
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Re
vi
ew

s
� P

O
ST

SC
R
EE

N

Drug Discovery Today �Volume 26, Number 5 �May 2021 REVIEWS

SARS–CoV-2-mediated
hyperferritinemia and cardiac arrest:
preliminary insights
Prakash VasanthiDharmalingam1, Vengadeshprabhu Karuppagounder2,
Kenichi Watanabe3, Harry Karmouty-Quintana4, Suresh S. Palaniyandi5,
Ashrith Guha6 and Rajarajan A. Thandavarayan6

1Clone Gene Biosystems, Chennai, 600 018 Tamil Nadu, India
2Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, 17033 PA,
USA
3Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical
and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8510, Japan
4Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
5Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI 48202, USA
6Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Houston, TX 77030, USA

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV-2), a pandemic that began in China, was

first noted in December 2019. SARS–CoV-2 infects through the angiotensin-converting enzyme-2 (ACE-2)

receptor and co-receptors. In the most severely affected patients, it can cause pneumonia and multiple

organ failure leading to death. Reports describe high death rates resulting from cardiac dysfunction, a

co-morbid condition in SARS–CoV-2 patients, while the primary cause and mechanisms remain

unknown. Here, we attempt to review clinical reports of SARS–CoV-2 patients in order to provide insight

into a possible mechanism that allows hyperferritinemia (the presence of excess iron-binding protein) to

cause cardiac dysfunction in SARS–CoV-2 patients. Such insights are an important avenue towards

understanding the mechanism of cardiac dysfunction in SARS–CoV-2 patients and developing remedies

for the same.
Introduction
The global pandemic of severe acute respiratory syndrome coro-

navirus 2 (SARS–CoV-2), the virus that causes corona virus disease

(COVID-19), has imposed a serious threat to humans globally.

Although it has caused mortality among all age groups [1], people

over the age of 50 are more vulnerable. COVID-19 was first

reported from a patient with symptoms of pneumonia in Wuhan,

China in December of 2019 [2]. The zoonosis of COVID-19 was

reported to have involved gene fusion between viruses infecting

bats and snakes of wild origin, and the genome sequence of the

virus in humans exhibits 96% identity to bat SARS-like corona
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virus [2]. Despite its zoonotic origin, SARS–CoV-2 is highly conta-

gious in humans. COVID-19 patients exhibit clinical symptoms

such as mild to severe pneumonia, acute respiratory distress syn-

drome (ARDS), acute cardiac dysfunction, renal injury and septic

shock, sometimes causing death [3].

SARS–CoV-2 is a positive single-stranded enveloped RNA virus

belonging to the b genus of coronaviruses (betaCoV) [4]. SARS-

CoV-2 uses the transmembrane angiotensin-converting enzyme-2

(ACE-2) receptors that are expressed in cardiac tissues, blood

vessels, gut, lung (particularly in type 2 pneumocytes and macro-

phages), kidney, testis and brain to infect host cells. Although

SARS-CoV-2 infection is correlated with ACE-2 expression in in

vitro analysis [5], the relationship between ACE-2 expression levels

and susceptibly to SARS-CoV-2 infection and the mechanisms
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underlying multi-organ dysfunction remains unknown. Although

other coronaviruses are known to cause multi-organ failure in

hosts such as camels, cattle, cats and bats [6], the complications

mediated by SARS-CoV-2 in humans hinder existing remedial

measures [7–9]. In this review, we discuss preliminary insights

into COVID-19- and iron-mediated acute cardiac injury, using

data obtained from recent published clinical reports that may

be useful in developing potential remedies.

Cardiac arrest in COVID-19 patients
It is hypothesized that SARS–CoV-2 mediates cardiac cell injury or

inflammation through various mechanisms, including (i) supra-

physiological immune inflammatory response and cytokine storm

[10], (ii) direct viral invasion into cardiomyocytes, and (iii) oxida-

tive stress and myocardial injury resulting from hypoxia or lung

injury, and probably from reduced hemoglobin levels, which

result from acute viral infection [11,12]. Nevertheless, innumera-

ble factors could play a role in orchestrating these mechanisms,

and each of these factors could be mediated by the COVID-19 virus

and viral proteins in host cells. Initially, angiotensin-converting

enzyme inhibitors (ACEIs) and/or angiotensin receptor blockers

(ARBs) were used as antiviral agents to combat viral infection into

cardiac cells [13–15]. In addition to receptor blocking, however,

ACEIs upregulate ACE-2 gene expression and the advice became

that ACEI use should be discontinued in order to avoid any

potential associated risk of SARS–CoV-2 infection; however, later

findings have not supported this advice conclusively [16] (WHO/

2019-nCoV/Sci_Brief/ACE-I/2020.1, https://apps.who.int/iris/

handle/10665/332021). In fact, it has been advised that abrupt

stopping of ACEI and ARB treatment may be more dangerous than

the COVID-19 risk in high-risk patients with hypertension, heart

failure or myocardial infarction [17].

Hyperferritinemia and cardiac arrest during
SARS–CoV-2 infection
Searches for possible mechanisms of cardiovascular injury in

COVID-19 patients led to reports of clinical data describing the

occurrence of hyperferritinemia (an increase in the circulation of

ferritin, an iron-binding protein), which is a typical indicator of

viral or bacterial infection [18], combined with normocytic ane-

mia (hemoglobin = 10.4 g/dL) and excess iron release in SARS–

CoV-2-infected patients [19,20].

Ferritin is a ubiquitous cytosolic and mitochondrial iron-bind-

ing protein (existing as subunits H and L, and encoded by genes

positioned on chromosomes 11q and 19q) in humans [21]. It stores

iron in its nontoxic or biologically active form for vital cellular

processes and helps to protect cellular macromolecules from the

toxic effects of labile iron (Fig. 1). The H subunit of ferritin is highly

expressed in the heart, whereas the L subunit is predominant in

the liver.

The circulatory level of serum ferritin acts as a gold-standard

prognostic marker for iron deficiency (hypoferritinemia) and iron

overload (hyperferritinemia). Increased serum ferritin is strongly

associated with a high risk of heart failure in coronary vascular

diseases and with cardiovascular mortality [22–24]. The possible

mechanisms through which hyperferritinemia induces myocardi-

al dysfunction are: (i) induction of direct immune-suppressive

[25,26] and pro-inflammatory effects [27]; and (ii) increased gen-
1266 www.drugdiscoverytoday.com
eration of hydroxyl radicals such as 8-hydroxydeoxyguanosine,

27-hydroxycholesterol [27], 4-hydroxynonenal [28] and malon-

dialdehyde [29,30]. Ferritin H induces the expression of pro-in-

flammatory cytokines, and a study found that it also increases the

expression of genes encoding IL-1b, IL-6, IL-12, and tumor necro-

sis factor a (TNF-a). Similar effects are also found in patients who

have hyperferritinemic conditions, such as adult onset Still’s

disease (AOSD) patients with macrophage activation syndrome

(MAS) [31]. In addition, the treatment of macrophages with Ferri-

tin H induces increased expression of IL-1b and IL-12. Notably,

both expression levels and extracellular release of IL-12 are signifi-

cantly increased by ferritin H [32]. Another study found that the

proinflammatory effects of Ferritin H occur through iron-depen-

dent PKCz/NFkB-regulated signaling in rat hepatic cells. In addi-

tion, in hepatic stellate cells, H-ferritin was reported to act as a

proinflammatory cytokine via induction of the transcription fac-

tor NFkB [33].

It has been reported that about 50% of COVID-19 patients who

have exceptionally high ferritin levels do not survive [18]. More-

over, reports suggest the occurrence of a cytokine storm in COVID-

19 symptomatic patients that is mediated by hyperferritinemia

and hyperferritinemia-mediated MAS. The cytokine storm

involves an episode of overwhelming inflammation (caused by

the initial expansion and activation of T lymphocytes and hemo-

phagocytic macrophages) that is characterized by the excessive

secretion of proinflammatory cytokines [34,35]. In addition, in a

retrospective cohort study conducted in Wuhan, China, it was

found that serum ferritin levels, as well as other factors such as

high-sensitivity cardiac troponin I, were elevated in nonsurvivors

of COVID-19 [36]. Notably, MAS, a life-threatening condition with

high mortality rates, is usually associated with extreme hyperfer-

ritinemia [37,38]. Together, these findings suggest that cytokine

storm might result in the destruction of healthy cardiac cells,

provoking further cytokine production from uninfected cells

and eventually causing autoimmune-mediated cardiac arrest/

shock. However, numerous factors might influence the rates of

mortality resulting from hyperferritinemia and MAS in COVID-19

patients.

Pathophysiology of hyperferritinemia in COVID-19
patients
A notable feature of hyperferritinemia (>3000 ng/mL), irrespec-

tive of its underlying pathology, is its association with increased

mortality [27,39,40]. Ferritin gene expression is orchestrated at the

transcriptional and post-transcriptional levels by many factors,

including iron levels, T- and B-cell functions, cytokine release,

chemokine production, lipopolysaccharides (LPS), prostaglandins,

hormones, growth factors, second messengers, hyperoxia, hypoxia

and oxidative stress [41,42]. Hyperferritinemia has been reported

to exist in an array of clinical conditions such as AOSD, MAS,

catastrophic serologic antiphospholipid syndrome (APS), septic

shock and multiorgan dysfunction syndrome (MODS) [43], and

these conditions (MODS, MAS and septic shock) have been well

observed in COVID-19 patients [44–49]. Indeed, reports denote

that macrophages are associated with the production and secre-

tion of extracellular ferritin (H-ferritin) [50–52] (hence the MAS

observed in COVID-19 patients) may be responsible for the higher

serum ferritin levels seen in COVID-19 patients (elevated two fold

https://apps.who.int/iris/handle/10665/332021
https://apps.who.int/iris/handle/10665/332021
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FIGURE 1

Physiology of ferritin. Schematic representation of ferritin production and its functions. Ferritin, an iron-storage protein, is expressed in the brain, liver, heart,
kidney, bone marrow, skeletal muscle, spleen and lungs. (a) When levels of iron are low, iron regulatory proteins (IRPs) bind to RNA stem-loops within iron
response elements (IREs) in the untranslated region of ferritin mRNA, thereby inhibiting the translation of this mRNA. (b) Conversely, high iron levels enable
ferritin production by inhibiting the binding of IRPs to the RNA stem-loops of IREs in ferritin mRNA. Ferritin, a heteropolymer with 24 subunits has two types of
chains (heavy and light). The ratio of heavy:light chain (H:L) is tissue- and cell-type-dependent and is altered during disease pathologies. The H-chain comprises
di-iron binding sites with ferroxidase activity (Fe2+ to Fe3+), whereas L-chain lacks mineralization activity.
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in COVID-19 nonsurvivors than survivors) [48,53,54]. The same

increases in the levels of macrophage-secreted ferritin have been

associated with cardiovascular mortality [55] and the development

of chronic coronary artery disease (CAD) [22].

In addition to the active secretion of ferritin from activated

macrophages, further ferritin is released by the cellular death
caused by the inflammatory reaction; hence the extreme in-

flammatory milieu that damages cardiac cells will eventually

feed forward the cytokine storm. Upon release from cells,

ferritin loses a proportion of its iron, thereby giving rise to

extremely high levels of free iron in serum, which in turn will

promulgate hyperferritinemia in other organs [56]. Notably,
www.drugdiscoverytoday.com 1267
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the presence of circulating ‘free iron’ during severe inflamma-

tory conditions can deteriorate the inflammatory reaction by

inducing a marked pro-coagulant state, which is also observed

in COVID-19 patients [56,57]. Such an increase in circulating

free iron also induces changes in red blood cell (RBC) mor-

phology, with fibrin leading to the generation of dense clots

and eventually favoring cardiovascular stroke, myocarditis,

cerebral stroke [57,58], and diffused intravascular coagulopa-

thy, all of which are major complications in COVID-19

patients [59,60]. Moreover, the inflammatory cytokines tumor

necrosis factor-alpha (TNF-a) and interleukin-2 (IL-2) also

induce ferritin synthesis in cells, including mesenchymal

cells, hepatocytes and monocyte-macrophages [61], all of

which can contribute to hyperferritinemia in SARS-CoV-2

patients.

COVID-19 is mainly characterized by fever, dry cough, fa-

tigue and pneumonia, and these clinical symptoms are similar

to those of hyperferritinemic syndromes [62]. However, the

most severe form of COVID-19 is characterized by fever, hyper-

ferritinemia and a hyper-inflammatory process, which may be

responsible for the high rate of mortality [63]. Hyperferritine-

mia similar to that mediated by COVID-19 [53] is also reported

in various autoimmune diseases, including systemic lupus

erythematosus (SLS), multiple sclerosis and APS, while high

levels of ferritin are reported in AOSD, MAS, septic shock and

catastrophic APS [64].

In humans, hyperferritinemia has been reported to cause immu-

nodeficiency [26]. Heavy-chain ferritin (H-ferritin) that is secreted

by macrophages binds to T and B lymphocytes via its specific

receptor, T cell immunoglobulin and mucin-domain-2 (TIM-2),

and modulates intracellular signaling [25,50]. TIM-2 is expressed

on cell types including B and T lymphocytes, liver cells [65], and

erythroid precursor cells [66] and in brain cells [67]. Indeed, in in

vitro conditions, such binding exerts immunosuppression by

impairing T cell proliferation, B cell maturation and immunoglob-

ulin production [25,68,69]. Initially, Broxmeyer et al. [70] sug-

gested the regulatory role of ferritin in the production of

granulocytes and macrophages, and it was further found that H-

ferritin (but not L-ferritin) negatively regulates human and murine

hematopoiesis in vitro and in vivo. H-ferritin also inhibits the

proliferation of myeloid cells and the production of lymphoid

lineage cells. Indeed, H-ferritin also suppresses the proliferation of

T cells upon mitogenic stimulus and also impairs B cell maturation

in vitro [71], while it has immunosuppressive function in vivo [72].

However, the mechanism underlying the ability of H-ferritin to

mediate immunosuppression remains elusive and is believed to be

mediated by the downregulation of CD2, a cofactor for lympho-

cyte stimulation [26], and probably by inducing IL-10 production

in lymphocytes [73]. H-ferritin also induces apoptosis in hepato-

cyte cells by activating p53 [74], which in turn releases iron into

phagocytic macrophages, leading to MAS as observed in COVID-

19 patients with hyperferritinemia. Hence, hyperferritinemia-in-

duced impaired generation of immune cells or immunosuppres-

sion can lead to the loss of disease tolerance and development of

severe viral sepsis, to viral-sepsis-mediated inflammation and cy-

tokine storm, and to the autoimmune destruction of tissues in

hyperferritinemic COVID-19 patients [50] and might favor bacte-

rial and other viral superinfections in COVID-19 Patients. Such
1268 www.drugdiscoverytoday.com
development of autoimmune self-destruction of healthy cells is

associated with the development of antibodies against ferritin and

is also reported in patients with rheumatoid arthritis [75].

Severe COVID-19 may be considered part of the (heavy:light:

heavy) HLH chain spectrum due to overlapping clinical features

[76,77]. However, both laboratory and radiological differences

between secondary HLH and severe COVID-19, which did not

appear as part of the HLH spectrum, exist [78]. For better under-

standing, readers are invited to read the articles references cited

above.

In macrophages, the role of ferritin is to cope with the normal or

homeostatic turnover of senescent erythrocytes (1011 cells) and to

assist in intracellular iron storage and the maintenance of iron

availability for erythropoiesis. Any unexpected or sudden influx of

supraphysiologic iron into macrophages will in turn lead to

supraphysiologic ferritin gene expression, leading to extreme

hyperferritinemia. Similarly, in cardiac tissues, viral-sepsis-medi-

ated macrophage recruitment might also elevate iron uptake from

damaged cardiac cells via inflammation, hyperferritinemia and

sepsis, thereby causing cardiovascular dysfunction or cardiac ar-

rest.

Extreme hyperferritinemia and cardiac arrest in
COVID-19 patients: possible mechanisms
From the information obtained from published clinical reports, we

speculate that the hyperferritinemia phenomenon observed in

severe cases of COVID-19 is an extreme fatal form [18] that is

not typical of hyperferritinemia due to infection alone: the initial

infection-mediated hyperferritinemia is compounded by MAS and

inflammation. In addition, Mitra et al. [19] observed the occur-

rence of leukoerythroblastic reactions, such as the presence of

immature erythroids (nucleated erythroids) and immature mye-

loid cells circulating in the peripheral blood, as uncommon phe-

nomena. Several studies note that in conditions where

inflammation exists, RBC half-life is reduced: the RBC membrane

is altered and structurally deformed and the expression of cellular

adhesion molecules is increased in patients with sepsis [79,80]. In

turn, all of these factors promote macrophage-mediated RBC

phagocytosis and damaged hemoglobin turnover, which will

eventually increase iron overload and hypoxia in tissues [27]

and which might favor normocytic anemia during infectious

conditions. In COVID-19, the presence of defective RBCs, hypoxia,

inflammation-mediated turnover of RBCs [31], and macrophage

activation after RBC phagocytosis could together induce extreme

hyperferritinemia by: (i) promoting excess handling of iron cargo

and (ii) increasing the release of iron into circulation by COVID-

19-nonstructural-protein-mediated attack on the hemoglobin 1b
chain. Therefore, the levels of free iron seen in COVID-19-mediat-

ed hyperferritinemia will be beyond physiologic levels, which will

in turn induce pathological ferritin gene expression. In support of

the above, reports denote that excess iron levels mediate the

expression of genes encoding ferritin subunits, whereas low cellu-

lar iron levels obstruct the translation of stored ferritin mRNAs

[81,82]. On the basis of previous studies, we hypothesize that virus-

mediated hemoglobin 1b degradation results in chronic hypoxia,

chronic hypoxia-mediated acidosis in tissues including the heart

[83], iron-mediated oxidative stress and excessive cytokine gener-

ation. Chronic hypoxia accompanied by increased intracellular
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FIGURE 2

SARS–CoV-2-mediated hyperferritinemia and cytokine storm in cardiac cells. Initially, Angiotensin-converting enzyme-2 (ACE-2)-mediated viral uptake might
induce inflammatory cell recruitment to infected cardiac cells, leading to the secretion of cytokines and chemokines. In addition, other factors such as COVID-19-
mediated iron release from the 1b chains of red blood cells (RBCs), hypoxia, inflammation, oxidative stress, and cytokine generation may also mediate excess
ferritin production, leading to hyperferritinemia. Hyperferritinemia and inflammation mutually increase each other, thereby contributing to excess
hyperferritinemia and cytokine storm. Hyperferritinemia might eventually lead to immunosuppression and cytokine storm, which can cause damage to healthy
cardiac cells, which in turn releases inflammatory cytokines, aggravating the cytokine storm and the autoimmune-mediated destruction of cardiac cells. IL-b,
interleukin-b; MAS, macrophage activation syndrome; NK cell, natural killer cell; TNF-a, tumor necrosis factor a.
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iron levels [84], oxidative stress [85], cytokines [27] and viral sepsis

might augment increased ferritin gene expression [86,87] (Fig. 2).

By contrast, cytokine-mediated nitric oxide (NO) generation

inhibits ferritin gene expression; this inhibition is mediated by

binding of NO to sulfhydryl groups in the RNA binding domain

and also by the formation of S-nitroso complexes with the thiols

[88] of iron-regulatory proteins-1 (IRP1), which enable iron re-

sponse element (IRE) binding activity [89,90]. Another report

denotes that the presence of NO led to reduced IRP1 protein levels,

which were correlated with the amount of NO produced [91].

However, we do not know whether the cytokines that are gener-

ated during COVID-19 infections activate NO generation or in-

hibit NO, thereby leading to hyperferritinemia. Clinical trials

suggest that prolonged treatment with inhaled NO can lead to

increased methemoglobin levels, while it is also reported that

individuals with methemoglobin levels above 10% appear cyanot-

ic and have impaired tissue oxygenation. This is because the Fe3+

heme in their methemoglobin is incapable of binding oxygen, and
levels of methemoglobin above 30% may favor central nervous

system (CNS) and cardiovascular symptoms [92]. Another report

showed that if endothelium is exposed to methemoglobin for a

prolonged period (16 h), the tissue accumulated large amounts of

ferritin and subsequently underwent iron sequestration by this

protein [93]. Similar phenomena were also observed in rodent

lungs [94]. Thus, it seems that NO-mediated methemoglobin can

help in chelating excess iron by favoring hyperferritinemia. Al-

though it has been shown that endogenously produced NO inhi-

bits H-ferritin synthesis [95], inhaled NO acts via methemoglobin

to increase ferritin levels. Moreover, in in vitro conditions, NO also

suppresses human hematopoiesis by inducing apoptosis in bone

marrow progenitor cells [96]. Hence, our level of understanding of

the usefulness of NO is very meager and warrants further extensive

research.

In addition, hypoxia-mediated induction of ferritin gene ex-

pression is observed in mouse peritoneal macrophages [97] and rat

hepatoma cells [84], and cardiac hypoxia resulted in elevated
www.drugdiscoverytoday.com 1269
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FIGURE 3

Hyperferritinemia-mediated cardiac arrest in COVID-19 patients: possible routes. ACE-2-receptor-mediated viral entry into hosts will induce inflammation via
infiltration of immune cells to combat viral infection. Sepsis-mediated hyperferritinemia will be fueled by iron, hypoxia, oxidative stress, inflammation and
macrophage activation syndrome (MAS), which will eventually result in excessive hyperferritinemia and cytokine storm. Cytokine storm will outplay protective
inflammation for tissue repair and might lead to autoimmune-mediated destruction of healthy cardiac cells, promoting further cytokine secretion.
Hyperferritinemia might inhibit immune cell differentiation and proliferation, causing leucopenia, thrombocytopenia and anemia; at the same time, cytokine
storm may also result in autoimmune destruction of immune cells, favoring immunosuppression and eventually causing viral sepsis and cardiac dysfunction or
heart failure. The increase in hyperferritinemia might inhibit the isotype class switching of immunoglobulins IgM to IgG, IgA or IgE causing asymptomatic COVID-
19 infection (1 to 10 days) to symptomatic COVID-19 condition thereby causing immunosupression favoring bacterial and other viral superinfections, along with
COVID-19.
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cardiac ferritin levels [98]. Therefore, we speculate that chronic

hypoxia, associated excess iron levels resulting from hemoglobin

1b chain damage, abnormal turnover of erythrocytes [19], acido-

sis, iron-mediated oxidative stress, cytokine generation, iron ac-

cumulation from inflammatory cell death, and MAS might

collectively trigger extreme hyperferritinemia and excessive cyto-

kine storm in the cardiac tissues of COVID-19 patients. Cytokine-

storm-mediated inflammatory milieu would damage healthy car-

diac cells, which would in turn aggravate inflammatory cytokine

production as a part of the cytokine storm, leading to sudden

cardiac arrest in COVID-19 patients [99–101]. Extreme hyperferri-

tinemia might also: (i) favor excessive cytokine secretion, (ii) cause

H-ferritin-mediated immunosuppression by inhibiting the prolif-

eration of lymphoid cells and the differentiation, maturation,

proliferation of myeloid lineage cells, thereby causing immuno-

supression and (iii) favor higher SARS-CoV-2 viral proliferation

and other bacterial, viral superinfections and sepsis in cardiac cells

and other tissues [102–104] (Fig. 3).

In addition, if COVID-19 nonstructural proteins attack and

damage the 1b chain of hemoglobin (releasing free iron) while

binding porphyrin, this would entail the loss of metallopor-
1270 www.drugdiscoverytoday.com
phyrin from the body and would eventually cause perturbations

in metalloporphyrin homeostasis [105]. Notably, metallopor-

phyrins [iron- (hemin) and Sn-protoporphyrin] have been

shown to act as immunostimulatory agents in vitro [106,107].

In addition, a report by Burt et al. [108] showed that inhibition

of hemeoxygenase (HO-1) by tin-mesoporphyrin (SnMP) in

peripheral blood mononuclear cells (PBMCs) leads to increased

anti-viral T cell activation and to the generation of a higher

proportion of effector memory T cells with increased capability

to secrete interferon (IFN)-g and granzyme B. Moreover, expo-

sure of these cells to SnMP increased anti-viral T cells 15-fold.

Hence, COVID-19-mediated attack on the 1b chain of hemo-

globin would cause defective or suppressed immunogenic gen-

eration of anti-viral effector T cells and memory T cells, leading

to defective adaptive immune defense / immunodeficiency. In

support of the above, about 82.1% of COVID-19 patients have

reduced lymphocyte counts [12,109,110] due to unknown fac-

tors or mechanisms [102]. Similarly, a very recent report sug-

gests that asymptomatic individuals who have a poor or

weakened adaptive immune system are much more prone to

progress to symptomatic COVID-19 illness [111]. In support of
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FIGURE 4

Therapeutic perspectives: using iron chelators to combat hyperferritinemia. During the early days of (days 1–5) asymptomatic COVID-19 infection, there is no
protective inflammation to combat viral proliferation and tissue repair in cardiac cells, but the levels of hyperferritinemia and excessive inflammation will be
meager or solely mediated by viral infection. As the infection progresses (days 5–10), however, the amount of viral sepsis and inflammation will be higher and
might result in hyperferritinemia [fueled by iron release, hypoxia, oxidative stress, cytokine release, and macrophage activation syndrome (MAS)] and
hyperferritinemia can mediate excessive inflammation. Excessive inflammation, in turn, may cause damage to healthy cardiac cells, promoting further cytokine
secretion eventually leading to cytokine storm and cardiac shock/arrest. Hyperferritinemia can be reduced by iron chelators (deferriprone and desferasirox,
which degrade ferritin). By reducing hyperferritinemia, events such as hyperferritinemia-mediated immunosuppression and excessive inflammation can be
prevented and immune cells may be able to combat viral sepsis by themselves.
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the above, some COVID-19 patients exhibit hypoxia despite

having well-preserved lung compliance and/or hypoxia preced-

ing lung injury or pneumonia, neither of which are typical of

ARDS [112,113]. We speculate that these phenomena can be

explained by a reduction in the oxygen-carrying ability of

hemoglobin (with intact a1, a2 chain and b2 chain) in

COVID-19 patients. Notably, the clinical presentations of

COVID-19-associated hyperferritinemia and thrombocytopenia

are similar to those of systemic lupus erythematosus disease

(SLE), hemophagocytic lymphohistiocytosis, macrophage acti-

vation syndrome and AOSD [41].

Reduced iron levels have also been reported in COVID-19

patients [12], although it may be possible that blood for these

analyses was collected only from symptomatic COVID-19 patients,

i.e. between 14–20 days after asymptomatic incubation [114].

During the asymptomatic period, hypoxia, oxidative stress and

cytokines can lead to ferritin induction, which could lead to the

reduced hemoglobin (normocytic anemia) and reduced iron levels

(can be due to ferritin mediated iron uptake) seen in clinical

samples of 99 patients with COVID-19 [12]. In addition, it is

possible that the supraphysiologic iron released by COVID-19-

mediated RBC 1b chain destruction can be released into circula-
tion and accumulated in tissues such as cardiac cells during the

asymptomatic COVID-19 incubation period, favoring ferroptosis

and cardiomyocyte cell death and cardiovascular damage

[115,116]. Moreover, other factors such as cardiomegaly, cardiac

myocyte injury, lymphocytic pericarditis, and lymphocytic myo-

carditis were found to be involved in cardiac dysfunction in

COVID-19 patients [117]. We also speculate that these phenomena

could be applicable to other forms of organ dysfunction in COVID-

19 patients.

Conclusion remarks and future perspectives
Our review of the literature indicates a plausible pathophysiological

role of hyperferritinemia-mediated cardiovascular damage in

COVID-19 patients. Moreover, it has been reported that increasing

L-ferritin to compensate H-ferritin can help in reducing pro-inflam-

matory cytokine levels, multi-organ dysfunction and high mortality

rates in a murine model of sepsis. Such regulation of L-ferritin and H-

ferritin levels could be considered in COVID-19 [118]. In addition,

we propose that the use of iron chelation agents such as deferox-

amine (DFO) (alone or synergistically with antioxidants to mitigate

iron-induced oxidative stress) [119–122] or deferriprone and desfer-

asirox (which degrade ferritin) [123,124] might help to reduce
www.drugdiscoverytoday.com 1271
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hyperferritinemia while scavenging excess iron (Fig. 4). Further-

more, we believe that the development of modified or improved

iron chelators that can significantly enhance ferritin degradation

and iron chelation, while simultaneously providing antioxidant

capacity and reducing the iron-chelator-mediated cytotoxicity of

macrophages, might be highly beneficial in mitigating COVID-19-

mediated pathology [105,125,126]. However, we suggest that the

use of iron chelators should be regulated, because it might affect the

homeostatic process that activates the hemeoxygenase-1 enzyme by

limiting the availability of basal level iron that is essential for iron-

trafficking-mediated heme production in cells. Notably, hemeox-

ygenase production is required for the generation of antiviral inter-

ferons in our body (IFNa/b) [127].

Simultaneously, management of hypoxia to avoid hypoxia-

mediated hyperferritinemia might also help to minimize or at

least reduce hyperferritinemia- and cytokine-storm-mediated

cardiovascular dysfunction and arrest in COVID-19 patients.

Finally, we point out that these are hypothetical insights and

have not been proved or observed by laboratory experimental

models involving COVID-19 virus infection. We recommend

further focused research using suitable experimental models

and clinical samples that will help us to understand the impact
1272 www.drugdiscoverytoday.com
of hyperferritinemia in the cardiovascular health, morbidity

and mortality of COVID-19 patients.
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