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Introduction
Are you tired? The precipitating factors of tiredness may 
involve brain overactivity at night, qualitative change in work 
habits, and brain exhaustion. The common factor predisposing 
one to fatigue is aging.1 However, an epidemiological study 
reported that many students worldwide suffer from brain 
fatigue and sleep deprivation.2 Under these conditions, con-
centration and intelligence are reduced, additionally leading to 
autonomic symptoms and the risk of depressive symptoms.2 It 
is surprising that not only adults but also children suffer behav-
ioral and brain function impairment due to fatigue. In a society 
coping with ongoing fatigue, it is important to identify the 
fatigue mechanism that can effectively mitigate fatigue-related 
cognitive decline and brain dysfunction.

Fatigue is mainly divided into central (brain or mental) 
fatigue, peripheral (muscle) fatigue, and infection fatigue and 
differs with respect to molecular causal factors. Several factors 
affecting each type of fatigue are depicted in Figure 1. Among 
these fatigue types, central fatigue and infection fatigue lead to 
complex exhaustion, and recovery is difficult without sufficient 
rest and supplements (medications) to block fatigue. In this 
review, we focused specifically on central fatigue because it 
closely relates to everyday life and the experience of most of us. 
Central fatigue is implicated in chronic fatigue syndrome 
(CFS; myalgic encephalomyelitis) pathology3 and leads to 
reduced mental task performance,4,5 disrupted social life,2,3 and 

impaired brain functions,6,7 throughout life from childhood to 
old age. Here, an understanding of the fatigue mechanism is 
required to mitigate fatigue. Therefore, it is very interesting 
that a growing body of evidence shows that central fatigue can 
be explained by neurochemical mechanisms involving 
“tryptophan.”

Tryptophan, which is the precursor of serotonin and kynure-
nine, is an essential amino acid that produces intense changes 
in mood8 and fatigue.9 Moreover, tryptophan is involved in the 
development of areas of the brain associated with behavioral 
functions.10,11 In a rat model of tryptophan restriction, a sig-
nificant decrease in 5-bromo-2-deoxyuridine-positive cells was 
seen in the subgranular zone of the dentate gyrus; in addition, 
c-Fos-positive nuclei density was decreased in the prefrontal 
cortex, hippocampus, and amygdala, most likely suggesting a 
decrease in neurogenesis in the dentate gyrus by tryptophan 
restriction.11 Furthermore, rats with reduced tryptophan intake 
had higher running performance compared with rats with 
enhanced tryptophan intake and decreased level of extracellu-
lar tryptophan in the striatum.12 Therefore, it is clear that tryp-
tophan in the brain is involved in fatigue. Also, this evidence 
supports previous findings that tryptophan ingestion led to 
subjective drowsiness, fatigue, and dullness of sensation in 
humans.13 In addition, an electrophysiological study reported 
that elevated tryptophan concentration suppresses neuron fir-
ing.14 Furthermore, administration of tryptophan not only 
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caused fatigue but also decreased Morris water maze task per-
formance during both memory acquisition and recall.15 This 
evidence indicates that tryptophan could play a role in trigger-
ing central fatigue.

Previous studies have reported the “tryptophan-serotonin 
enhancement hypothesis” of central fatigue, which posits that 
central fatigue stems from increased passage of tryptophan into 
the brain and thus from higher levels of serotonin in the 
brain.16-20 However, it is notable that outside of serotonin syn-
thesis, the vast majority of tryptophan is metabolized via the 
kynurenine pathway into kynurenic acid and quinolinic acid21 
(Figure 2). Very recently, the “tryptophan-kynurenine enhance-
ment hypothesis” has been proposed to explain the mechanism 
of central fatigue15,22-25 and has been supported by evidence 
including reduced spontaneous motor activity in response to 
kynurenic acid administration, impaired memory performance 
in response to co-administration of kynurenic acid plus quino-
linic acid,15 and elevated concentrations of tryptophan and 
kynurenic acid in the brain under sleep deprivation–induced 
central fatigue conditions.22,24

The aim of this review is to summarize the neuroimaging, 
psychological, and neurochemical evidence for central fatigue 
triggered by neuroactive tryptophan metabolites. This work 
could contribute to our understanding of the latent mental 
problems associated with central fatigue.

Fatigue-Related Brain Changes
Fatigue is often observed in patients suffering from bone frac-
ture,9 cancer,26 coronary heart disease,27 stroke,28 depression,29 
and neurodevelopmental disorders.30 Thus, most of us experi-

ence fatigue and it may delay recovery from various pathologi-
cal conditions.

First, this section presents the types of fatigue and their 
neurochemical mechanisms. The types of fatigue mainly 
include central fatigue, peripheral fatigue, and infection fatigue. 
For example, most of us have often heard this dogma of exer-
cise, because it has been pointed out that accumulation of lactic 
acid in muscles is associated with the induction of muscle 
fatigue.31 However, lactic acid is converted to pyruvic acid in 
the presence of oxygen, and then it is used for the synthesis of 
adenosine 5′-triphosphate (ATP) after being metabolized by 
the Krebs cycle (tricarboxylic acid cycle). Thus, accumulation 
of lactic acid and intracellular acidosis have protective effects 
on the performance of fatigued muscles.32 Moreover, lactic acid 
is fuel for the Krebs cycle.33 This evidence suggests that lactic 
acid is not involved in triggering fatigue.

Second, central fatigue is implicated in the pathological 
condition known as CFS,3 and cross-sectional studies of 
patients with CFS provide an accumulating body of evidence 
on brain function. Cook et  al5 reported that compared with 
healthy controls, CFS patients in middle age showed increased 
activation during paced auditory serial attention tasks in vari-
ous cortical regions, for example, cerebellum, hippocampus, 
thalamus, superior temporal cortex, and inferior frontal cortex. 
In addition, Caseras et al4 reported that compared with healthy 
controls, CFS patients showed increased activation of the 
medial frontal cortex during 1-back memory tasks and 
increased activation of the inferior temporal cortex and medial 
temporal cortex during 2- and 3-back verbal working memory 
tasks. Regarding the brain regions associated with working 
memory, accumulated evidence shows that activation of the 
frontal cortex, parietal cortex, thalamus, medial temporal 
regions, basal ganglia, and cerebellar regions is involved in the 
processing of working memory.34-37 Therefore, it is thought 
that brain regions involved in processing working memory are 
more extensively activated in patients with CFS.38 Consequently, 
CFS may be leading to overload in the brain, which is a com-
plex process involving brain overactivity manifesting as a sense 
of exhaustion in life. In addition, a magnetic resonance imaging 
study in patients with CFS showed a reduction of white matter 
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Figure 1.  Factors affecting each type of fatigue.
Fatigue is mainly divided into 3 types: central fatigue, peripheral fatigue, and 
infection fatigue. Because of their neurochemical mechanisms, recovery from 
central fatigue and infection fatigue is more difficult without sufficient rest and 
supplements (or medicines) relative to peripheral fatigue.
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Figure 2.  The neuroactive tryptophan pathway and metabolites.
In mammals, as only about 5% of tryptophan is catabolized via the serotonin 
pathway, the vast majority of tryptophan is metabolized in the kynurenine 
pathway, which is the precursor pathway for the synthesis of the neuroinhibitory 
molecule, kynurenic acid, and neurotoxic molecule, quinolinic acid. Is the rate of 
the kynurenine pathway of tryptophan metabolism involved in central fatigue? If 
the tryptophan-kynurenine pathway is enhanced during central fatigue, does it 
lead to a reduction in cognitive functions and severe fatigue?
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volume in the bilateral areas of the internal and external cap-
sule and anterior midbrain, extending caudally into the bilat-
eral pons, dorsally into the right prefrontal lobe, anteriorly into 
the inferior frontal lobe, and anteriorly into the right temporal 
lobe.6 Moreover, the volume of the dorsal right prefrontal cor-
tex in patients with CFS was negatively correlated with fatigue 
status.39 These findings suggest that CFS leads to increase in 
cerebral-subcortical activation, despite decrease in cerebral-
subcortical brain volume. At present, our laboratory is investi-
gating associations between neuroactive tryptophan metabolites 
and brain functions in schoolchildren affected by central 
fatigue. If schoolchildren exhibit central fatigue due to neuro-
active tryptophan metabolites, then their brain structure and 
function may have been impaired at an early age.

Overall, structural imaging investigation has found that the 
volume of brain in working memory–related regions is decreased 
in patients with CFS. On the contrary, functional imaging 
investigation has demonstrated that activation in these regions 
increased the processing of working memory content. Do the 
brain regions where there is derangement (cerebral-subcortical 
regions) manifest as central fatigue in children? It is possible 
that neuroactive tryptophan metabolite–related central fatigue 
leads to derangement of brain functions in children.

Sleep Disturbance–Related Central Fatigue
The induction of central fatigue is closely linked to abnormal 
sleep conditions. Sleep is divided into non–rapid eye move-
ment sleep (REM) sleep and REM sleep, which are stages 
repeated about every 90 minutes, and then these sleep stages 
play a role in the recovery of brain function from fatigue. 

Insufficient sleep can lead to exhaustion in the brain, and cog-
nitive and work efficiency can be impaired by strong daytime 
sleepiness.

Many schoolchildren suffer from fatigability, unrefreshing 
sleep, and reduced mental concentration.2 Very recently, our 
laboratory demonstrated that although children with school 
refusal behavior may sleep 8 hours, they have lower sleep qual-
ity and a later sleep midpoint relative to the midpoint in healthy 
children (Figure 3A and B). Moreover, children who are school 
refusers have increased central fatigue and decreased cognition 
(Figure 3C and D). This result indicates that the sleep phase in 
school refusers is shifted to the daytime, and potential insuffi-
cient sleep is aggravated by night owl tendencies. Also, our 
laboratory demonstrated that sleep deprivation–induced cen-
tral fatigue in rats led to impulsivity, hyperactivity, impaired 
spatial cognitive memory accuracy,24 and decreased running 
performance,40 as their condition approached complete exhaus-
tion. As sleep deprivation is related to reduction in hippocam-
pal neurogenesis41 and memory retention,42 it is possible that 
sleep deprivation–induced central fatigue highly influences 
neurogenesis and memory capacity. Furthermore, our labora-
tory demonstrated that central fatigue was positively correlated 
with disturbance of sleep rhythm (Figure 4A), and central 
fatigue was negatively correlated with sleep efficiency in 
schoolchildren (Figure 4B). These observations indicate that 
central fatigue becomes more severe as sleep disturbance pro-
gresses in schoolchildren.

Regarding associations between tryptophan metabolites 
and sleep conditions, Pocivavsek et al43 reported that increased 
kynurenic acid in the brain after kynurenine injection caused 
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Figure 3.  School refusal children showed higher levels of central fatigue and sleep derangement. (A and B): Compared with healthy control children, 

school refusal children showed a significant shift in the midpoint of sleep and lower sleep quality. (C and D): Moreover, induction of central fatigue and 
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total REM duration to decrease and total wake duration to 
increase. In addition, kynurenine injection impaired perfor-
mance in the hippocampal-dependent contextual memory 
task. This finding suggests that kynurenic acid plays a key role 
in the molecular mechanism of sleep regulation. More notably, 
this finding provides a reason for investigating the role of neu-
roplasticity in central fatigue.

Taken together, previous studies suggest firm associations 
between central fatigue and sleep and lead to the conclusion 
that impaired cognition by sleep deprivation induces central 
fatigue. Thus, sleep deprivation–induced central fatigue may be 
associated with neuroplasticity reduction triggered by dynamic 
changes in neuroactive tryptophan metabolite levels.

Tryptophan-Related Central Fatigue
Tryptophan is an essential amino acid that binds to albumin in 
the circulation, and blood contains both free and bound trypto-
phan. Non-esterified fatty acids (NEFA) also compete for the 
same binding site. Increases in the levels of NEFA during exer-
cise and postoperatively result in the dissociation of tryptophan 
from the tryptophan-albumin complex.9,16 This leads to 
increased passage of free tryptophan into the brain through the 
blood-brain barrier (BBB) and thus to higher levels of seroto-
nin in the brain through the enzymatic activity of tryptophan 
hydroxylase 2 (TPH2)9,16 (see Figure 5). Moreover, branched-
chain amino acids (BCAA) compete with free tryptophan for 
entry into the brain via the system L transporter L-type amino 
acid transporter 1 (LAT-1) located at the BBB.44 If BCAA 
concentration decreases in the plasma, then the amount of free 
tryptophan entering the brain increases.

Yamamoto et al9 reported that coronary artery bypass graft 
patients showed a higher than baseline concentration of plasma 
free tryptophan after surgery; the plasma free tryptophan to 
BCAA (free tryptophan/BCAA) ratio increased after surgery, 
whereas plasma albumin decreased; this suggests that elevated 
tryptophan levels are intimately associated with the induction 
of central fatigue in the brain. This evidence further supports 
previous findings.45 Moreover, it has been speculated that 
Nagase analbuminemic rats could serve as an animal model of 
central fatigue because of their high plasma levels of free tryp-
tophan as well as high free tryptophan/BCAA ratio in plasma.9 

In addition, Melancon et al46 reported that older adults had an 
increased free tryptophan/BCAA ratio during sustained exer-
cise compared with baseline. These findings provide evidence 
that tryptophan availability to the brain is elevated during 
fatigue and support for the hypothesis that serotonin synthesis 
is increased in central fatigue.

Similarly, tryptophan ingestion led to elevated free trypto-
phan in the blood47,48; lower activation in the postcentral 
gyrus, angular gyrus, inferior frontal gyrus, and inferior fron-
tal sulcus during the Stroop task48; and induction of drowsi-
ness and fatigue.13 Furthermore, an increased passage of free 
tryptophan in the brain was shown to enhance serotonin syn-
thesis during the acute-fatigue stage49 and elevate serotonin 
transporter expression in the hippocampus and prefrontal 
cortex, and reduced serotonin1A receptor expression was 
shown to increase serotonin concentration in the brain during 
the chronic fatigue stage.50 In addition, Yamamoto et  al15 
reported that in tryptophan-treated rats, the acquisition of 
memory was delayed by tryptophan in the initial learning 
stage during the Morris water maze task. In the relearning 
phase of the Morris water maze task followed by memory 
evaluation using the probe test, tryptophan prolonged mean 
goal latency, suggesting that it qualitatively decreased learn-
ing recall. Thus, administration of tryptophan not only caused 
fatigue but also decreased cognition, including memory 
acquisition. However, little is known about the role of trypto-
phan receptors in central fatigue.

Taken together, the facts indicate that an increase in the 
plasma concentration of free tryptophan can result in exercise-
induced fatigue and postoperative-induced fatigue. This leads 
to increased passage of tryptophan into the brain through the 
BBB and thus to higher levels of serotonin in the brain. 
Therefore, central fatigue can be controlled by the excessive 
levels of tryptophan at the BBB.

Tryptophan-Serotonin Enhancement Hypothesis
In 1987, Newsholme et  al51 hypothesized that fatigue was 
caused by an increase in the plasma level of tryptophan and 
thereby in the brain level of neurotransmitter serotonin, which 
had negative effects on arousal, lethargy, sleepiness,  
and mood. Outside of fatigue, serotonin has a role in the 
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pathophysiological mechanism of depression52-54 and in brain 
development and neuroplastic regulation.10,11,55 Although the 
neurochemical mechanism of central fatigue is often confused 
with that of depression and both depend on the influences of 
neuroactive tryptophan metabolites, these mechanisms are 
completely different. For example, Maurer-Spurej et  al56 
reported that depressive patients showed lower level of seroto-
nin in platelets. Also, Ogawa et al57 provided evidence of lower 
blood levels of tryptophan in depressive patients. Thus, trypto-
phan depletion may induce depressive symptoms,58-60 suggest-
ing that tryptophan depletion and thereby lower serotonin 
synthesis decrease neuroplasticity.10,11,55 Moreover, depressive 
patients showed a decreased kynurenic acid level in the plasma 
compared with healthy controls.61 As higher levels of neuroac-
tive tryptophan metabolites have a known relationship to the 
induction of central fatigue, the basic neurochemical mecha-
nism in central fatigue differs from that in depression. Fatigue 
is the earliest manifestation of impaired health outcomes and 
quality of life, and prolonged fatigue may be linked to induc-
tion of depressive symptoms in the future.2,62,63

In addition, there is an accumulating body of evidence showing 
serotonin activation is associated with central fatigue. Blomstrand 
et al64 investigated the different concentrations of serotonin and its 
metabolite 5-hydroxyindoleacetic acid over a wide swath of the 
brain in resting and treadmill-exercised rats. The rats in the tread-
mill-exercised group, when compared with rats in the resting 
group, showed higher concentrations of serotonin and 5-hydrox-
yindoleacetic acid in the brain stem and hypothalamus and higher 
concentration of 5-hydroxyindoleacetic acid but not serotonin in 

the hippocampus and striatum, but both groups showed similar 
concentrations of these compounds in the cortex and cerebellum. 
This result indicates that sustained exercise generates central 
fatigue that leads to an increase in serotonin concentration, spe-
cifically in the hypothalamus and brain stem. This evidence has 
been supported by previous findings that led to the tryptophan-
serotonin enhancement hypothesis.16-20 In contrast, Yamamoto 
et al15 used in vivo microdialysis to show that serotonin was tran-
siently released after 30 minutes of treadmill running to exhaus-
tion, but this did not reflect the duration of fatigue. Moreover, after 
supplementation with 2 μM l-tryptophan, the serotonin released 
in response to 30 mM K+ was immediately taken up by nerve ter-
minals at 60 minutes and the gradually reabsorbed serotonin was 
rapidly metabolized to 5-hydroxyindoleacetic acid, which returned 
the concentration of serotonin to its original level at 90 minutes. 
These findings show that released serotonin is quickly reabsorbed 
and subsequently metabolized to 5-hydroxyindoleacetic acid, sug-
gesting that serotonin has no effect on fatigue. As Nagase analbu-
minemic rats are known to have lower blood levels of albumin,65 
they had higher extracellular tryptophan concentrations and lower 
extracellular 5-hydroxyindoleacetic acid concentrations when 
fatigued by treadmill running.15 To test whether the neuromodu-
latory functions of the tryptophan-serotonin pathway are acti-
vated by a tryptophan receptor agonist, our laboratory 
intraperitoneally injected the tryptophan receptor agonist d,l-β-
(1-naphthyl)alanine. The rats injected with d,l-β-(1-naphthyl)
alanine had lower spontaneous locomotor activity in the open field 
than rats injected with saline (Figure 6A and B). In contrast, rats 
injected with d,l-β-(1-naphthyl)alanine had decreased serotonin 

Figure 5.  The uptake of peripheral tryptophan by the brain.
Tryptophan binds to albumin in the blood under normal conditions. Non-esterified fatty acids (NEFA) also compete for the same binding site. An increase in the levels 
of NEFA results in the dissociation of albumin and tryptophan during exercise-induced fatigue and postoperative-induced fatigue. Then, free tryptophan is rapidly taken 
into the brain via system L transporter located on the surface of the blood-brain barrier, and thus leading to enhanced serotonin synthesis in the brain by the enzymatic 
activity of tryptophan hydroxylase 2. 5-HIAA indicates 5-hydroxyindoleacetic acid; LAT-1, L-type amino acid transporter 1.



6	 International Journal of Tryptophan Research ﻿

concentrations in the hypothalamus (Figure 6C). It is possible that 
the enhancement of the tryptophan-serotonin pathway in the 
brain is not involved in the rat’s central fatigue.

Some human studies have failed to support the role of tryp-
tophan-serotonin enhancement in central fatigue. Some stud-
ies have reported that administration of serotonin reuptake 
inhibitors reduces performance capability.66-68 However, most 
studies have demonstrated that serotonin reuptake inhibitors 
do not negatively affect central fatigue.69-73 For example, 
Meeusen et  al. used a double-blind randomized crossover 
design to administer the serotonin reuptake inhibitor fluoxe-
tine to athletes before exercise for 90 minutes. The results 
showed that exercise performance is not influenced by fluoxe-
tine, although some plasma hormones indicated a central effect 
of the drug. This evidence supports that serotonin does not 
exacerbate exercise-induced central fatigue. However, most 
studies on central fatigue have been focused on the neuro-
chemical mechanism of exercise-induced fatigue. In fact, cen-
tral fatigue induced by chronic sleep disorders reportedly 
affects 40% to 80% of school children, causing school attend-
ance difficulties, facilitating psychiatric disease development,2,74 
and contributing to brain dysfunction development.75 To clar-
ify the neurochemical mechanism of neuroactive tryptophan 

metabolites in central fatigue associated with sleep disorder, 
our laboratory established a rat model of central fatigue induced 
by chronic sleep disorder (CFSD).40 In CFSD rats, free trypto-
phan was taken up into the brain via the BBB and subsequently 
led to an increase in presynaptic levels of tryptophan in the 
hypothalamus and hippocampus and a decrease in presynaptic 
levels of serotonin in the hypothalamus, hippocampus, cerebral 
cortex, striatum, and medulla oblongata.24 In addition, psycho-
motor activity and social interaction were disrupted,40 spatial 
cognitive memory accuracy impaired, and hyperactivity and 
impulsivity increased.24 Therefore, it was concluded that CFSD 
rats could serve as an animal model of central fatigue associated 
with sleep disorder, given their high hippocampal-hypotha-
lamic levels of tryptophan, high blood levels of free tryptophan, 
and inability to synthesize serotonin. Thus, our findings dis-
prove the hypothesis that serotonin has a role in central 
fatigue.15,22,24,40 However, little is known about temporal 
changes in neuroactive tryptophan metabolite levels in the 
brain of the CFSD rat.

Moreover, tryptophan in the blood at high concentration 
usually needs to enter the brain via LAT-1 at the BBB.44 
However, tryptophan may be able to enter the brain without 
LAT-1. For example, there is some evidence that psychological 
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stress increases the permeability of the BBB, suggesting that 
some compounds can enter the brain without transporters.76,77 
The breakdown of the BBB can be assessed by quantification 
of extravasated Evans Blue in the brain.78,79 With this method, 
our laboratory investigated the permeability of the BBB in 
CFSD rats. The results showed that brain tissue from CFSD 
rats, unlike from healthy rats, turned blue in color as a result of 
Evans Blue leakage (Figure 7). This finding indicates that cen-
tral fatigue can lead to breakdown of the BBB, suggesting that 
the excessive amount of plasma tryptophan can facilitate its 
entry into the brain without LAT-1 mediation or may cause 
the breakdown of LAT-1 functions under severe fatigue condi-
tions, and lead to accelerated metabolism of tryptophan in the 
brain to kynurenine and serotonin.

However, evidence that lower levels of serotonin are associ-
ated with the precipitating factors of fatigue, especially CFS, is 
accumulating. The clinical symptoms of CFS are characterized 
by autonomic, neuroendocrine, and immune function impair-
ment.80,81 Previous studies have reported that in infection-
related CFS, inflammatory cytokines in the brain can lead to 
reduced behavioral performance, disrupted hypothalamic-pitu-
itary-adrenal axis, and impaired peripheral cellular immu-
nity.82,83 Therefore, it is speculated that increased cytokine 
levels and decreased serotonin level can be involved in patho-
gen-induced CFS.

The polyriboinosinic-polyribocytidylic acid (poly-I:C), a 
virus-mimicking synthetic double-stranded RNA, is very use-
ful for understanding immunologically induced fatigue. In a rat 
model of poly-I:C-induced fatigue, spontaneous wheel run-
ning decreased until day 8 after poly-I:C injection.83,84 In addi-
tion, there was increased expression of interleukin 1β messenger 
RNA (mRNA) in the cerebellum, medial preoptic area, lateral 
preoptic area, paraventricular hypothalamic nucleus, and lateral 
hypothalamic, as well as increased expression of interferon-α 
mRNA.83,84 As patients with CFS showed impaired cytokine 
production and immune functions such as an increased level of 
interferon-α in the cerebrospinal fluid85 and decreased natural 

killer cell activity,86 expression of interferon-α in the brain may 
be associated with poly-I:C-induced fatigue as well as CFS. 
Moreover, interferon-α has been shown to upregulate the tran-
scription of serotonin transporter mRNA in cultured cell 
lines.87 Katafuchi et al84 reported that the expression of seroto-
nin transporter in the brain was enhanced by interferon-α in 
poly-I:C-induced fatigue rats and decreased the extracellular 
levels of serotonin in the medial prefrontal cortex. These find-
ings suggest that serotonin transporter overexpressed in the 
medial prefrontal cortex scavenges serotonin, subsequently 
leading to the reduction in serotonin levels by poly-I:C injec-
tion. This is theorized to cause infection-related fatigue, which 
is the “serotonin reduction hypothesis.”

Furthermore, there is accumulating evidence for the involve-
ment of glial cell cytokines in inflammatory fatigue. For example, 
interleukin 1β, a proinflammatory cytokine involved in poly-
I:C-induced fatigue, is produced by activated microglia. 
Moreover, Ifuku et al83 demonstrated that direct application of 
poly-I:C to primary cultured microglia enhances their expres-
sion of interleukin 1β. This finding suggests that the injection of 
poly-I:C leads to increased expression of interleukin 1β in 
microglia from the rat fatigue model. This evidence supports the 
finding that microglial activation inhibition by minocycline sup-
presses increased interleukin 1β expression and CFS induction. 
As activation of microglia plays an important role in neuro-
immunological diseases, it is possible that microglial activation is 
involved in inflammatory fatigue. Furthermore, microglia closely 
interact with astrocytes in the brain.88,89 Although interferon-α 
has no effect on serotonin transporter expression in astrocytes, 
interleukin 1β increases expression of serotonin transporter in 
primary cultured astrocytes.83 It has been shown that injection of 
poly-I: C induces expression of serotonin transporter in astro-
cytes, but not in microglia. Thus, synthesis of interleukin 1β by 
microglial activation leads to enhanced expression of serotonin 
transporter in astrocytes during poly-I:C-induced fatigue, subse-
quently reducing serotonin levels in the brain. Importantly, we 
need to separate not only neurons but also glia in future research 
to clarify the neurochemical mechanism in central fatigue.

Taken together, these findings suggest that in the rat model 
of treadmill exercise–induced fatigue, levels of tryptophan and 
serotonin are increased in the brain stem and hippocampus. 
However, central fatigue in most people is closely correlated in 
everyday life. For example, many schoolchildren experience 
central fatigue induced by chronic sleep disorders, which causes 
them to have school attendance difficulties. To resolve the neu-
rochemical mechanism of sleep disorder–induced central 
fatigue, our laboratory established a new rat model of central 
fatigue induced by chronic sleep disorder, that is, CFSD. The 
rat model of CFSD can be characterized by increasing trypto-
phan uptake into the brain and lack of serotonin synthesis. In 
addition, once transported into the brain, tryptophan is readily 
metabolized to kynurenine. This evidence points to a key role 
for the tryptophan-kynurenine pathway in the behavioral and 
biochemical mechanism of central fatigue.

Figure 7.  Disruption of the blood-brain barrier (BBB) by sleep 

deprivation–induced central fatigue. The breakdown of the BBB can be 

estimated by quantification of extravasated Evans Blue in the brain. Using 

this method, extravasated Evans Blue content in the whole brain 

increased in central fatigue induced by (A) chronic sleep disorder (CFSD) 

rats compared with (B) healthy rats. This result indicates that central 

fatigue could lead to increased BBB permeability, suggesting barrier 

breakdown. Perhaps, tryptophan and other substances can freely enter 

the brain without the assistance of some transporter.
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Tryptophan-Kynurenine Enhancement Hypothesis
Previous studies have supported the tryptophan-serotonin 
enhancement hypothesis, in which tryptophan uptake into the 
brain enhances serotonin production, as demonstrated in the rat 
model of sustained-exercise fatigue.16-20 Studies in humans also 
support the hypothesis by showing higher plasma levels of free 
tryptophan during postoperative-induced fatigue9,45 and exer-
cise-induced fatigue.20 However, 5% and 95% of tryptophan, 
when taken up into the brain, are metabolized along 2 path-
ways, the serotonin pathway and the kynurenine pathway, 
respectively.90 Kynurenine is metabolized to quinolinic acid and 
kynurenic acid. Quinolinic acid is neurotoxic in the central 
nervous system91 and has been shown to be present at higher 
level in patients with CFS.92 Quinolinic acid is an N-methyl-d-
aspartic acid (NMDA) receptor agonist and causes excitotoxic 
neuronal death.93 On the contrary, kynurenic acid is an endog-
enous astrocyte-derived neuromodulator21 and is implicated in 
the cognitive process and pathophysiological mechanism in 
some diseases.24,94-96 Mackay et al97 revealed that after trypto-
phan loading, brain-damaged patients had higher levels of 
kynurenic acid than healthy controls. Also, kynurenic acid has 
been reported to act as an antagonist of both NMDA and α7-
nicotinic acetylcholine (α7nACh) receptors.21,98 Therefore, it is 
considered to take part in glutamatergic and cholinergic neuro-
transmission in the central nervous system.99,100 These findings 
suggest that brain dysfunction in central fatigue may be associ-
ated with tryptophan-kynurenine pathway upregulation.

There is an accumulating body of evidence of the kynurenine 
pathway’s association with central fatigue. Yamamoto et  al15 
reported that the microinjection of 3 nmol of kynurenic acid 
into the third cerebral ventricle decreased physical and open-
field and rearing activity, and injection of kynurenic acid at 
0.25 mM caused a dose-dependent increase in fatigue induced 
by running. In addition, quinolinic acid alone or coadministered 
with kynurenic acid produced a decrease in memory recall and 
retention in the Morris water maze task. These findings suggest 
that not only tryptophan but also its metabolites kynurenine 
and quinolinic acid decrease spatial memory performance and 
lead to the kynurenic acid-quinolinic acid hypothesis that cen-
tral fatigue arises due to a rapid increase in concentrations of 
active neurometabolites. In addition, our laboratory performed 
the experiment in rats intraperitoneally injected with kynure-
nine (100 mg/kg).24 The rats showed increased kynurenic acid 
synthesis in the hippocampus compared with rats injected with 
saline and suppressed recall of retained spatial cognitive mem-
ory, but not the acquisition of memory. This evidence proves 
that peripherally administered kynurenine enters the brain via 
the BBB and thereby increases kynurenic acid synthesis in the 
hippocampus. Moreover, kynurenic acid is associated with 
reduction in glutamate levels.21,99,100 Reduction in glutamate 
levels has been implicated in spatial cognitive memory loss101 
and impaired social behavior.102 Therefore, reduction in gluta-
mate levels by increasing kynurenic acid levels may be causing 

the inaccurate recall of retained memory in central fatigue. 
However, little is known about the neuromodulatory functions 
of glutamate in the brain during central fatigue. Furthermore, 
elevated kynurenine concentration suppresses dopamine release 
into the synaptic cleft.103 Our laboratory demonstrated the 
reduction in concentration of dopamine and its metabolite 
3,4-dihydroxy-phenylacetic acid in presynaptic neurons of the 
hypothalamus and hippocampus in CFSD rats compared with 
healthy rats, suggesting the possibility that elevated concentra-
tion of kynurenic acid in presynaptic neurons may suppress 
dopamine release from the presynaptic neurons.24 Overall, cen-
tral fatigue may be caused by metabolism of kynurenine to 
kynurenic acid. Nevertheless, the link between levels of endog-
enous kynurenine metabolites in the peripheral and central 
nervous system and central fatigue is not fully understood, nor 
have associations between the central fatigue mechanism and 
kynurenine metabolites been firmly established.

Regarding kynurenine in vivo, 40% of kynurenine in the 
brain is produced in the central nervous system, whereas 60% 
has its origin in the peripheral nervous system.96,104 Also, brain 
entry of peripheral kynurenine is facilitated via neutral amino 
acid transporters expressed in the BBB.96,104 Moreover, kynure-
nine is metabolized into kynurenic acid or quinolinic acid, with 
the first step (metabolism into kynurenic acid) involving cata-
lytic reaction with kynurenine aminotransferases (KATs) local-
ized in astrocytes.105 Notably, the endogenous kynurenine 
metabolic pathway in the peripheral and central nervous sys-
tems changes during fatigue. Recently, Strasser et al106 reported 
that exhaustive aerobic exercise in young adults reduced trypto-
phan concentration and increased kynurenine levels in blood 
while increasing the kynurenine/tryptophan ratio. This result 
suggests that the enhancement of kynurenine may be partly 
associated with exercise-induced fatigue, but the study did not 
examine the association with fatigue score, although low tryp-
tophan levels followed by intense exercise may diminish its 
supply to the brain and thereby limit its availability for seroto-
nin production. Regarding this counterargument, it is possible 
that plasma levels of kynurenine are rapidly increased by catal-
ysis of free tryptophan during exercise, but without serotonin 
synthesis in the brain. Also, the association between fatigue 
and elevated blood levels of kynurenine supports recent find-
ings in chronic hemodialysis patients.107

Moreover, strong evidence was obtained for the role of the 
endogenous tryptophan-kynurenine pathway in the rat model of 
central fatigue. Very recently, our laboratory reported that CFSD 
rats showed higher blood levels of tryptophan and kynurenine 
compared with healthy rats.24 This suggests that tryptophan and 
kynurenine, which are present as free forms at increased levels in 
the blood, enter the brain during central fatigue via the BBB in a 
synergestic manner (Figure 8). In addition, our laboratory first 
demonstrated that tryptophan concentrations in presynaptic 
neurons of the hypothalamus and hippocampus and kynurenine-
to-kynurenic acid metabolism were drastically increased in 
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CFSD rats, but this was not true for serotonin metabolism. These 
findings provide convincing supportive evidence of the trypto-
phan-kynurenine enhancement hypothesis in central fatigue and 
demonstrate the presence of peripheral presynaptic tryptophan 
and kynurenine in the hypothalamus-hippocampal circuit and 
the production of the tryptophan-kynurenine-kynurenic acid 
amplification effect during central fatigue. Thus, our laboratory 
provided the first evidence of the involvement of a tryptophan-
kynurenine pathway mechanism at neuronal junctions in the 
transitional zone of the peripheral and central nervous systems 
during central fatigue. However, little is known about the central 
effect of quinolinic acid on central fatigue.

Regarding the activation of key enzymes in tryptophan 
metabolism, peripheral kynurenine is produced by the catalytic 
reaction of free tryptophan with indoleamine-2,3-dioxygenase 
(IDO) and tryptophan 2,3-dioxygenase (TDO) in the liver.108,109 
Then, it crosses the BBB to be rapidly taken up in the brain.110 
However, a previous study found that brain tissue did not express 
IDO and TDO.109 In contrast, 1 study in TDO−/− mice reported 
the critical role of TDO in hippocampal neurogenesis, hip-
pocampal neuron maintenance, and anxiety-related behavior.111 
In addition, the immature dentate gyrus in adult alpha-CaMKII 
hetero-knockout mice showed decreased expression of TDO 
mRNA, suggesting that decreased expression of TDO was asso-
ciated with the impairment of working memory and mood 

regulation.112 Furthermore, Kanai et al113 found that TDO was 
expressed in the hippocampus and cerebellum, suggesting that 
TDO is locally expressed and regulated in the brain and there-
fore may be associated with hippocampal and cerebellar devel-
opment and function. Tryptophan and its neuroactive metabolite 
kynurenine, which is converted by TDO or IDO, are involved in 
increased production of nerve growth factor in astrocytes and 
promote hippocampal and cerebellar development.10,11,114-117 
Furthermore, besides catalyzing tryptophan with IDO, TDO 
plays a pivotal role in the homeostasis of tryptophan metabolites 
in the peripheral and central nervous systems.105,113,118 Thus, the 
impairment of TDO expression in the brain and liver may be 
associated with neuropathological disorder. However, little is 
known about the associations between the key enzymes of tryp-
tophan metabolism and central fatigue.

Taken together, our findings in CFSD rats show that trypto-
phan and kynurenine, which are present as free forms and 
increased in blood, enter the brain via the BBB in a synergetic 
manner, where their presence in the presynaptic neurons of lim-
ited brain regions amplifies the effect of the tryptophan-kynure-
nine-kynurenic acid pathway during central fatigue. Our first 
evidence is supported by recent reports119 that propose a role for 
not only serotonin but also kynurenine. Furthermore, it is neces-
sary to clarify the role of glial neuroactive tryptophan metabo-
lites in central fatigue.

Figure 8.  Metabolism of tryptophan to kynurenine during central fatigue.
Tryptophan is catabolized along the kynurenine pathway by tryptophan dioxygenase (TDO) or indoleamine dioxygenase in the liver, and then crosses the blood-brain 
barrier (BBB) to be rapidly taken up in the brain. Also, tryptophan may be directly metabolized to kynurenine by the enzymatic activity of TDO in the brain. In central 
fatigue, tryptophan and kynurenine enter the brain via the BBB in a synergetic manner. LAT-1 indicates L-type amino acid transporter 1.
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The Establishment of the Fatigue Circuit
Recent studies have supported the tryptophan-kynurenine 
enhancement hypothesis of central fatigue.15,22-25 For example, 
our laboratory findings demonstrated the involvement of the 
amplification effect of tryptophan-kynurenine-kynurenic acid 
pathway factors in central fatigue.24 However, the brain con-
tains 10% neurons and 90% glial cells,120 and thus the targets in 
previous analyses of central fatigue–associated neuroactive tryp-
tophan metabolites are both glial cells and neurons. Kynurenic 
acid synthesis has long been thought to take place in astrocytes, 
and few studies have focused on other glial cells. Although oli-
godendrocytes protect neuronal axons by forming a myelin 
sheath around the axons to allow saltatory conduction of nerve 
action potentials,121 previous studies have reported that oligo-
dendrocytes may also take part in neurotransmission and synap-
tic activity.122,123 Wejksza et  al124 demonstrated that KAT 
enzymes are present in an oligodendrocyte cell line and produce 
oligodendrocytic kynurenic acid from l-kynurenine in a con-
centration- and time-dependent manner. Kynurenic acid syn-
thesis in an oligodendrocyte cell line has been shown to be 
decreased in a concentration-dependent manner by l-trypto-
phan. These findings suggest that oligodendrocytes may be 
associated with the regulation of kynurenic acid balance in the 
brain. Moreover, the number of O4-positive cells in oligoden-
drocyte culture reduced after incubation with quinolinic acid.125 
This evidence suggests that elevated quinolinic acid during 
neuropathological diseases may induce oligodendrocyte death. 
However, the results of previous studies on central fatigue do 
not provide clear evidence that induction in central fatigue is 
attributable to the characteristics of glial-neuronal interactive 
process. Therefore, how tryptophan and kynurenine, present in 
the periphery, behave as inducers of central fatigue in the glial-
neuronal circuit remains unknown.

Our laboratory identified a tendency for elevation in trypto-
phan concentration in oligodendrocytes during central fatigue.24 
Although it is difficult to interpret the meaning of the elevated 
tryptophan concentration and presence of kynurenic acid in oli-
godendrocytes within the hypothalamus-hippocampal circuit 
during central fatigue, with much remaining unknown as to the 
finding, the association of oligodendrocytic kynurenic acid and 
elevated oligodendrocytic tryptophan with the pathogenesis of 
central fatigue is still possible. For example, myelin sheath dam-
age by impairment of the oligodendrocytic system induces cogni-
tive dysfunction via lowered nerve conduction velocity.126,127 
Furthermore, an electrophysiological study reported that elevated 
tryptophan concentration suppresses neuron firing.14 In central 
fatigue, an increase in tryptophan concentration in oligodendro-
cytes may inhibit saltatory conduction of nerve action potentials 
in hypothalamic and hippocampal neurons, forming a basis for 
axonal disorder and cognitive dysfunction. In detail, dynamic 
change in glial-neuronal interactive processes within the hypo-
thalamus-hippocampal circuit causes central fatigue, and 
increased tryptophan-kynurenine pathway activity in this circuit 

causes reduced cognitive function. However, little is known about 
the functional role of astrocytes and microglia in central fatigue.

Taken together, our study suggests that uptake of peripheral 
kynurenine and tryptophan into the brain enhances kynurenic 
acid production in the brain, and the combination of the 3 fac-
tors has a synergetic effect on the neuronal junctions between 
peripheral and central nervous system and its role in central 
fatigue, triggering cognitive dysfunction. Thus, our laboratory 
has provided the first evidence that the fatigue circuit is respon-
sive to tryptophan-kynurenine-kynurenic acid pathway signals 
generated at neuronal-neuronal and glial-neuronal synapses 
linking the peripheral and central nervous systems (Figure 9).

Tryptophan Metabolites and Fatigue Associated 
With Neurodevelopmental Disorders
Recently, our laboratory focused on the association between 
tryptophan metabolites and neurodevelopmental disorders 
because of recent studies reporting that patients with neurode-
velopmental disorders often have a history of fatigue, daytime 
tiredness, and daytime sleepiness.30,128-130 Our previous study 
demonstrated that autistic symptoms were correlated with 
higher levels of 3-methoxy-4-hydroxyphenylglycol and lower 
levels of 5-hydroxyindoleacetic acid,131 suggesting that dynamic 
changes in the levels of tryptophan metabolites may be associ-
ated with symptoms of neurodevelopmental disorders, includ-
ing sleep disturbances and fatigue.

The recent evidence on central fatigue supports the role of 
the tryptophan-kynurenine pathway,15,22-25,119 in which 
enhanced kynurenic acid production triggered by tryptophan 
and kynurenine uptake from the plasma into the brain, as 
demonstrated in CFSD rats, may then decrease the concen-
tration of BCAA in the plasma.24 Like patients with autism 
spectrum disorder (ASD), patients with homozygous 
branched-chain ketoacid dehydrogenase kinase (BCKDK) 
mutations had lower levels of BCKDK mRNA and protein, 
E1α phosphorylation, and plasma BCAA.132 Thus, it is 
notable that tryptophan metabolic mechanisms are associ-
ated with fatigue symptoms in neurodevelopmental disor-
ders. Moreover, Hakamada and Yamamoto reported that a 
rat model of neurodevelopmental disorder, Nagase analbu-
minemic rats, showed lower levels of serotonin in the pre-
frontal cortex, chronic enhancement of free tryptophan, 
chronic lack of BCAA in the plasma, and higher levels of 
inattention and hyperactivity/impulsivity.133 Autistic traits 
were present in patients carrying deleterious homozygous 
mutations in the gene encoding solute carrier transporter 
7a5, which is a large neutral amino acid transporter located 
at the BBB.134,135 Furthermore, a previous study found that 
mice lacking TPH2 are defective in serotonin synthesis in 
the brain and display behavioral symptoms in ASD.136 These 
findings suggest that imbalance between tryptophan and 
BCAA levels in the plasma by mutation of TPH2 and 
BCKDK gene may be associated with inefficient synthesis of 
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serotonin in the brain and cause the fatigue symptoms in 
neurodevelopmental disorders.

Alleviating the Effect of Fatigue Using Supplements
The generation of neuroactive tryptophan metabolites at junc-
tions of the peripheral and central nervous system leads to 
complex exhaustion, and recovery is difficult without sufficient 
rest and supplements to block central fatigue. In this section 
mainly, we introduce 2 candidate supplements and substances 
associated with the inhibition of neuroactive tryptophan 
metabolites.

BCAA supplements, including valine, leucine, and isoleu-
cine, have been proposed to alleviate exercise-induced 
fatigue15,44 and inhibit muscle atrophy.137 The administration 
of BCAA improved running performance by decreasing extra-
cellular tryptophan,15 suggesting that BCAA inhibit intracer-
ebral tryptophan release and uptake from the circulation. 
Moreover, rats on BCAA-supplemented diets showed a 
decreased kynurenic acid level in the brain.94 These findings 
suggest that BCAA would be expected to exert an alleviating 
effect on fatigue by inhibiting metabolic activation of the tryp-
tophan-kynurenine metabolic pathway. However, from the 

obesity perspective, supplementation of high-energy diets with 
BCAA may be associated with neurobehavioral impairment 
and obesity.94

Regarding other candidate substances, 2-aminobicyclo-
(2,2,1)-heptane-2-carboxylic acid (BCH) may be effective in 
fatigue reduction. Because BCH is a specific inhibitor of LAT 
activity, it may prevent tryptophan and kynurenine uptake from 
the circulation and thereby relieve fatigue. In addition, BCH 
activates glutamate dehydrogenase,138,139 which is thought to 
play key roles in glutamate metabolism and the Krebs cycle. In 
CFSD rats, significant increases were seen in the brain level of 
kynurenic acid, and increase in kynurenic acid level may be 
associated with reduced glutamate level,22,24 which plays a role 
in central fatigue by inhibiting NMDA and α7nACh recep-
tors. Also, Choi et  al140 reported that treatment with BCH 
increased the levels of Krebs cycle intermediates, restored ATP 
levels, and enhanced the oxidation rate, suggesting that BCH 
treatment may promote the recovery of fatigued muscle. 
Furthermore, treatment with BCH increased run time in rats.44 
Therefore, we concluded that BCH may suppress the effect of 
increased tryptophan and kynurenic acid and decreased gluta-
mate in the brain during central fatigue.

Figure 9.  The role of the fatigue circuit: from blood to brain.
There are 3 stages of central fatigue induction. Stage 1 is marked by synergetic transfer of tryptophan and kynurenine from blood to brain. Stage 2 is indicated by the 
rise of brain tryptophan and kynurenine to excessive levels and detection of tryptophan-kynurenic acid pathway activity at the glial-neuronal interactive level within the 
hypothalamus-hippocampal circuit. Stage 3 is the impairment of cognitive functions. The fatigue circuit includes the tryptophan-kynurenine-kynurenic acid pathway 
signals generated at neuronal-neuronal and glial-neuronal synapses between the peripheral and central nervous systems. Enhancement of pathway activity triggers 
cognitive dysfunction. LAT-1 indicates L-type amino acid transporter 1.
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Regarding side effects, BCH has been shown to be nonle-
thal, without effect on body weight, weights of major organs, 
food intake, or physical appearance, and not to cause liver tox-
icity as determined by aspartate aminotransferase and alanine 
aminotransferase activity assays.141 This evidence indicates that 
the pharmacological action of BCH may safely be taken to 
help prevent central fatigue.

Taken together, BCAA and BCH supplements may be used 
to suppress the enhancement of tryptophan-kynurenine meta-
bolic pathway in the brain resulting from synergetic uptake of 
blood tryptophan and kynurenine. On the contrary, BCAA has 
side effects such as obesity and neurobehavioral impairment. 
Coadministration of BCAA and BCH to alleviate central 
fatigue remains to be explored.

Conclusions and Future Perspectives
Neuroactive tryptophan metabolites are a major cause of cen-
tral fatigue. Previous studies have supported the tryptophan-
serotonin enhancement hypothesis, in which tryptophan 
uptake into the brain enhances serotonin production in exer-
cise-induced fatigue. However, the release of serotonin was 
transient after 30 minutes of treadmill running to exhaustion 
and did not reflect the duration of fatigue. In addition, as 95% 
of tryptophan metabolism is converted by the kynurenine 
pathway, possible involvement of the tryptophan-kynurenine 
pathway in central fatigue induction has been pointed out. 
More recently, our study demonstrated that uptake of trypto-
phan and kynurenine from the peripheral circulation into the 
brain enhances kynurenic acid synthesis in the brain in sleep 
deprivation–induced central fatigue, but without change in 
serotonin activity. In particular, dynamic change in glial-neu-
ronal interactive processes within the hypothalamus-hip-
pocampal circuit causes central fatigue, and increased 
tryptophan-kynurenine pathway activity in this circuit causes 
cognitive dysfunction. This indicates a major potential role 
for the tryptophan-kynurenine enhancement in central 
fatigue, and these outcomes established the importance of the 
fatigue circuit.

In the future, it will be necessary to clarify the associations 
between central fatigue and neuroplasticity because trypto-
phan and its neuroactive metabolites are thought to play key 
roles in neuroplasticity. Given that increased tryptophan-
kynurenine pathway activity from blood to brain is responsi-
ble for central fatigue, it is speculated that central fatigue 
carries an increased risk of glial and neuronal death. In fact, 
elevated tryptophan concentration suppresses neuron firing 
and elevated kynurenine metabolites take part in oligoden-
drocyte injury.

Finally, the basic findings in this review have the promise of 
novel insights into the consequences of central fatigue, for 
example, school refusal in children. Thus, this work may greatly 
contribute to elucidating latent mental problems in society 
from a scientific perspective.
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