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Abstract: Postoperative abdominal adhesions are responsible for serious clinical disorders. Adminis-
tration of plasma-activated media (PAM) to cell type-specific modulated proliferation and protein
biosynthesis is a promising therapeutic strategy to prevent pathological cell responses in the context
of wound healing disorders. We analyzed PAM as a therapeutic option based on cell type-specific
anti-adhesive responses. Primary human peritoneal fibroblasts and mesothelial cells were isolated,
characterized and exposed to different PAM dosages. Cell type-specific PAM effects on different
cell components were identified by contact- and marker-independent Raman imaging, followed
by thorough validation by specific molecular biological methods. The investigation revealed cell
type-specific molecular responses after PAM treatment, including significant cell growth retardation
in peritoneal fibroblasts due to transient DNA damage, cell cycle arrest and apoptosis. We identified
a therapeutic dose window wherein specifically pro-adhesive peritoneal fibroblasts were targeted,
whereas peritoneal mesothelial cells retained their anti-adhesive potential of epithelial wound closure.
Finally, we demonstrate that PAM treatment of peritoneal fibroblasts reduced the expression and
secretion of pro-adhesive cytokines and extracellular matrix proteins. Altogether, we provide insights
into biochemical PAM mechanisms which lead to cell type-specific pro-therapeutic cell responses.
This may open the door for the prevention of pro-adhesive clinical disorders.

Keywords: physical plasma treatment; adhesion prophylaxis; postoperative adhesions; chronic
inflammatory disease; cell type-specific response

1. Introduction

The peritoneum is a thin mucosa lining the abdominal cavity and covers the intra-
abdominal organs. It consists of a single layer of mesothelial cells and a loose stroma of
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connective tissue and fibroblasts, among others, directly beneath (Figure 1A) [1]. Despite
numerous achievements in minimally invasive and open surgery, postoperative abdominal
adhesions seriously limit the postoperative outcome and quality of life of patients and
cause various serious clinical disorders due to the restriction of the mobility of affected
abdominal organs. Peritoneal injury involves the recruitment, proliferation and activation
of stromal cells such as fibroblasts and mesothelial cells. Inflammatory triggers such as
cytokines lead to enhanced cell growth and increased secretion of pro-adhesive factors such
as the ECM components collagen and fibronectin [1,2]. Having an incidence that ranges
from 67% to 93%, abdominal adhesions are responsible for 15–20% of all cases of secondary
infertility and for 50–70% of all mechanical ileus diseases, which are often characterized by
severe clinical courses [3]. The annual costs of abdominal adhesions are estimated to be
between USD 1.18 and 1.33 billion for the U.S. health system alone.

Current strategies for adhesion prevention are mainly based on barrier materials,
which have not yet been able to show a clear clinical benefit [4]. Moreover, some of these are
difficult to use, expensive and sometimes associated with serious side effects. Overall, there
is a considerable need for effective technologies for adhesion prophylaxis to be routinely
integrated into surgical procedures, as minimally invasive and open surgery are increasing
in all medical disciplines worldwide [5]. A target of adhesion prophylaxis may be the
reduction in cell proliferation as well as the synthesis and secretion of pro-adhesive factors.
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Figure 1. Characterization of cell type-specific growth inhibition in primary human peritoneal
cells. (A) Schematic of anatomical and histological features of the peritoneum. (B) Schematic of
the experimental setup of PAM generation. (C) Representative brightfield microscopy of native
primary fibroblasts and mesothelial cells. Scale bar represents 200 µm. (D) Representative IF
microscopy of fibroblasts and mesothelial cells after PFA fixation and staining with specific antibodies
against cytokeratin and fibronectin. Scale bar represents 200 µm. (E,F) Relative cell confluency of
(E) fibroblasts and (F) mesothelial cells 72 h after incubation of different PAM dosages for 4 h (mean
± SD). (G) Representative brightfield microscopy of fibroblasts and mesothelial cells 72 h after 4 h
incubation with indicated PAM dilutions for 4 h and control treatment. Scale bar represents 400 µm.
(H) Relative cell confluency 72 h after incubation with indicated PAM dilutions for 4 h with and
control treatment (mean ± SD; * p < 0.05; paired t-test).

In this study, we investigated the potential of PAM to modulate cell growth and pro-
adhesive action of human peritoneal fibroblasts and mesothelial cells. We identified cell
type-specific anti-proliferative cell responses by DNA interference, cell cycle arrest and
apoptosis, accompanied with reduced synthesis and secretion of pro-adhesive proteins and
cytokines. Our data indicate a high clinical potential of PAM to be used for comprehensive
adhesion prophylaxis.

Non-invasive physical plasma (NIPP) treatment is an emerging medical discipline.
The treatment of liquid media with NIPP, which contains electrons, photons, ions as well
as radical and nonradical reactive oxygen and nitrogen species (RONS) [6], results in the
generation of plasma-activated medium (PAM). PAM maintains the major biological effects
of NIPP, containing long-lived species, such as nitrite (NO2−), nitrate (NO3−) and hydrogen
peroxide (H2O2) (Figure 1B). Previously, NIPP was shown to significantly improve wound
healing and chronic inflammatory diseases as well as to induce promising cancer-selective
anti-tumor effects in a broad variety of tumor tissues [7]. NIPP and PAM were able to
influence proliferation and protein biosynthesis of connective tissue cells such as human
fibroblasts in a dose-dependent manner [8].

2. Materials and Methods
2.1. Cell Culture

Primary human fibroblasts and peritoneal wash cytology (PWC)-derived primary
human mesothelial cells were isolated and cultured as previously described [9]. Ethical
approval (Eberhard-Karls-University Tübingen): 649-2017BO2, approval: 12 January 2018;
and 495/2018BO2, approval: 19 October 2018.

Immunofluorescence staining. Immunofluorescence (IF) staining on 1.4 × 104 fibr-
oblasts/cm2 and 2.9 × 104 mesothelial cells/cm2 (µ-dish, 35 mm, 3.5 cm2 growth area,
ibidi, Gräfelfing, Germany, #81158) was performed as previously described [9].

2.2. Preparation of Plasma-Activated Medium (PAM)

PAM was prepared by exposing plasma to 2 mL of Minimal Essential Medium (MEM)
(Gibco™, Thermo Fisher Scientific Inc, Waltham, MA, USA, #31095029) without FCS and
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antibiotics. MEM was chosen to guarantee optimal cell growth conditions and to exclude
other influences than those of plasma activation [9]. PAM exposure was performed in 6-well
plates (9.6 cm2 growth area) using an ambient pressure argon plasma jet (kiNPen MED,
neoplas med, Greifswald, Germany). Operating conditions: argon gas flow 4.0 L/min,
frequency 1 MHz, line voltage 2–3 kV, power 1 W. The distance between the plasma
source and the surface of medium was fixed at 7 mm using an external holding device
and the duration for medium irradiation was set at 120 s to avoid significant influences
of treatment distance and duration [8]. As characterized in previous studies, plasma
treatment of cell culture fluids with kINPen MED is followed by a dose-dependent increase
in RONS [8,10,11]. Then, 2 mL MEM were treated with pure argon gas and used as control
treatment (ctrl). PAM was freshly produced for each experiment to limit degradation
processes of short-living reactive plasma species.

2.3. Cell Confluency Assay

Primary isolated fibroblasts (6.25 × 103/cm2) and mesothelial cells (4.7 × 104/cm2)
were cultivated for 24 h in a 96-well plate (0.32 cm2 growth area) and treated with 200 µL of
indicated PAM dilutions for 4 h. After removing PAM, cells were washed with DPBS and
cell confluence was observed by an IncuCyte S3-live cell imaging Systems (Essenbioscience,
Göttingen, Germany) at 37 ◦C and 5% CO2 for 72 h. Confluency values were determined
by the IncuCyte Software and normalized (relative confluence) to controls.

2.4. Raman Imaging

After PAM treatment, 2 × 104 fibroblasts and 1.5 × 105 mesothelial cells in imaging
dishes (µ-dish, glass bottom, 3.5 cm2 growth area, ibidi, #81158) were fixed with 4% PFA for
10 min at 37 ◦C. After washing gently, cells were covered with DPBS. Raman imaging using
a customized Raman microscope (alpha 300 R, WiTec GmbH, Ulm, Germany) equipped
with a green laser (532 nm, maximum output power 60 mW) was performed as previously
described [9].

2.5. Principal Component Analysis (PCA)

For in-depth analysis of molecular changes in nuclei, protein and lipid composition,
high-intensity pixel representing nuclei, protein and lipid spectra were extracted from the
Raman maps and applied for multivariate analysis as previously described [9].

2.6. Viability Assay

Primary isolated fibroblasts (2 × 103 cells per well) and mesothelial cells (1.5 × 104 cells
per well) were seeded and cultivated for 24 h in a 96-well plate (0.32 cm2 growth area).
Cells were treated with 200 µL of PAM for 4 h. The RealTime-Glo Cell Viability Assay
(Promega, Fitchburg, WI, USA, # G9711) was performed according to the manufacturer’s
instructions. The resulting luminescence signal was detected by a microplate reader (Spark,
Tecan Trading AG, Männedorf, Switzerland). Values were normalized to controls.

2.7. Flow Cytometry

Flow cytometry was performed as previously described [9]. Applied specific antibod-
ies: DSB-specific γH2AX formation: incubation of anti-γH2AX antibody, Ser139, JBW301
(Sigma-Aldrich, St. Louis, MO, USA) 1:125 dilution, 30 min on ice. Cell cycle phase analysis:
incubation of DAPI (Sigma-Aldrich), 1:2 dilution, 30 min on ice. Forward and side scatter
(FSC-H and SSC-H) characteristics were used to exclude debris. Forward scatter area and
height (FSC-A and FSC-H) characteristics were used to exclude cell doublets (Figure S3).

2.8. Protein Expression Analysis by DigiWest Multiplex Protein Profiling

Analysis was performed by DigiWest multiplex protein profiling, as described previ-
ously [12]. The following primary antibodies were used: pH 3-specific antibody: protein
kinase B phosphorylation (pAKT-specific antibody: 12,178 (D5G4), Cell Signaling Technol-
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ogy Cambridge, UK, 1:200), protein kinase B (AKT-specific antibody: 9272S, Cell Signaling
Technology, 1:200), heat shock protein 27 (HSP27-specific antibody: 2402 (G31), Cell Signal-
ing Technology, 1:200), Survivin (Survivin-specific antibody: 2808S (71G4B7), Cell Signal-
ing Technology, 1:200), Signal transducer and activator of transcription 3 (STAT3-specific
antibody: 9139S (124H6), Cell Signaling Technology, 1:200), Cyclin-dependent kinase 4
(CDK4-specific antibody: 12790S (D9G3E) (1272), Cyclin D1 (Cyclin D1-specific antibody:
ab134175 (EPR2241), Abcam, Cambridge, UK, 1:200), cyclin-dependent kinase inhibitor
1 (p21-specific antibody: ab109520 (EPR362) Abcam, 1:200), p-Histone H3 (pH3-specific
antibody: 9701, Cell Signaling Technology, 1:200), p53 phosphorylation (p-p53-specific
antibody: 9284, Cell Signaling Technology, 1:200), Retinoblastoma protein (Rb-specific
antibody: ab181616, Abcam, 1:200). Values of PAM-treated cells were normalized to the
control group.

2.9. Apoptosis; Caspase 3/7 Assay

Primary isolated fibroblasts (2 × 103 cells per well) and mesothelial cells (1.5 × 104 cells
per well) were seeded and cultivated for 24 h in a 96-well plate (0.32 cm2 growth area).
The Caspase 3/7 assay (Essen Bioscience, Sartorius, Göttingen, Germany, #4704) was
performed according to the manufacturer’s instructions. The generated fluorescence signals
were detected by IncuCyte S3-live cell imaging Systems after 24 and 72 h. Results were
normalized to controls.

2.10. DNA Methylation; 5mC Staining

For analyzation of the global genomic 5mC methylation status, IF staining was per-
formed by use of a 5mC-specific mouse monoclonal IgG antibody (MABE146, diluted in
0.1% BSA in PBS at 1:2000 ratio, Merck, Darmstadt, Germany) as previously described [13].
Then, 2 × 104 PAM-treated fibroblasts were incubated in 6-well glass bottom cell culture
plates (ibidi, 6 mL DMEM/well) for the respective time periods.

2.11. Western Blot

Fibroblasts were seeded in 100 mm cell culture dishes (56.7 cm2 growth area) with
3.4 × 105 cells/dish. Then, 120 h after treatment, supernatant was discarded and cells
were frozen at −80 ◦C. Ice-cold TRIS-HCl cell lysis buffer was added, cells were harvested
using a cell scraper. The lysate was incubated on ice for 30 min before centrifugation for
15 min at 13,000 rpm at 4 ◦C and BCA-Protein Assay (Thermo Fisher Scientific, Waltham,
MA, USA, #23227) using a microplate reader (Spark, Tecan Trading AG, Switzerland)
following the manufacturer’s instructions. Samples were denaturized in 4× Lämmli
protein sample buffer (BioRad, Hercules, CA, USA, #1610747), diluted with 10% beta-
mercaptoethanol, for 10 min at 95 ◦C. Gel electrophoresis was performed in XCell SureLock
Mini-Cell Electrophoresis Chambers using NOVEX NuPage 4–12% Bis-Tris Protein Gels,
1.0 mm and MES Running Buffer (20×) in ddH2O (all Thermo Scientific Inc.). For protein
blotting, nitrocellulose membranes were soaked in NuPAGEtrade Transfer Buffer (Thermo
Scientific Inc., #NP00061). Blotting was performed using a SemiDry Transfer System
(peqLab, VWR International, Radnor, PA, USA) for 2 h at constant 0.2 A. After washing,
membranes were incubated overnight at 4 ◦C with primary antibodies under constant
agitation: fibronectin (1:1000 in 0.1% BSA, abcam), collagen I-alpha antibody (1:1000 in
0.1% BSA, NovusBiologicals, Littleton, CO, USA) and GAPDH (1:1000 in 0.1% BSA, Cell
Signaling 14C10). For collagen I alpha Western blot, membranes were thawed and then
blocked with 5% BSA in 1× PBS for 45 min. Membranes were incubated for 2 h at room
temperature with the secondary antibody AlexaFluor488 (1:10,000 in 0.1% BSA) in the dark.
For detection, the Amersham™ Typhoon™ Biomolecular Imager (Cytiva, Marlborough,
MA, USA) was used. Membranes were frozen at −20 ◦C until further analysis.
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2.12. Hydroxyproline Assay

The insoluble collagen content of the ECM was determined according to Keller et al.
and Capella-Monsonís et al. [14,15] by using the Hydroxyprolin-Assay by Sigma-Aldrich
(Merck Milipore, Burlington, MA, USA). All samples and standards were run in dupli-
cates. Cells were seeded into 100 mm cell culture dishes (56.7 cm2 growth area) with
2.4 × 104 cells/cm2. The analysis of ECM components was performed 120 h after treatment
in order to synthesize sufficient components for detection.

2.13. Soluble Collagen Assay

For the assessment of the total soluble collagen content of the ECM, the Sircol™
Soluble Collagen Assay kit (Biocolor, Carrickfergus, County Antrim, UK, S2000) was used
according to the manufacturer’s information. Cells were seeded in 75 cm2 cell culture
flasks with 6 × 103 cells/cm2. The analysis of ECM components was performed 120 h after
treatment in order to synthesize sufficient components for detection. Samples’ absorbance
for soluble collagen content was measured at 555 nm using a Spark microplate reader
(Tecan, Männedorf, Swizzerland).

2.14. Matrix Metalloproteinases (MMPs) Assay

Fibroblasts were seeded in 6-well plates (9.6 cm2 growth area) with a density of
2.5 × 105 cells per well. After PAM treatment, the medium was frozen at −80 ◦C. Human
ELISA kits for MMP-1 and MMP-2 were both obtained from Thermo Fisher Scientific. The
manufacturer’s protocol was followed, and samples were measured at 450 nm using a
Spark microplate reader (Tecan).

2.15. Cytokine Multiplex Assay

Cytokines were analyzed using the Multiplex system. Fibroblasts were seeded in
24-well plates (1.9 cm2 growth area) with a density of 5 × 104 cells per well. A standardized
scratch before PAM treatment served as imitated intraoperative injury. Supernatant was
collected and frozen immediately at −80 ◦C before analysis.

2.16. Statistical Analysis

Statistical comparison was carried out with Student’s t-test or ANOVA (GraphPad
Prism version 9.0, GraphPad Software, San Diego, CA, USA), as specified in the figure
legends. The data are expressed as mean ± standard deviation. p-values < 0.05 were con-
sidered statistically significant. Experiments were performed in at least three independent
experimental approaches.

3. Results
3.1. Cell Type-Specific Anti-Proliferation

Postoperative intra-abdominal adhesions severely influence daily life and surgical
outcome by interfering with the mobility of the abdominal organs. Peritoneal mesothelial
cells and fibroblasts play important and complex roles in wound healing and adhesiogene-
sis. RONS were reported to be the main effective compounds of PAM which are formed
by plasma irradiation at the interface between plasma discharge and the surrounding
gas and liquid phases (Figure 1B). In order to analyze cell-specific anti-adhesive PAM
effects, we used human peritoneal mesothelial cells and fibroblasts isolated from peri-
toneal wash cytologies and peritoneal tissue samples as previously described by our group
(Figure 1C,D) [9]. Using this patient-specific 2D in vitro model, we demonstrated cell
type-specific and dose-defined anti-proliferative efficacy of PAM. PAM-treated fibroblasts
exhibited a significantly enhanced decrease in relative cell confluency compared to mesothe-
lial cells (Figure 1E,F). The PAM dilution 1:2 was able to selectively target the pro-adhesive
fibroblasts, whereas the proliferation of mesothelial cells was preserved (Figure 1G,H). In
conclusion, we assumed the feasibility to selectively inhibit the pro-adhesive cell pattern of
fibroblasts while maintaining the wound closure ability of mesothelial cells.
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3.2. PAM Treatment Induces Molecular Alterations of Essential Cell Components while
Maintaining Cell Morphology

Contact- and marker-free Raman imaging was applied as a non-destructive molecular
fingerprint analysis enabling the identification, localization and biochemical assessment
of molecular PAM impact on different cell components (Figure 2A) [16,17]. Using true
component analysis (TCA) based on specific Raman signatures, nuclei (blue), cytoplasmic
proteins (green) and lipids (yellow) were localized by generating false color-coded intensity
distribution heat maps for each cellular component (Figure 2B,C). No distinct effect on
the morphological integrity of peritoneal cells could be observed after PAM treatment
(Figure 2C). In-depth molecular multivariate analysis of nuclear, cytoplasmic and lipid
features demonstrated a clear separation between fibroblasts and mesothelial cells and
the controls (PC-1 vs. PC-2 scores) (Figures 2D,E and S1A–D). Loading plots of the un-
derlying spectral information allowed the assignment to corresponding molecular groups
based on shifts in the spectral signature (Figures 2F,G and S1E–H). Relevant peaks are
summarized in Table S1 [18–40]. The molecular changes in PAM-treated fibroblasts and
mesothelial cells were especially attributed to peak shifts of DNA bases, cell membrane
lipids and cytoplasmatic proteins, some of which were previously reported in the context
of methylation and apoptosis [41,42]. Score plot analysis of these components revealed
statistically significant differences between PAM-treated cells and controls (Figure 2H,I).
Taken together, the Raman data indicate that PAM leads to molecular changes, especially
in DNA structure, cell membrane and protein expression, independent of the cell type.
This molecular fingerprint from Raman imaging was further analyzed in depth by specific
molecular biological methods.

3.3. PAM Induces Cell Type-Specific Anti-Proliferative Signaling

We next investigated the molecular cell response of mesothelial cells and fibroblasts
in terms of cell viability, induction of DNA damage as well as cell cycle and apoptosis
regulation. For this, both peritoneal cell types were treated with the cell type-selective PAM
dosage 1:2. By measuring intracellular adenosine triphosphate (ATP), we found that PAM
treatment significantly decreased cell viability in fibroblasts while that of mesothelial cells
was not affected (Figure 3A). Because of the reactive properties of RONS which frequently
interact with nucleic acids, the induction of complex cellular recognition and repair mecha-
nisms for DNA damage has been frequently described after direct plasma treatment [43].
To semi-quantify DNA damage following PAM treatment, we used cytometry analysis
after cellular staining with specific antibodies against phosphorylated histone H2AX at
Ser139, which is a commonly used biomarker for DNA double-strand breaks. Only in
fibroblasts, PAM treatment was followed by a statistically significant rapid and persistent
H2AX phosphorylation within 72 h (Figure 3B). Cell cycle analysis by propidium iodide
staining and cytometry within 72 h revealed a significant increase in fibroblasts in the
G2 phase (Figure 3C). Again, this effect could not be demonstrated in mesothelial cells
(Figure 3D). DigiWest protein profiling of fibroblasts revealed a significant increase in
cell cycle-regulating proteins such as cyclin-dependent kinase 4 (CDK4) and cyclin D1
as well as cyclin-dependent kinase inhibitor 1 (CDKN1A, p21) [44], accompanied by a
crucial decrease in the mitotic biomarker phospho-histone H3 (Ser10) [45] (Figure 3E,F).
As a result, we reasoned that a substantial subset of the fibroblast cell population was
arrested in the G2 phase and did not enter mitosis [45]. Given that PAM induces DNA
damage, followed by cell cycle arrest, we assumed that apoptotic pathways may occur as a
physiological consequence and a known PAM effect [46]. Indeed, and only in fibroblasts,
PAM treatment resulted in activation of the effector cysteine-dependent aspartate-specific
proteases (caspases) casp3 and casp7, p53 phosphorylation and activation (pp53) as well
as the suppression of the tumor suppressor retinoblastoma protein (Rb) (Figure 3G,H). In
contrast, pivotal anti-apoptotic factors such as protein kinase B (AKT) and phosphory-
lated AKT (pAKT), heat shock protein 27 (HSP27) and BIRC5 (survivin) were induced in
mesothelial cells (Figure 3H).
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Figure 2. Characterization of cellular PAM effects using contact- and label-independent Raman
imaging. Cells were incubated with 1:2 diluted PAM for 4 h and analyzed after indicated timepoints.
(A) Schematic of the Raman microscope and an exemplary Raman spectrum representing a specific
biomolecule. (B) Representative Raman spectra and characteristic bands that were used to identify
the molecular components. (C) Raman intensity distribution heat maps assigned to nuclei (blue),
lipids (yellow) and cytoplasmic proteins (green) of fibroblasts and mesothelial cells after 4 h of PAM
incubation; scale bar represents 50 µm. (D,E) PCA demonstrated a separation in the PC-1 vs. PC-2
score plot for the nuclei component in fibroblasts (D) and mesothelial cells (E). (F,G) Corresponding
PC-1 and PC-2 loading plot for the nuclei component indicating changes in DNA after PAM treatment
of (F) fibroblasts and (G) mesothelial cells. (H,I) Statistical comparison (of the spectra for nuclei, lipids
and cytoplasmatic proteins obtained in (C)) was performed by PCA and subsequent normalization
of the PC score values to the mean values of controls. This enabled the assessment of molecular
differences in nuclear, lipid and cytosolic protein composition; the data points represent average
score values per donor (mean ± SD; * p < 0.05; paired t-test).
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Figure 3. PAM treatment induces anti-proliferative pathways in fibroblasts and initiates cell sur-
vival in mesothelial cells. Cells were incubated with 1:2 diluted PAM for 4 h and analyzed after
indicated timepoints. (A) Relative cell viability after 4 h of PAM incubation relative to controls.
(B) Relative γH2AX intensity in flow cytometry after PAM incubation relative to controls. (C,D) Rela-
tive flow cytometry fractions of cells in cell cycle phases S, G0/G1 and G2/M after PAM incubation in
(C) fibroblasts and (D) mesothelial cells relative to controls. (E,F,H) DigiWest protein profiles of
fibroblasts and mesothelial cells after PAM incubation relative to controls. (E) Heat map of log2
transformed DigiWest data. Data were median-centered, and hierarchical clustering was performed
using complete linkage and Euclidean distance, utilizing the MultiExperiment Viewer (MeV version
4.9.0, [45]) software. Yellow indicates a high signal level; blue indicates a low signal level (compared
to median). (F) Relative expression of the cell cycle-regulating factors CDK4, Cyclin D1, p21 and H3
(Ser10) in fibroblasts (black) and mesothelial cells (gray). (G) Relative caspase-3/7 activity after PAM
incubation relative to controls. (H) Relative expression of the anti-proliferative and pro-apoptotic
factors p-p53 and Rb and the cell survival factors AKT, p AKT, HSP27 and survivin in fibroblasts
(black) and mesothelial cells (gray). Results are expressed as mean ± SD; * p < 0.05 as determined by
paired t-test.

3.4. PAM Treatment Reduces Pro-Adhesive Protein Expression

We next sought to characterize the impact of PAM on gene and protein expression,
with a focus on pro-adhesive factors critical for adhesion development. To determine
the global level of gene expression after PAM treatment, we examined the overall DNA
methylation status by immunofluorescence (IF) staining with specific antibodies against
5-methylcytosine (5mC). DNA methylation regulates gene expression and typically re-
presses gene transcription. PAM treatment was accompanied by significantly increased
gene methylation patterns (Figure 4A,B). This was supported by the significant increase
in the DNA methyltransferase 1 (DNMT1) activity (Figure 4C). We next evaluated the



Biomedicines 2022, 10, 927 10 of 16

expression of typical pro-adhesive factors and cytokines by DigiWest protein profiling and
a cytokine multiplex assay. Reductions in both fibroblast growth factor 10 (FGF-10) and
FGF receptor were demonstrated (Figure 4D). Furthermore, we found a suppression of
collagen I and fibronectin expression (Figure 4D) as well as a reduced secretion of the pro-
inflammatory cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and
interleukin 1 beta (IL-1b) (Figure 4E). The former was confirmed by confocal IF microscopy
and fibronectin-specific semiquantitative Western blot and chemiluminescence analysis
(Figures 4F–K and S2A,B). It is known that 90% of the collagen present in the body is of type
I [47]. A significant portion of amino acids in collagen I represents hydroxyproline [48]. We
analyzed the synthesized ECM after 120 h (Figure 4L) according to Keller et al. [15,49] and
found that hydroxyproline was significantly reduced after single PAM treatment. Indirectly,
this also suggests that the concentration of extracellular collagen I is significantly reduced
after PAM treatment. Matrix metalloproteinases (MMPs) are proteolytic enzymes with a
crucial role in the ECM remodeling process during tissue fibrosis and the development of
postoperative adhesions [3]. Fibroblasts demonstrated a statistically significant decrease in
MMP-2 and a tendential decrease in MMP-1 expression within 72 h after PAM treatment
measured by ELISA (Figures 4M and S2C). PAM-treated mesothelial cells revealed a signifi-
cant downregulation of MMP-1 after 72 h (Figure S2D). Furthermore, the strong and stable
downregulation of MMPs in fibroblasts was accompanied by a reduction in transforming
growth factor beta 1 (TGF-β1) expression (Figure 4N).

Taken together, these data indicate that PAM treatment significantly reduces the ex-
pression and secretion of relevant adhesive factors and interferes with multiple intracellular
regulatory mechanisms that, if untreated, critically contribute to the pro-adhesive capacity
of fibroblasts (Figure 5).
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Figure 4. PAM treatment attenuates protein biosynthesis and the secretion of pro-adhesive factors.
Fibroblasts were incubated with 1:2 diluted PAM for 4 h and analyzed after indicated timepoints.
(A) Representative IF microscopy after staining with anti-5mC antibodies and (B) relative genomic
methylation level per nucleus (number of foci normalized to the control); the scale bar equals 10 µm.
(C) DNMT activity level per cell. (D) DigiWest protein profiles of pro-adhesive factors collagen
I, FGF receptor and FGF-10 and fibronectin relative to controls. (E) Cytokine multiplex assay of
GM-CSF and IL-1b in fibroblast supernatants relative to control. (F,G) Representative IF microscopy
of fibronectin (F). Scale bars represent 100 and 10 µm, respectively. (G,H) Representative Western blot
of fibronectin (G), and relative of fibronectin expression (H) (analyzed from (G)). (I,J) Representative
IF microscopy of collagen I (I). Scale bars represent 100 and 10 µm, respectively. (J,K) Representative
Western blot of collagen I (J), and relative collagen I expression (K) (analyzed from (J)). (L) Relative
extracellular hydroxyproline expression. (M) Relative MMP-2 expression. (N) Relative expression of
TGF β. Results are expressed as mean ± SD; * p < 0.05 as determined by paired t-test.
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Figure 5. (A) Reactive species in PAM induce an intracellular increase in ROS and RNS, especially
by cytoplasmic membrane impairment. This is followed by the induction of various intracellular
response pathways such as altered genomic methylation patterns and signal transduction cascades
involving attenuation of cell growth and protein biosynthesis by cell cycle arrest and p53-associated
apoptosis. (B) Schematic model of pathological cell growth, cytokine secretion and secretion of
pro-adhesive molecules such as collagen and fibronectin following peritoneal disruption of the
superficial cell layer. (C) Hypothesized mode of action of PAM application including inhibition of
fibroblast proliferation and attenuation of cytokine and ECM components secretion, and unhindered
re-epithelialization by mesothelial cells.

4. Discussion

In the present study, PAM treatment resulted in efficient anti-proliferative effects at the
molecular and cellular levels, which were cell type-specific depending on the PAM dosage.
The investigation of selective plasma effects has been the subject of several in vitro studies,
based on which a few mechanistic models have been established regarding cancer cells.
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In this study, we transferred the well-known PAM effects on neoplastic cells to primary
human peritoneal tissue, the emergence site of postoperative intra-abdominal adhesions.
Fibroblasts and mesothelial cells were isolated from solid peritoneal tissue and peritoneal
wash cytology, respectively [9]. In this setting, MEM was used for plasma treatment to
provide optimal conditions for cell growth and metabolism. Future studies need to confirm
the study results by using medically approved and intracorporeally applicable substances
and buffers.

By Raman imaging, we could exclude any changes in cell morphology after PAM
treatment. The significant molecular changes, however, were predominantly assigned to
peak shifts of DNA bases, cytosolic proteins and cell membrane lipids. Using standard
molecular biology methods, we confirmed selective PAM effects on fibroblasts’ prolif-
eration and metabolism. In this regard, DNA damage was accompanied by cell cycle
arrest and apoptosis. We demonstrated both very early DNA damage events (most prob-
ably through RONS-driven chemical modifications of DNA molecules) and late DNA
damage events after 72 h (which could be a consequence of apoptotic processes). Fol-
lowing ROS formation and DNA double-strand breaks we found alterations in genomic
methylation patterns and p53-associated signal transduction cascades. In line with current
literature, we found that a subset of the cell population remains in the G2 phase [50],
supported by cell cycle-specific molecular markers (downregulation of mitosis-specific his-
tone H3 phosphorylation; increase in associated cell cycle regulators CDK4, cyclin D1 and
p21) [44,45]. As a consequence, PAM-treated fibroblasts entered apoptosis, shown by the
tendential activation of the effector caspases casp3/7. Mesothelial cells initiated the intrinsic
survival program (AKT-pathway, HSP27, survivin).

Fibroblasts involved in peritoneal adhesions show increased proliferation and protein
titration as well as reduced apoptosis rates [51–53]. Moreover, increased basal mRNA
and protein levels of collagen I, fibronectin, MMPs and TGF-β 1/2 interleukins were re-
ported [54]. TGF-β1 is a potent trigger of epithelial mesenchymal transition (EMT) that
promotes the loss of epithelial features, including apico-basal polarity, intercellular con-
tacts and the gain of mesenchymal features, including increased migratory capacity and
contractility [55]. Beyond this, it was shown that TGF-β induces collagen I overexpression
followed by skin keloids [56]. In this study, PAM was able to decrease extracellular levels
of TGF-β1 and IL-1. The blockade of TGF-β has been a successful approach to prevent
adhesions in animal experiments [57–59]. In addition, the intracellular expression of pro-
adhesive fibronectin and partially that of collagen I was reduced after PAM treatment. In
accordance, Sung et al. recently reported a reduced expression of collagen I after plasma
treatment of fibroblasts derived from skin keloids [60]. Collagen I is a main part in ECM
and an important factor in peritoneal adhesions. The inhibition of collagen I deposition
and fibroblast proliferation with dexamethasone was the subject of previous studies to
effectively prevent postoperative adhesions in the mouse model [61]. Collagen I proteins
are composed of a triple helix [62]. Characteristic of collagen is its high content of hy-
droxyproline amino acids, which has made hydroxyproline a common measure of total
collagen I and collagen I metabolism [48,63]. Clinical studies applied collagen density
measurements, hydroxyproline content determination, fibroblast counts and densitometric
analysis of collagen I to evaluate the treatment efficacy in reducing intra-articular adhe-
sion [64]. The reduction in hydroxyproline content thereby strongly correlated with the
reduction in postinterventional adhesions. The ability of PAM to significantly decrease
the extracellular hydroxyproline concentration suggests that PAM (i) significantly reduces
extracellular collagen I and total ECM and, therefore, (ii) could positively correlate with
reduced formation of adhesions in vivo.

In future, PAM may be applied intraoperatively during or immediately following
the surgical activities using a spray device. In this early phase, fibroblast-rich stroma is
exposed and induces pro-adhesiogenic processes. Here, PAM may effectively intervene by
selectively inhibiting fibroblasts having contact with the intra-abdominal space. Deeper
tissue layers as well as surrounding mesothelial cells remain unaffected and may enable
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enhanced peritoneal wound closure. The pathogenesis of adhesion formation is com-
plex and is not limited to the cellular component. Additional mechanisms involved are
systemic coagulopathy and fibrin deposits, which form a matrix for the development of
fibro-collagenous tissue. Besides the present work focusing on cellular plasma responses,
previous studies showed that direct plasma treatment has a significant impact on non-
cellular components, such as blood hemostasis resulting in shortened full clotting time [65].
Moreover, the present study is limited to 2D cell culture experiments. Previous studies
found that the “activation status” of fibroblasts is not completely reliable in these systems.
The contact with surface polymers of cell culture materials may be followed by activation
of fibroblasts [66]. Due to this, the 2D cell culture in vitro data must be validated under
in vivo (-like) conditions.

5. Conclusions

Here, we report the first application of PAM on human peritoneal tissue to prevent
pro-adhesive cell responses. Based on the results of the present study, the clinical appli-
cation of PAM may represent a promising method to limit or prevent the formation of
postoperative adhesions. Peri- or postoperative flushing of the abdominal cavity with PAM
could suppress the dysregulation of pro-adhesive ECM-producing connective tissue cells.
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www.mdpi.com/article/10.3390/biomedicines10040927/s1, Figure S1: Characterization of cellular
PAM effects by Raman imaging; Figure S2: Fibronectin and MMP-1/2 expression analysis; Figure
S3: Gating strategy for flow cytometry; Table S1: Identified Raman peaks (cm−) and their molecular
assignment. References [18–40] are cited in the Supplementary Materials.
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