06 ± 0.03μs for this study.

Statistical analysis

We compared participant characteristics between active and sham group using student t-tests 

(for normal continuous variables), Wilcoxon rank-sum tests (for non-normal continuous 

variables), and chi-squared tests (for categorical variables), as shown in Table S2. To 

understand the relative changes in the physiological parameters, data were separated into 
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intervals reflecting the baseline of the corresponding day, stress, stimulation (active or 

sham), and post stimulation. Absolute and percent changes from the baseline state for each 

interval were computed and compared between-group differences across the intervals. For 

physiological parameter intervals (except HRV), data from 1 min of baseline rest, first 30 s 

of stress, last minute of stimulation, and 1 min from post-stimulation (3 min after the 

stimulation stops) were used. For speech and mental arithmetic tasks which corrupt the 

respiration waveform due to vocalization, the respiration beats just before the subjects start 

speaking were extracted as respiratory data during these stressors. These intervals 

correspond to the end of speech preparation (just before the subject starts speaking after 2-

min preparation), and the interval just after the subjects heard the first mental arithmetic 

question (before answering). For non-continuous BP analyses, similarly SBP, DBP, PP 

values measured during baseline, stress, stimulation, and post-stimulation were used. Longer 

intervals for HRV measures were used to comply with the standards. The extracted 

parameters were evaluated with respect to the corresponding baseline values for each day, 

either as a ratio with baseline (percent changes) or subtraction from the baseline (absolute 

changes), for each interval. HRV indices were also evaluated as raw values for each interval. 

Data in bar plots were represented as mean ± 95% confidence interval, CI plotted from the 

raw unadjusted values. To evaluate if device type (active vs. sham) was associated with 

changes in parameters from the baseline value, we used mixed models with repeated 

measures that included random effect for each participant using unstructured correlation 

matrix (i.e., multiple traumatic scripts from the first day, two stimulations without acute 

stress on the first day, two stimulations without acute stress after a 90-min break on the 

second and third days, two stimulations followed by two public speech or two mental 

arithmetic tasks), and adjusted for age in the models. In a sensitivity analysis, we also tested 

the significance of the interaction between device type and time variable. Statistical analyses 

on both percent and absolute changes were carried out in all the models. The beta 

coefficients (β) from the mixed models indicate the adjusted average percent or absolute 

differences in the changes of parameters from the corresponding rest values, comparing 

active vs. sham device types. β were reported along with 95% CI and P-values in results and 

figure captions. A two-sided p < 0.05 denoted statistical significance. All statistical analyses 

were performed using SAS 9.4 (SAS Institute, Cary, NC) and MATLAB (R2017b, Natick, 

MA).

Results

tcVNS has a similar effect on SNS activity both in the presence and absence of stress

To understand the physiological changes induced only by active or sham stimulation, the 

protocol included two stimulation administrations in the absence of traumatic scripts or 

mental stress (mental arithmetic and public speech) tasks, after a 90-min break from the 

mental stress protocol on the second and third days (Fig. 3 shows the data from the 

unadjusted raw changes from the baseline state during stimulation and post-stimulation 

intervals, results were expressed as mean values, 95% confidence intervals, p-values 

obtained after adjustments). Stimulation without stress tasks resulted in differences in 

physiological biomarkers associated with sympathetic tone: PPG amplitude (Fig. 3A, 

measurement of peripheral vasoconstriction, inversely related to peripheral sympathetic 
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activity) increased (indicating relative vasodilation and decreased sympathetic activity) 

during stimulation by 78.6% (95% CI, 0.5–156.7%, p = 0.049), and following stimulation by 

95% (15.7–174.2%, p = 0.021) after adjustments in the active tcVNS group relative to the 

sham group. The pre-ejection period (PEP, Fig. 3B, inversely related to cardiac sympathetic 

activity) increased following stimulation by 3.3 ms (0.2–6.3 ms, p = 0.035) after adjustments 

in the active group compared to the sham group, indicating a decrease in cardiac 

contractility and sympathetic activity. Electrodermal activity slope (SCL slope, Fig. 3C, 

related to sympathetic activity) decreased during post-stimulation by −0.013 μS/s (−0.024 to 

−0.003 μS/s, p = 0.014) after adjustments in the active tcVNS group relative to the sham 

group.

tcVNS modulates autonomic tone following exposure to personalized traumatic scripts

Stimulation following exposure to personalized traumatic scripts revealed marked changes in 

autonomic reactivity between the active and sham groups. Fig. 4A–C illustrates changes in 

physiological parameters from the baseline state for the three intervals: traumatic stress, 

stimulation, and post-stimulation, data shown from unadjusted raw values. There were no 

significant differences in peripheral vasoconstriction measured by PPG amplitude during 

traumatic scripts between groups. There was an increase in PPG amplitude (indicating 

relative vasodilation and decreased peripheral sympathetic activity) during stimulation 

delivered immediately at the termination of traumatic scripts which persisted after the end of 

stimulation in the active versus the sham group. PPG amplitude was 43.7% higher (3.1%–

84.3%, p = 0.036, Fig. 4A) during active versus sham stimulation and 47.9% higher (1.4%–

94.5%, p = 0.044) in the post-stimulation interval after adjustments. As for PEP, there were 

no significant differences in PEP during traumatic scripts and during stimulation between 

groups. In the post-stimulation interval, an increase in PEP (indicating decreased cardiac 

sympathetic activity) was observed in the active versus sham group with an adjusted 

difference of 4.2 ms (1.6–6.8 ms, p = 0.003, Fig. 4B). Respiratory rate (RR) was similar 

between tcVNS and sham groups during traumatic scripts and stimulation, with an adjusted 

decrease in the active group relative to sham of −9% (−14.3% to −3.7%, p = 0.002, Fig. 4C) 

during post-stimulation indicating a release of parasympathetic activity.

Effects of tcVNS on PPG amplitude and respiration rate following mental stress

There were no statistically significant differences during the public speech task between the 

active and sham groups in PPG amplitude, RR, respiration prominence (RP), SCL slope 

(Fig. 5A–C, F). PPG amplitude increased during post-stimulation in the active group 

compared to sham by 61.3% (17.3%–105.3%, p = 0.009, Fig. 5A) after adjustments. RR 

decreased in the post-stimulation in active versus sham by an adjusted difference of −11.3% 

(−20.3% to −2.3%, p = 0.017, Fig. 5B). RP decreased during stimulation in active versus 

sham by −25.4% (−47.9% to −3%, p = 0.028, Fig. 5C) after adjustments. Lastly, SCL slope 

decreased during stimulation in active versus sham by −0.014 μS/s (−0.026 to −0.001 μS/s, p 

= 0.027, Fig. 5F) after adjustments.

Similar to public speech, there were no difference between active and sham groups during 

the mental arithmetic stress task in PPG amplitude or RR. Active stimulation relative to 

sham resulted in an adjusted increase in PPG amplitude of 95.8% (32.3%–159.2%, p = 
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0.005), with a post-stimulation adjusted increase of 70.4% (30.8%–110%, p = 0.001) (Fig. 

5D). Following active tcVNS there was a decrease in RR of −14.6% (−24.8% to −4.3%, p = 

0.007, Fig. 5E) after adjustments. Increased PPG following mental stress tasks and tcVNS 

indicates decreased peripheral sympathetic activity while decreased RR suggests a decrease 

in parasympathetic withdrawal. As for the two administrations without acute stress on the 

first day, PEP in active group compared to sham increased by 7.2 ms (p = 0.027) after 

adjustments following stimulation. There were no other marked differences in heart rate 

(HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), 

respiration width (RW), low-frequency heart rate variability (LF HRV), or high-frequency 

HRV, low-to-high HRV ratio (LF/HF), SD1, SD2, SD1/SD2, pulse arrival time (PAT), other 

parameters related to electrodermal activity, such as skin conductance level (SCL), 

frequency of non-specific skin conductance responses (fNSSCR), and latency of skin 

conductance response (LSCR) that could distinguish active tcVNS and sham stimulation.

Discussion

This study demonstrated the feasibility and utility of quantification of cardiovascular and 

peripheral autonomic nervous system function using wearable sensing devices in 

conjunction with administration of tcVNS and a sham control and stressful tasks. tcVNS 

minimized sympathetic activation and/or withdrawal of parasympathetic tone following 

exposure to stress based on a range of physiological parameters. This was observed for 

different kinds of stressors, including exposure to recordings of personalized traumatic 

memory scripts, and “neutral” or “mental stress” tasks including mental arithmetic and 

public speech stress tasks. The findings suggest that wearable sensing devices could be used 

as real-time non-invasive physiological biomarkers of tcVNS to predict treatment efficacy 

and/or provide empirical evidence of proper tcVNS administration.

tcVNS shows effects in multiple physiological biomarkers

Active tcVNS compared to the sham group resulted in a decrease in peripheral and cardiac 

sympathetic activation for tcVNS alone as measured by increased PPG amplitude, increased 

PEP, and decreased SCL slope. There was also a reduction in peripheral sympathetic 

activation with tcVNS applied after both traumatic script and mental stress tasks as 

measured by increased PPG amplitude, and decreased cardiac sympathetic activation after 

traumatic scripts (but not mental stress) based on increased PEP. In a complementary 

manner, tcVNS resulted in reduced parasympathetic withdrawal after both traumatic scripts 

and mental stress tasks based on reduced RR. tcVNS also decreased SCL slope when 

followed by public speech task (but not arithmetic or traumatic stress). The use of various 

stressors revealed task-specific changes in autonomic nervous system activity: while an 

increase in PEP was observed for tcVNS when applied following a traumatic stressor, an 

increase in PEP was not observed upon stimulation for mental stressors. Similarly, reduction 

in SCL slope was observed for stimulation without acute stress and stimulation following 

public speech only. On the other hand, tcVNS resulted in increases in PPG amplitude and 

decreases in RR when applied after both traumatic script and mental stress tasks. Thus, there 

is not a single biomarker of tcVNS, rather its efficacy could be revealed from signals that are 

related to different pathways of autonomic reactivity to different types of stressors.
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Changes in PPG-amplitude versus lack of changes in blood pressure

Increased PPG amplitude with tcVNS was one of the most consistent results across the 

various stressful tasks in this study. However, a myriad of factors is involved in affecting the 

amplitude of PPG signals, and thus associating changes in PPG amplitude changes with a 

particular underlying physiological origin is not straightforward. To the first order, the two 

main factors influencing PPG amplitude are pulse pressure and arterial compliance [93]. 

Thus, it is important to note that in this study we did not observe differences between the 

active tcVNS and sham groups in systolic, diastolic blood pressure, and pulse pressure for 

any of the intervals – this indicates that the changes in PPG amplitude that were significant, 

and quite substantial, were linked to local changes in arterial tone associated with 

vasoconstriction and vasodilation. Accordingly, the effects of tcVNS on PPG amplitude may 

be attributed to sympathetic regulation of vascular tone.

No effects of tcVNS on heart rate (HR) or heart rate variability (HRV)

The current study did not find differences between the active tcVNS and sham groups in 

ECG-based measurements of heart rate (HR) or heart rate variability (HRV) either for short 

intervals during and after stimulation, or for whole day measurements. HRV is commonly 

used as a proxy measure for peripheral autonomic function [87]. HRV measures have 

limitations, however, in terms of specificity and validity of assessment of specific aspects of 

sympathetic and parasympathetic autonomic activity [94]. Frequency-domain based HRV 

measures are convenient to measure, provided that the recording is long enough (at least 3–5 

min) without ectopic and noisy beats. However, there has long been a debate about the 

relative contribution of sympathetic and parasympathetic activity to LF HRV, and there is 

general agreement that it is not a specific measure of sympathetic activity alone [86,95,96]. 

HR is also not specific, since changes in HR might reflect either an increase in SNS or 

decrease in PNS. HR carries information solely on the electrical activity, while PEP 

(controlled by the contractile force in the heart) incorporates information on 

electromechanical coupling of the heart [97–99]. Our findings suggest that tcVNS has 

specific effects on sympathetic and parasympathetic function distinct from other 

cardiovascular parameters as shown by specific effects on PEP, RR, PPG amplitude, and 

SCL slope, but not on HR, HRV, or EDA measures other than the slope. The HR 

measurements are not significantly different between active and sham groups for any of the 

intervals analyzed (Fig. S3). The changes in PEP thus provide more information than 

changes in HR alone. Our findings are also consistent with studies observing no HRV or 

EDA changes (SCR) following auricular VNS in combination with subjectively measured 

fear and anxiety [52,72,73]. A recent study on the effects of tcVNS with a noxious stressor 

(thermal stimuli) reported difference in EDA-related changes in active and sham group, 

specifically in SCL slope and latency of SCR (LSCR) [100]. Our analysis has shown 

difference for SCL slope, but not for latency of SCR.

Use of seismocardiography (SCG) in the assessment of effects of tcVNS on peripheral 
autonomic function

The current study found PEP, a measure of sympathetic activity, to be useful in the 

assessment of the effects of tcVNS on autonomic function. PEP has been studied as a 
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measure of cardiac sympathetic activity (or cardiac contractility), along with comparisons 

with HRV, EDA, and plasma catecholamines [84,97–99,101–103]. However, PEP is used 

less commonly in practice in clinical studies due to the need for multiple electrodes and the 

addition of another sensing modality (impedance cardiography or ICG) along with ECG. We 

observed in our study that tcVNS administration creates electrical stimulation artifacts on 

ICG signal as the stimulation bandwidth and ICG signal bandwidth coincide with each other 

(Fig. S4, SCG versus ICG during tcVNS), hiding the fiducial point to extract the PEP 

(known as B-point, representing the opening of aortic valve) [84]. SCG is a viable option to 

calculate PEP in clinical studies that use tcVNS as it is a mechanical signal reflecting the 

chest-wall vibrations of the heart, hence the electrical stimulation does not affect the 

waveform shape. Beat-by-beat analysis during the treatment is possible with SCG-derived 

PEP. SCG also does not require electrodes, unlike ICG. tcVNS in the current study induced 

robust changes in PEP with or without stress, and across of a broad range of different 

stressful tasks.

Translation to populations afflicted with maladaptive autonomic regulation

Patients with PTSD suffer from recurrent and intrusive thoughts about traumatic events. Our 

results regarding the use of tcVNS in tandem with traumatic stress motivate possible 

translation to PTSD populations, in the clinic or at-home, as an acute treatment for these 

recurrent memories [60]. However, these results, which focus on the physiological 

biomarkers of tcVNS for individuals with prior psychological trauma, do not yet address the 

question of how the population with maladaptive autonomic regulation (i.e. patients with 

PTSD) would respond to tcVNS treatment. Nevertheless, it is known that individuals with 

PTSD have abnormal oscillations in autonomic state and show hyperarousal after recalling 

traumatic memories supporting either elevated sympathetic activity or withdrawal, as 

observed by physiological signals [104], brain imaging [62], or serum biomarkers [105]. 

PTSD patients suffer from exaggerated responsivity to reminders of traumatic memories, 

and the changes induced by tcVNS observed in traumatized persons without PTSD may 

potentially be observed in this population as well. Our findings on tcVNS hold promise for 

PTSD as there is preclinical evidence for direct VNS to enhance he extinction of conditioned 

fear [8,69,70], and clinical evidence for taVNS to improve vagal tone in patients with PTSD 

[71], though with different stimulation targets, direct VNS and auricular VNS, respectively.

Limitations

The following limitations should be noted for this study. Prior animal studies initiated direct 

VNS or sham before the initiation of the fear-related stimulus [8,32]. Other studies in human 

subjects initiated taVNS or sham before or during the stimuli [52,71,73]. Therefore, 

stimulation prior to stress and concurrently with stress appear to improve the pathological 

response based on previous studies. This study employs a reactive acute treatment approach 

as stimulation administrations were applied right after the stressors ended. Subjects were 

instructed, however, to form an image from the traumatic scripts in their mind and hold it, 

and stimulation was applied immediately at the end of the script. Our prior experience with 

traumatized subjects including those with PTSD demonstrated that upsettedness typically 

continues after the termination of the script, stress- or fear-related task [63,106]. Therefore, 

we believe that the stimulation was applied at the peak of the behavioral effects of the task. 
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Future studies should investigate the effects of preemptive versus reactive stimulation in the 

context of traumatic stress.

Due to the clinical nature of this study, the target engagement of the cervical vagus nerve 

could not be validated directly. This study relies on previous literature that reported the 

ability to reach the vagal afferents using tcVNS [46,47]. We replicated the stimulation 

application reported in Ref. [46] throughout the protocol, by locating the carotid artery as an 

anatomical reference. Although variation exists regarding the location and topographical 

anatomy of the cervical vagus nerve, a recent cadaveric study reports that cervical vagus 

nerve can be visualized in a 35 × 35 mm distance lateral of the laryngeal eminence and 

posterior to the skin of the neck, which typically falls under the area the electrodes are 

placed [107].

A natural restriction of this study is the possibility of therapeutic effects from traumatic 

exposure (traumatic stress rehearsal) [108]. Fig. 4 combines data from all six traumatic 

stress scripts per subject, showing increases only in RR during traumatic stress. To show 

how the subjects respond to traumatic stress initially, we also analyzed only the first 

traumatic script responses for the primary outcome variables, excluding all other repetitions, 

for each subject (see Fig. S5). It is seen that HR and RR increase, PPG amplitude decreases 

during traumatic stress. The lower stress reactivity in Fig. 4 might be due to the therapeutic 

effects of the repetitions as the data were merged from six traumatic scripts per subject 

(repetition numbers were included in our statistical analyses). Nevertheless, as our study 

focuses on tcVNS effects on stress, our main consideration was whether the active and sham 

groups received comparable amounts of stress. We did not observe significant differences in 

stress responses, which was an essential requirement to evaluate the effects of tcVNS on the 

recovery from stress. Therefore, although repeated exposure might change stress reactivity 

over the time, the reactivity remained similar between the active and sham groups, which 

facilitated comparison of the effects of active and sham stimulation.

The functional relevance of the PPG amplitude results could be attributed to changes in total 

peripheral resistance (TPR) or pulse pressure (PP), however there is no direct linear 

correlation to either. The PPG signal is an optical measurement, the amplitude of which is 

determined by the Modified Beer-Lambert Law [93]. PPG amplitude reflects the expansion 

and contraction of the vessel diameters in the region (index finger) being illuminated by the 

light source. This expansion and contraction of vessel diameter is proportional to both PP 

and arterial compliance. Compliance is the change in a vessel’s volume for a given change in 

PP. Thus, while directional relationships between PPG amplitude changes and TPR can be 

quite informative, the attribution of a given change in amplitude to a particular change in 

TPR is complex. Nevertheless, the study did not find remarkable differences in non-

continuous BP measures (SBP, DBP, PP) or pulse arrival time (PAT). This is an interesting 

result considering the relationship of PPG and BP waveforms [56,83]. PPG measurements 

(hence the extracted PPG amplitude and PAT) were continuous, and thus beat-by-beat 

assessment was feasible —a desirable measurement for the acute characteristics of this 

study. BP measurements were taken through a blood pressure cuff, and hence BP changes at 

beat-by-beat level could not be assessed. Future studies should examine whether continuous 

BP is affected by tcVNS.
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While assessing the mental stress reactivity to tcVNS, it is important to clarify that the active 

and sham groups reacted similarly to mental stressors, which permits the comparison of 

stress response upon stimulation between the groups. The public speech task is a version of 

Trier Social Stress Test [109]. Traumatic stress protocol, public speech, and mental 

arithmetic tasks have been verified multiple times to induce significant psychobiological and 

cardiovascular responses on human subjects [62,110–112]. In this study, similar responsivity 

between the groups were seen in the measures analyzed during the stressors. The groups 

showed no significant difference during stress intervals in any of the cardiovascular, 

peripheral, electrodermal activity measures.

Conclusion

In summary, our investigation demonstrates that tcVNS has effects on peripheral autonomic 

function that can be feasibly and reliably measured with wearable sensing devices. 

Specifically, tcVNS both in isolation and following exposure to stress reduces sympathetic 

and enhances parasympathetic function, leading to a modulation in autonomic tone. These 

physiological biomarkers may be useful for long-term monitoring of tcVNS in the home 

setting to assess adherence and accuracy of neuromodulation treatments and to provide 

subject-specific dosage recommendations for tcVNS therapy. tcVNS also minimizes 

sympathetic activation in response to stress, which suggests that it may have clinical 

applications to stress-related psychiatric disorders characterized by increased sympathetic 

activity that is correlated with symptoms of these disorders [113–118]. The fact that tcVNS 

reduces or blocks sympathetic arousal associated with exposure to personalized traumatic 

scripts suggests a clinical application to patients with PTSD in the context of modulation of 

indelible traumatic memories and possible enhancement of neuroplasticity and/or facilitating 

extinction of conditioned responses to reminders, which were previously studied in 

preclinical literature through direct VNS with implantable devices [8,32,69,70,119,120]. 

Although not assessed in the current study, emerging findings of the beneficial effects of 

direct VNS on cognition and memory suggest other possible benefits of tcVNS for patients 

with stress-related psychiatric disorders [121]. tcVNS could have a potentially broad impact 

in the domains of human performance and mood improvement, and wearable sensing 

devices can be used to quantify the stimulation. This could be applicable to other clinical 

and neuroscience research environments and in general wearable bioelectronic medicine, for 

patients with or without psychiatric disorders or other medical conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Protocol description. (A) The first day included traumatic stress through headphones. After 

each traumatic stress prompt, stimulation (active or sham) was applied immediately. (B) 
Second and third days included two types of mental stress, public speech and mental 

arithmetic. After each stressor, stimulation was applied immediately. After a 90-min break 

from the mental stress protocol, participants received tcVNS or sham without acute stress.
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Fig. 2. 
Data collection and signal processing summary. (A) Non-invasive sensing modalities shown 

on participant, active or sham stimulation was applied from left neck. (B) Representation of 

relative locations of left carotid arteries and left vagus nerve. tcVNS electrodes were placed 

onto the area where the carotid pulsation was located. (C) Signal processing and feature 

extraction summary.
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Fig. 3. 
Primary outcomes from physiological signal analyses for stimulation without acute stress 

from the second and third protocol days. Bars represent the unadjusted mean changes from 

baseline, error bars: 95% CI, values calculated from raw data, * indicates p < 0.05. (A) 
Active tcVNS group experienced an increase in PPG amplitude during stimulation (p = 

0.049) and post-stimulation (p = 0.021) compared to the sham group. (B) Active tcVNS 

group experienced an increase in pre-ejection period during the post-stimulation interval (p 

= 0.035) compared to the sham group. (C) Active tcVNS group experienced a decrease in 

SCL slope during the post-stimulation interval (p = 0.014) compared to the sham group.
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Fig. 4. 
Primary outcomes from physiological signal analyses for stimulation following traumatic 

stress. Bars represent the unadjusted mean changes from baseline, error bars: 95% CI, values 

calculated from raw data, * indicates p < 0.05. (A) The active tcVNS group experienced a 

greater increase compared to sham in PPG amplitude during stimulation (p = 0.036) and 

post-stimulation (p = 0.044). (B) The active tcVNS group experienced an increase in pre-

ejection period during post-stimulation (p = 0.003) compared to sham. (C) Sham group 

experienced increase in respiratory rate (RR) during post-stimulation (p = 0.002).
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Fig. 5. 
Primary outcomes from physiological signal analyses for stimulation following two types of 

mental stress, public speech and mental arithmetic. Bars represent the unadjusted mean 

changes from baseline, error bars: 95% CI, values calculated from raw data, * indicates p < 

0.05. (A) Increase in PPG amplitude for active group during post-stimulation (p = 0.009). 

(B) Decrease in respiratory rate (RR) for active group during post-stimulation (p = 0.017). 

(C) Decrease in respiration prominence (RP) for active group during stimulation (p = 0.028). 

(D) Similar to (A), active group shows a consistent recovery in PPG amplitude during 
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stimulation (p = 0.005) and post-stimulation (p = 0.001). (E) Decrease in RR during post-

stimulation for active group (p = 0.007). (F) Decrease in SCL slope for speech task during 

stimulation for active group (p = 0.027).
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