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A B S T R A C T

2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (2-[18F]FDG-PET) has an emerging supportive
role in dementia diagnostic as distinctive metabolic patterns are specific for Alzheimer's disease (AD), dementia
with Lewy bodies (DLB) and frontotemporal dementia (FTD). Previous studies have demonstrated that a data-
driven decision model based on the disease state index (DSI) classifier supports clinicians in the differential
diagnosis of dementia by using different combinations of diagnostic tests and biomarkers. Until now, this model
has not included 2-[18F]FDG-PET data.

The objective of the study was to evaluate 2-[18F]FDG-PET biomarkers combined with commonly used di-
agnostic tests in the differential diagnosis of dementia using the DSI classifier.

We included data from 259 subjects diagnosed with AD, DLB, FTD, vascular dementia (VaD), and subjective
cognitive decline from two independent study cohorts. We also evaluated three 2-[18F]FDG-PET biomarkers
(anterior vs. posterior index (API-PET), occipital vs. temporal index, and cingulate island sign) to improve the
classification accuracy for both FTD and DLB.

We found that the addition of 2-[18F]FDG-PET biomarkers to cognitive tests, CSF and MRI biomarkers con-
siderably improved the classification accuracy for all pairwise comparisons of DLB (balanced accuracies: DLB vs.
AD from 64% to 77%; DLB vs. FTD from 71% to 92%; and DLB vs. VaD from 71% to 84%). The two 2-[18F]FDG-
PET biomarkers, API-PET and occipital vs. temporal index, improved the accuracy for FTD and DLB, especially as
compared to AD. Moreover, different combinations of diagnostic tests were valuable to differentiate specific
subtypes of dementia.

In conclusion, this study demonstrated that the addition of 2-[18F]FDG-PET to commonly used diagnostic
tests provided complementary information that may help clinicians in diagnosing patients, particularly for
differentiating between patients with FTD, DLB, and AD.
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1. Introduction

The most common causes of dementia are Alzheimer's disease (AD),
vascular dementia (VaD), dementia with Lewy bodies (DLB), and
frontotemporal dementia (FTD) (Livingston et al., 2017; World Health
Organization, 2012). Correct clinical dementia diagnosis is essential to
establish proper treatment, support and care (National Collaborating
center for Mental Health, 2007).

Clinical decision support systems are emerging to assist clinicians
for earlier and accurate diagnosis of dementia by providing a systematic
and objective overview of comprehensive patient data (Bruun et al.,
2019a; Kawamoto et al., 2005; Klöppel et al., 2008; Mattila et al.,
2011).

The use of biomarkers, such as total tau, phosphorylated tau (p-tau)
and amyloid beta 1–42 (Aβ42) from cerebrospinal fluid (CSF) and
magnetic resonance imaging (MRI), have improved the differential di-
agnosis of dementia and have been included in the clinical diagnostic
criteria (Gorno-Tempini et al., 2011; McKeith et al., 2017; McKhann
et al., 2011; Rascovsky et al., 2011; Sachdev et al., 2014). Nevertheless,
DLB and FTD remain particularly difficult to identify due to shared
clinical and pathological features with other subtypes of dementia,
especially AD (McKeith et al., 2016; Mendez et al., 2013; Ossenkoppele
et al., 2015; Schneider et al., 2007; Thomas et al., 2018). Most of the
previous biomarker studies have focused on the ability to differentiate
AD from other dementias, and moreover, biomarkers for other subtypes
of dementia are less evolved (Jack et al., 2016).

2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (2-
[18F]FDG-PET) imaging is considered a sensitive imaging modality for
neuronal degeneration in dementia and has shown potential to support
the diagnosis of dementia at an early stage (Bloudek et al., 2011; Hort
et al., 2010). Various subtypes of dementia have characteristic patterns
of regional hypometabolism (Nobili et al., 2018), and 2-[18F]FDG-PET
is included as a supportive biomarker in the diagnostic criteria of AD,
DLB, and FTD (Gorno-Tempini et al., 2011; McKeith et al., 2017;
McKhann, 2001; McKhann et al., 2011; Rascovsky et al., 2011).

Data-driven diagnostic tools are useful for analysing heterogenous
multimodality data of complex diseases such as dementia. Previous
studies have demonstrated that a data-driven decision model based on
the disease state index (DSI) classifier (Mattila et al., 2012) is a pro-
mising method for clinical decision support in the differential diagnosis
of dementia by using different combinations of cognitive tests, CSF
biomarkers, and automatic and visual MRI quantification features
(Bruun et al., 2018; Koikkalainen et al., 2016; Tong et al., 2017). Until
now, this model has not included 2-[18F]FDG-PET data.

The objective of the study was to evaluate 2-[18F]FDG-PET bio-
markers combined with commonly used diagnostic tests (cognitive
tests, CSF and MRI biomarkers) in the differential diagnosis of dementia
using the DSI classifier.

2. Methods

2.1. Study population

We included data from 259 subjects diagnosed from 2009 to 2018
with either AD, DLB, FTD, VaD, or subjective cognitive decline (SCD)
from two independent study cohorts (a subgroup from the PredictND
study cohort and a Danish Dementia Research center (DDRC) cohort).
The subjects were eligible for inclusion if a 3D T1-weighted MRI se-
quence with a slice thickness < 2mm and 2-[18F]FDG-PET images were
available.

The PredictND study cohort consisted of 779 prospectively enrolled
subjects from four European memory clinics (Bruun et al., 2019b). We
included a subgroup from the PredictND study cohort consisting of 119
subjects from the Copenhagen Memory Clinic, Copenhagen University
Hospital, Rigshospitalet, Copenhagen, Denmark and 25 subjects from
the Section of Gerontology and Geriatrics, University of Perugia and “S.

Maria della Misericordia” Hospital of Perugia, Perugia, Italy.
The DDRC cohort consisted of 115 retrospectively identified sub-

jects from the clinical database at the Copenhagen Memory Clinic,
Copenhagen University Hospital, Rigshospitalet, Copenhagen,
Denmark.

All diagnoses were confirmed by experienced dementia specialists
according to the following established diagnostic criteria: the NIA-AA
criteria for AD (McKhann et al., 2011), the DLB consortium criteria for
DLB (McKeith et al., 2005), the work group on FTD and Pick's Disease
criteria for FTD (Gorno-Tempini et al., 2011; McKhann, 2001;
Rascovsky et al., 2011), and the NINDS-AIREN criteria for VaD (Román
et al., 1993). Subjects were diagnosed with SCD when the cognitive
complaint was present without confirmed objective cognitive impair-
ment, and the criteria for mild cognitive impairment and dementia
were not met (Albert et al., 2011; McKhann et al., 2011).

The study was approved by the local Medical Ethical Committees:
The Regional Committee on Medical Research Ethics of the Capital
Region of Denmark (Approval no.: H-1–2014–126) and Italy (Approval
no.: CEAS 2381/14).

2.2. Clinical assessment and auxiliary investigations

All subjects were referred to the memory clinics due to suspicion of
a neurodegenerative disease. At baseline, all subjects were assessed
with a standard diagnostic dementia program including medical his-
tory, physical and neurological examinations, cognitive testing, routine
blood screening, and MRI. On a clinical diagnostic indication, the
standard diagnostic dementia program was supplemented with diag-
nostic tests such as CSF biomarkers, 2-[18F]FDG-PET, dopamine trans-
porter single photon emission computed tomography, and amyloid PET.

As a minimum all included subjects had an MRI with 3D T1-
weighted sequence, an 2-[18F]FDG-PET scan, and a mini-mental state
examination (MMSE) test. Sixty-seven percent had additional cognitive
test data other than MMSE, 51% percent had CSF biomarkers of Aβ42,
total tau, and p-tau, and 98% had an MRI with fluid-attenuated in-
version recovery (FLAIR) sequence (distribution of the diagnostic test
for each diagnostic group are listed in Table A.1 in Supplementary
material).

2.3. Cognitive tests

The standard cognitive test battery consisted of the MMSE test for
assessment of global cognitive functioning, the consortium to establish
a registry for Alzheimer's disease (CERAD) test or the Rey auditory
verbal learning task (RAVLT) test for assessment of episodic memory,
and the trail making test (TMT) A and B, and the animal fluency test for
assessment of language and executive functioning.

To compare the episodic memory test scores, we standardized the
CERAD test to the RAVLT test using z-scoring as previously described
(Bruun et al., 2018).

2.4. Cerebrospinal fluid biomarkers

The CSF biomarkers, Aβ42, total tau, and p-tau, were analysed with
enzyme-linked immunosorbent assay (ELISA) using commercially
available kits (Innotest, Fujirebio, Europe, Ghent, Belgium).

2.5. Magnetic resonance imaging

MRI were performed on clinical 1.0, 1.5, or 3.0 Tesla scanners. We
derived the volumetric and morphometric biomarkers from the 3D T1-
weighted MRI sequence (Koikkalainen et al., 2016; Lötjönen et al.,
2010). The volumes of 133 brain regions were defined using a multi-
atlas segmentation method (Lötjönen et al., 2010) based on the
manually segmented Neuromorphometric atlases (Neuromorpho-
metrics Inc, Massachusetts, USA) (Region of interests for MRI are listed
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in Table B.1 in Supplementary material).
Ten MRI biomarkers of clinically relevant regions were extracted

from the volumetric features, together with the anterior vs. posterior
index (API-MRI), defined as a z-scored ratio between the volumes of
temporal and frontal lobe regions, and the volumes of parietal and
occipital lobe regions (Bruun et al., 2019c).

Furthermore, we derived two morphometric indices by comparing
specific volumetric patterns between two study groups (Koikkalainen
et al., 2016). The voxel-based morphometry (VBM) index was estimated
using measures of the local concentration of gray matter (Ashburner
and Friston, 2000), whereas the tensor-based morphometry (TBM)
index was estimated using measures of changes in the local volume
(Ashburner et al., 1998).

The region of interest (ROI) based grading was estimated by mea-
suring the similarities of intensities of the T1-weighted image within
the ROIs to an image database of subjects with known diagnoses (Tong
et al., 2013)

The vascular burden from FLAIR images was estimated from the
summed volume of white matter hyperintensity (WMH), cortical in-
farcts, and the weighted volume of lacunar infarcts by a segmentation
method described in (Koikkalainen et al., 2016; Wang et al., 2012).

2.6. 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography

The 2-[18F]FDG-PET images were acquired using GE Medical,
Philips, and Siemens PET scanners. The 2-[18F]FDG-PET image was co-
registered to the segmented MRI to generate uptake values from the
segmented brain regions on 2-[18F]FDG-PET, i.e. 2-[18F]FDG-PET ROIs.
The mean uptake value of each 2-[18F]FDG-PET ROI was normalized to
the cerebellum.

We selected 12 clinically relevant regions (anterior cingulate gyrus,
calcarine cortex, middle cingulate gyrus, posterior cingulate gyrus,
precuneus, precentral gyrus, frontal cortex, temporal cortex, parietal
cortex, occipital cortex, medial temporal cortex, and whole cortex) as 2-
[18F]FDG-PET biomarkers based on previous 2-[18F]FDG-PET studies
demonstrating characteristic patterns of hypometabolism which have
been well documented in patients with AD, FTD, and DLB, respectively
(Davison and O'Brien, 2014; Dukart et al., 2011; Gorno-Tempini et al.,
2011; Herholz et al., 2002; Jagust et al., 2009; McKeith et al., 2017;
McKhann, 2001; McKhann et al., 2011; Minoshima et al., 2001;
Rascovsky et al., 2011; Rice and Bisdas, 2017).

Moreover, three 2-[18F]FDG-PET biomarkers were derived from the
segmented 2-[18F]FDG-PET image. The API-PET was defined as a z-
scored ratio between the mean uptake in frontal and temporal lobe
regions, and the mean uptake in parietal and occipital lobe regions, and
is similar to and uses the same regions as the API-MRI (Bruun et al.,
2019c). The occipital vs. temporal index was derived as the uptake in
occipital lobe region divided by the uptake in temporal lobe region. The
biomarker was proposed to improve differentiating between AD and
DLB, where the temporal region is often affected in AD and the occipital
region is often affected in DLB, respectively (McKeith et al., 2017;
McKhann et al., 2011). Cingulate island sign is a supportive DLB bio-
marker on 2-[18F]FDG-PET (Lim et al., 2009; McKeith et al., 2017). In
our analyses, we included the cingulate island sign ratio defined as the
uptake in posterior cingulate cortex divided by the sum of the uptake in
precuneus and cuneus.

2.7. Disease state index classifier

The DSI classifier is composed of two components: fitness and re-
levance (Mattila et al., 2012). Fitness is calculated for a biomarker or
test result of the subject as f(x)= FN(x)/(FN(x)+FP(x), where FN is the
false-negative error rate, and FP is the false-positive error rate in the
reference data when using the biomarker or test result value x as a cut-
off value in classification. Relevance defines the goodness of a bio-
marker or test result as sensitivity+specificity-1. A DSI value is

calculated as a weighted average of fitness values: DSI= Σ (relevance ⋅
fitness)/Σ relevance. DSI is a value measuring the similarity of the
subject's data to two diagnostic groups, a reference and study groups.
The DSI value zero indicates a perfect similarity to the reference group
while the value one a perfect similarity to the study group.

2.8. Data analysis

Differences between groups were tested with one-way ANOVA tests
followed by post-hoc Bonferroni tests, Kruskal-Wallis tests followed by
post-hoc Bonferroni corrected Mann-Whitney tests, or Chi-square tests
followed by post-hoc Bonferroni tests, where appropriate.

The 10-fold cross-validation approach was applied using the whole
study population data (n=259). The differentiation between the di-
agnostic groups was evaluated through pairwise comparisons. The ac-
curacy of each individual diagnostic test and each or combined diag-
nostic test group for pairwise comparisons was reported as balanced
accuracy (bal. acc.) and area under the receiver-operator characteristic
curve (AUC) based on the DSI values. The bal. acc., calculated as the
average of sensitivity and specificity for pairwise comparison, was
computed to adjust the results for the imbalance in the size of the study
groups in the dataset (Brodersen et al., 2010).

When an individual or combined group of diagnostic tests was used,
we only included a subset of relevant diagnostic tests and excluded the
redundant or irrelevant diagnostic tests, for each pairwise comparison
by a feature selection method. The diagnostic tests with the highest
accuracy were added one by one until the overall AUC did not increase
as previously described (Bruun et al., 2018). The feature selection was
first performed using complete cross-validation to produce un-biased
classification results. After that, the feature selection was applied to all
data without cross-validation to produce single optimal feature set to
show which features typically were selected.

Data from all subjects in the study population were used in the
analysis because the DSI classifier can operate with missing data
(Rhodius-Meester et al., 2016).

The volumetric imaging biomarkers were corrected for intracranial
volume, age, and sex (Buckner et al., 2004; Cole and Green, 1992),
while the other features were corrected for age and sex (Cole and
Green, 1992).

Statistical analysis was performed using SAS Studio software, ver-
sion 9.4 (SAS Institute Inc., Cary, NC, USA). A MATLAB toolbox was
used in the DSI analyses (Cluitmans et al., 2013). The analyses were
performed in MATLAB, version R2015b (MathWorks, Natick, MA).

A two-sided p-value < 0.05 was considered indicative of statistical
significance.

3. Results

3.1. Subjects

The baseline demographics are presented in Table 1. There were
fewer women in the DLB group as compared to the AD group. The
subjects with SCD were younger and performed better on MMSE than
the dementia groups. The AD group had higher tau values, and together
with the DLB group lower Aβ42 values than the other groups (Addi-
tional details of baseline demographics are shown in Table C.1 in
Supplementary material).

3.2. Diagnostic tests and diagnostic test groups

The performance of the individual diagnostic tests for each pairwise
comparison is shown in Table 2. Overall, the episodic memory tests had
a high classification accuracy for differentiating subjects with SCD from
the dementia groups (bal. acc. ranging from 71%-91%), whereas CSF
biomarkers had a good accuracy for differentiating AD from the other
groups (bal. acc. ranging from 73%-84%), except Aβ42 for AD vs. DLB
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with a bal. acc. of 50%. As expected, the MRI biomarkers of vascular
burden were the most valuable diagnostic tests to differentiate VaD
from the other groups (bal. acc. ranging from 80%-89%). The 2-[18F]
FDG-PET biomarker occipital vs. temporal index had a high accuracy
for distinguishing AD vs. DLB compared to the two supportive bio-
markers for DLB, occipital hypometabolism and cingulate island sign
(bal. acc.: occipital vs. temporal index: 79% vs. occipital hypometabo-
lism: 62% vs. cingulate island sign: 67%). For AD vs. FTD, the CSF
biomarkers and API-PET had a high accuracy, whereas API-MRI had a
lower accuracy (bal. acc.: CSF biomarkers: 79-83% vs. API-PET: 76% vs.
API-MRI: 64%). The performance of additional diagnostic tests for each
pairwise comparison is shown in Table D.1 in Supplementary material.

The accuracies of the individual and combined groups of diagnostic
tests for pairwise comparison are presented in Table 3. The addition of
2-[18F]FDG-PET biomarkers to cognitive tests, CSF and MRI biomarkers
considerably improved the classification accuracy for all pairwise
comparisons of DLB to other dementias (bal. acc.: DLB vs. AD from 64%
to 77%; DLB vs. FTD from 71% to 92%; and DLB vs. VaD from 71% to
84%). Furthermore, 2-[18F]FDG-PET biomarkers combined with CSF
and MRI biomarkers had a high performance for distinguishing FTD
from the other dementia groups (bal. acc. ranging from 83%−92%),
whereas combined 2-[18F]FDG-PET and MRI biomarkers were useful to
distinguish VaD from the other dementia groups (bal. acc. ranging from
80%−90%).

3.3. Optimal combination of diagnostic tests

The optimal combination of diagnostic tests for each pairwise
comparison is presented in Table 4. The optimal sets of diagnostic tests
included diagnostic tests from more groups, most commonly MRI and 2-
[18F]FDG-PET biomarkers, except for the AD vs. FTD comparison with
only CSF biomarkers. In general, CSF biomarkers combined with ima-
ging biomarkers obtained the highest accuracy for differentiating AD
from the other groups. The API-PET was included in the optimal com-
bination of diagnostic tests for FTD, whereas the MRI biomarker of
vascular burden was included in the optimal combination of diagnostic
tests for VaD. The optimal diagnostic tests to differentiate DLB from the
other groups included 2-[18F]FDG-PET biomarkers with different
combinations of cognitive tests, CSF and MRI biomarkers.

4. Discussion

This study evaluates the performance of 2-[18F]FDG-PET bio-
markers combined with commonly used diagnostic tests (cognitive
tests, CSF and MRI biomarkers) in the differential diagnosis of dementia
using a DSI classifier in two mixed memory clinic cohorts.

First, we found that the 2-[18F]FDG-PET biomarkers, particularly
API-PET and occipital vs. temporal index, improved the classification
accuracy for both FTD and DLB, especially as compared to AD. Second,
different combinations of diagnostic tests were valuable for

distinguishing specific subtypes of dementia. And third, the CSF bio-
markers were useful to differentiate AD from the other groups, the MRI
biomarker of vascular burden was useful to differentiate VaD from the
other groups, and cognitive tests were highly useful to differentiate
subjects with SCD from the dementia groups. The latter finding is in line
with previous studies using the DSI classifier (Bruun et al., 2018;
Rhodius-Meester et al., 2016; Tolonen et al., 2018).

Previous studies have demonstrated the usefulness of the DSI clas-
sifier in the differential diagnosis of dementia using automatic MRI
quantification features (Koikkalainen et al., 2016) and various combi-
nations of cognitive tests, CSF biomarkers, and automatic and visual
MRI quantification features (Bruun et al., 2018; Tolonen et al., 2018;
Tong et al., 2017). Comparison of the classification results obtained in
this study to two other DSI classifier studies using exclusively cognitive
tests, CSF biomarkers, and automatic MRI quantifications, showed that
our classifier had a considerable lower accuracy (bal. acc. ranged from
64%−94% (Table 3) vs. 77%−97% in (Bruun et al., 2018) vs.
80%−98% in (Tolonen et al., 2018)), with the lowest accuracies for
detecting DLB and FTD. However, our study population may have in-
cluded patients with a more uncharacteristic presentation due to se-
lection bias, where 2-[18F]FDG-PET likely was used as a supplemental
diagnostic test for patients with an uncertain diagnosis after disclosure
of standard diagnostic tests such as MRI and cognitive tests. Further-
more, the two previous studies had a larger study cohort with a greater
proportion of AD patients and subjects with SCD and moreover, the
studies did not include 2-[18F]FDG-PET.

Previous DSI classifier studies without 2-[18F]FDG-PET biomarkers
reported the diagnostic sensitivity for FTD and in particular DLB as
suboptimal with many cases being misclassified as AD (Bruun et al.,
2018; Koikkalainen et al., 2016; Tolonen et al., 2018; Tong et al.,
2017). This issue is to some extent due to the paucity of specific disease
biomarkers for FTD and DLB, but also a result of the clinical hetero-
geneity in both FTD and DLB together with the clinical and pathological
overlap with AD (McKeith et al., 2017; Neary et al., 1998). In parti-
cular, many DLB patients have coexisting Aβ pathology (Merdes et al.,
2003). This is corroborated by the low accuracy of 50% for the CSF
Aβ42 biomarker in differentiating DLB and AD in our study (Table 2).
In addition, FTD represents various clinical syndromes including pri-
mary progressive aphasia and behavioural variant of FTD, of which the
latter often seemed difficult to differentiate from AD (Mendez et al.,
2013; Neary et al., 1998).

We added 2-[18F]FDG-PET biomarkers to the DSI classifier to im-
prove the classification accuracy, particularly for DLB and FTD as
compared to AD, as 2-[18F]FDG-PET is a supportive biomarker for AD,
DLB, and FTD (Gorno-Tempini et al., 2011; McKeith et al., 2017;
McKhann, 2001; McKhann et al., 2011; Rascovsky et al., 2011). We
found that the addition of 2-[18F]FDG-PET biomarkers to cognitive
tests, CSF and MRI biomarkers improved the accuracies of DLB and FTD
with most substantial improvement for the pairwise comparison of AD
vs. DLB (from 64% to 77%, Table 3).

Table 1
Baseline demographics.

AD DLB FTD VaD SCD Group-wise comparison when
significant

Subjects, n 90 41 37 25 66
Female, n (%) 50 (56%) 10 (24%) 17 (46%) 10 (40%) 34 (52%) DLB < AD
Age, mean years± SD 73.2 ± 7.9 72.5 ± 8.6 68.7 ± 9.5 74.8 ± 8.7 64.5 ± 9.8 SCD < AD, DLB, VaD
MMSE, median score (IQR) 25 (23–27) 27 (23–29) 25 (21–28) 26 (24–28) 30 (29–30) SCD > All
CSF Aβ42, median concentration pg/mL (IQR) 507 (425–596) 531 (413–685) 896 (670–1006) 927 (762–1121) 1021 (797–1170) AD, DLB < FTD, VaD, SCD
CSF total tau, median concentration pg/mL

(IQR)
556 (427–728) 346 (170–407) 254 (190–333) 248 (188–395) 237 (186–352) AD > All

CSF p-tau, median concentration pg/mL (IQR) 83 (62–97) 54 (29–73) 36 (30–42) 38 (29–46) 40 (36–50) AD > All

Abbreviations: Aβ42: amyloid beta 1–42; AD: Alzheimer's disease; CSF: cerebrospinal fluid; DLB: dementia with Lewy bodies; FTD: frontotemporal dementia; IQR:
interquartile range; MMSE: mini mental state examination; n: number; p-tau: phosphorylated tau at threonine 181; SCD: subjective cognitive decline; SD: standard
deviation; VaD: vascular dementia.
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Furthermore, we evaluated three 2-[18F]FDG-PET biomarkers in the
differential diagnosis of dementia with focus on their ability to differ-
entiate DLB and FTD as compared to AD.

The API-PET was included to demonstrate a specific pattern of re-
duced metabolism in frontotemporal regions and relative preserved
metabolism in posterior region as seen in many FTD patients (Bohnen

et al., 2012; Neary et al., 1998; Rascovsky et al., 2011). The API-PET is
similar to and uses the same regions as API-MRI, which has demon-
strated a good classification accuracy for differentiating between FTD
and AD (Bruun et al., 2019c, 2018). When comparing the API-PET and
the API-MRI for differentiating FTD from the other groups, the API-PET
had higher bal. acc. ranging from 74% to 92% in comparison to the API-

Table 2
The pairwise comparison of individual diagnostic tests.

Abbreviations: Aβ42: amyloid beta 1-42; AD: Alzheimer's disease; API: Anterior vs. posterior index; AUC: area under the receiver operating characteristic curve; bal.
acc.: balanced accuracy; CSF: cerebrospinal fluid; DLB: dementia with Lewy bodies; FTD: frontotemporal dementia; MMSE: mini mental state examination; MRI:
magnetic resonance imaging; p-tau: phosphorylated tau at threonine 181; ROC: receiver operating characteristic; SCD: subjective cognitive decline; VaD: vascular
dementia; 2-[18F]FDG-PET: 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography;
The colours correspond to the bal. acc. for the pairwise comparison. Bal. acc. 85%–100% are highlighted in dark green. The gradually lighter shades of green indicate
lower bal. acc. with white being at or below 50. Both bal. acc. and AUC are reported as percentage values (%).
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Table 3
The pairwise comparison of individual and combined groups of diagnostic tests.

Abbreviations: AD: Alzheimer's disease; AUC: area under the receiver operating characteristic curve; bal. acc.: balanced accuracy; CSF: cerebrospinal fluid; DLB:
dementia with Lewy bodies; FTD: frontotemporal dementia; MRI: magnetic resonance imaging; ROC: receiver operating characteristic; SCD: subjective cognitive
decline; VaD: vascular dementia; 2-[18F]FDG-PET: 2-[18F]fluoro-2-deoxy-D glucose positron emission tomography;
The colours correspond to the bal. acc. for the pairwise comparison. Bal. acc. 85%–100% are highlighted in dark green. The gradually lighter shades of green indicate
lower bal. acc. with white being at or below 50. Both bal. acc. and AUC are reported as percentage values (%).

Table 4
The optimal sets of diagnostic tests for each pairwise comparison.

Pairwise comparison Cognitive tests CSF MRI 2-[18F]FDG-PET

AD vs. DLB p-tau Lateral ventricles Occipital vs. temporal index
AD vs. FTD Aβ42, p-tau
AD vs. VaD Aβ42 Medial temporal cortex, frontal cortex, temporal cortex,

parietal cortex, vascular burden
Parietal cortex

AD vs. SCD Episodic memory (learning), episodic
memory (recall)

p-tau

DLB vs. FTD Animal fluency API-PET
DLB vs. VaD Animal fluency Aβ42 Frontal cortex API-PET, middle cingulate

gyrus
DLB vs. SCD Episodic memory (learning), TMT-B Temporal cortex Occipital cortex
FTD vs. VaD Parietal cortex, vascular burden API-PET, middle cingulate

gyrus
FTD vs. SCD MMSE Global VBM API-PET
VaD vs. SCD Episodic memory (learning) Vascular burden

Abbreviations: Aβ42: amyloid beta 1–42; AD: Alzheimer's disease; API: anterior vs. posterior index; CSF: cerebrospinal fluid; DLB: dementia with Lewy bodies; FTD:
frontotemporal dementia; MMSE: mini mental state examination; MRI: magnetic resonance imaging; p-tau: phosphorylated tau at threonine 181; SCD: subjective
cognitive decline; TMT: trail making test; VaD: vascular dementia; VBM: voxel-based morphometry; 2-[18F]FDG-PET: 2-[18F]fluoro-2-deoxy-D glucose positron
emission tomography.
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MRI with bal. acc. ranging from 64% to 76% (Table 2), suggesting that
in the present study 2-[18F]FDG-PET outperformed MRI with regards to
specific FTD patterns. Additionally, the API-PET was included in the
optimal sets of diagnostic tests for differentiating FTD from DLB, VaD,
and SCD, respectively (Table 4). However, the performance of the API-
MRI for differentiating FTD from the other groups was lower in our
study than in a previous study (Bruun et al., 2019c). Differences in
patient populations with more atypical atrophy patterns (Bruun et al.,
2019c; Ranasinghe et al., 2016) in our sample could potentially explain
the lower performance of API-MRI, if these patterns do not affect 2-
[18F]FDG-PET to the same degree.

Occipital hypometabolism on 2-[18F]FDG-PET is considered a sup-
portive biomarker for DLB, particularly for differentiating DLB from AD
(McKeith et al., 2017). Notably, we found a moderate accuracy for
occipital cortex on 2-[18F]FDG-PET for pairwise comparison of DLB vs.
AD (AUC 68%). This finding was somewhat unexpected as previous 2-
[18F]FDG-PET studies have found accuracies between 70%−92% for
occipital hypometabolism in differentiating DLB from AD using various
quantitative methods (Caminiti et al., 2019; Ishii et al., 2007; Lim et al.,
2009). The variability in accuracy may be explained by differences in
operating procedures (Frisoni et al., 2013). The fully automated ana-
lysis had lower accuracies ranging from 68% to 78% (Kono et al., 2007;
Lim et al., 2009) with the lowest accuracy in this study compared to
computer-aided visual read by experienced neuroimaging physicians
with accuracy of 92% (Caminiti et al., 2019). Moreover, the differences
in the study cohorts may also have an impact on the accuracy, and as
previously mentioned our study cohort include patients with a more
uncharacterised presentation. We intended to optimize the DLB feature
by proposing the occipital vs. temporal index, especially to improve
differentiating of DLB from AD. This 2-[18F]FDG-PET biomarker was
the diagnostic test with the highest accuracy for differentiating between
DLB and AD (bal. acc. of 79%, Table 2) and was included in the optimal
sets for pairwise comparison of AD vs. DLB, suggesting that 2-[18F]FDG-
PET disease specific biomarkers have an impact on the accuracy for
differentiating AD and DLB.

Likewise, we included the cingulate island sign ratio, which has
been suggested to support the diagnosis of DLB (Kantarci et al., 2012;
Lim et al., 2009; McKeith et al., 2017). The cingulate island sign ratio
differentiated DLB from AD with a moderate AUC (79%) in comparison
to a previous study with an AUC of 92% (Kantarci et al., 2012). The
lower accuracy in our study may reflect a more heterogenous study
population with more dual pathology in our study, as the presence of
cingulate island sign has been reported to be associated with less con-
current AD pathology (McKeith et al., 2017).

The strength of our study is that the model was developed and va-
lidated using commonly used diagnostic tests and 2-[18F]FDG-PET
biomarkers in a relatively large cohort with diagnoses confirmed by
experienced dementia specialists.

One of the limitations of this study is the possibility of circularity
considering that the clinical reference diagnosis was supported and
reinforced by all available diagnostic tests, consistent with established
diagnostic criteria (Gorno-Tempini et al., 2011; McKeith et al., 2005;
McKhann, 2001; McKhann et al., 2011; Rascovsky et al., 2011; Román
et al., 1993). Moreover, we used both cohorts for cross validation due to
the limited availability of FTD and DLB cases. However, the derived
automatic neuroimaging biomarkers were not used for clinical diag-
nosis. Furthermore, the objective of the study was to investigate the
clinical impact of commonly used diagnostic tests and 2-[18F]FDG-PET
biomarkers in the differential diagnosis of dementia and obtain in-
formation about their relative performance, and not to get precise ac-
curacy estimates.

Another limitation for this study and other similar studies is the
absence of pathological validation diagnosis.

In conclusion, this study demonstrated that the addition of 2-[18F]
FDG-PET biomarkers to commonly used diagnostic tests using the DSI
classifier increased the classification accuracy for FTD and DLB,

especially as compared to AD. Moreover, specific combinations of di-
agnostic tests were valuable to differentiate each subtypes of dementia.

This study provides support for the addition of 2-[18F]FDG-PET in
diagnosing dementia. The additional information from the 2-[18F]FDG-
PET may support clinicians in the differential diagnosis of dementia.
Future research studies should evaluate the clinical diagnostic value
and the cost-effectiveness of the diagnostic tests using the DSI classifier
in a prospective multi-center study to optimize the use of diagnostic
tests in clinical practice.
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