COMMENTARY

Novel Insights Into the Etiology of Diabetes From
Genome-Wide Association Studies

Colin N.A. Palmer

he flood of confirmed genes for type 2 diabetes

arising from genome-wide association (GWA)

studies has started to raise questions as to the

value of such research. Objections stem from
the low individual allelic effect sizes (1.1-1.5) and from
the recent observations that allele-counting summaries
of the current known variants do not add much to the
predictive models for type 2 diabetes (1). It has also been
suggested that such a large number of variants of this
effect size would be required to explain the known herita-
ble component for diabetes that almost every gene could
eventually be identified as a type 2 diabetes gene. If this
did turn out to be the case, what would be the value of this
knowledge (2)? These grumbles come despite the fact that
prior to 2007, genetic research in common complex dis-
ease had made very little substantive progress either in the
realms of candidate gene studies or in the previous gen-
eration of genome-wide studies that used microsatellite
markers in a linkage paradigm. As noted by Rich, Norris,
and Rotter in a commentary last year (3), the results from
GWA studies have quickly turned from a trickle to a flood
(4-16), and the most immediate advances from this are
not disease prediction but, rather, in leading to a better
understanding of etiopathogenesis together with identifi-
cation of novel gene products and pathways as targets for
intervention (17).

While the road to drug discovery on such a basis is
undoubtedly long and rocky, in terms of disease etiology
per se, we are uncovering a wealth of additional knowl-
edge regarding the pathoetiology of type 2 diabetes. First,
we are finding that the majority of genetic loci involved in
type 2 diabetes are firmly rooted in the biology of the
pancreatic B-cell and only associated with insulin resis-
tance to a minor degree (18). This is epitomized by the
seminal discovery of variants in the SLC30AS gene, which
appears to be involved in the uptake of zinc, which is in
this case required for the production of insulin (13). This
clearly may have an important role in determining some of
the priorities in future diabetic research. While some
genetic loci are very elusive to further study and point the
finger at multiple genes encoding poorly understood gene
products, many of these gene loci implicate the involve-
ment of known pathways that may or may not have been
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greatly appreciated as important in type 2 diabetes. Obvi-
ously, the discovery that an obesity gene, FTO, also
predisposes individuals to type 2 diabetes was a gratifying
and sensible observation (5); however, the discovery that
this gene is predominantly a behavioral gene involved in
appetite/food choice has major implications for future
pathways for weight reduction/diabetes prevention inter-
ventions (19).

In a less obvious fashion, the characterization of the
melatonin receptor (MNTR1B) as a modulator of glycemic
control and type 2 diabetes susceptibility has brought to
the fore previous epidemiological observations regarding
sleep patterns/melatonin levels and their role in type 2
diabetes (4,10,20,21). In this case, the genetic effect pro-
vides a logical anchor point to suggest the direct causality
of poor sleep, melatonin levels, and disease susceptibility
(22). In type 1 diabetes, a focus on a viral trigger for this
disease has been strengthened by the discovery of a key
viral defense gene, IFIH1, as playing a role in susceptibil-
ity to type 1 diabetes (23). In contrast, a novel uric acid
transporter has been identified from GWA study ap-
proaches that harbors variants that predispose to gout
(24). These variants have no associations with type 2
diabetes susceptibility or other features of the metabolic
syndrome, suggesting that high uric acid levels seen in
type 2 diabetes and the metabolic syndrome are not
disease causing but may arise as a result of the metabolic
disturbances apparent in type 2 diabetes. The use of GWA
studies has also highlighted a common etiology of different
diseases/phenotypes, with certain genes being involved in
both cancer and diabetes—most interestingly, the oppos-
ing roles of TCF2 polymorphisms in prostate cancer and
type 2 diabetes lend further support to previous epidemi-
ology suggesting that type 2 diabetes confers protection
from prostate cancer (6). In addition, JAZFI, a known
oncogene (25), has also been show to harbor variants that
modulate susceptibility to prostate cancer and diabetes
(15,26,27). It is well established that shorter stature is
associated with type 2 diabetes; however, the potential
environmental/socioeconomic confounders limit the inter-
pretation of this data. There is now a convergence be-
tween the list of genes associated with height in GWA
studies and those affecting type 2 diabetes risk, with the
JAZF1 locus associated with height, type 2 diabetes sus-
ceptibility, and fasting glucose in nondiabetic individuals,
thus confirming a causal role for stature/growth pheno-
types in type 2 diabetes susceptibility (28). In a similar
fashion, a gene widely studied as a drug target for meta-
bolic disease, PPARD, has also recently been shown to
contain variants that modulate height (29).

Another interesting finding from GWA studies further
changes our understanding of the way we view AlC as a
measure of glycemic control. Recent studies from the
Women’s Health Study have identified common genetic
variation in hexokinase 1 as a robust modifier of A1C in
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FIG. 1. Fava beans: Individuals with defective erythrocyte glucose
handling (generally G6PD mutations) are sensitive to Fava beans,
resulting in hemolytic anemia. The finding that HK1 variants modulate
A1C levels through such an anemic mechanism, rather than by systemic
glycemic control, reminds us of the widespread nature of such glucose
handling defects in malarial endemic countries.

nondiabetic populations (9). In this issue of Diabetes,
Bonnefond et al. (30) have shown that modulation of A1C
levels by variants in the HKI gene is not via a role in
systemic glucose homeostasis or, thus, in type 2 diabetes
etiology and remind us that A1C is also modulated by
anemia independently of glucose control. It would appear
that this may be due to local glucose handling in the
erythrocyte, potentially affecting erythrocyte turnover. Im-
portantly, HK1 is the predominant hexokinase in the
erythrocyte that provides phosphorylated glucose as a
precursor for both glycolysis and the pentose shunt in the
erythrocyte. Mutations in HK1 (31) and in downstream
activities involved in both glycolysis (pyruvate kinase) and
the pentose shunt (glucose-6-phosphate dehydrogenase)
are common causes of inherited hemolytic anemia and are
known to affect A1C levels (32,33). Erythrocytes rely on
glycolysis exclusively for ATP production, and the pentose
shunt is the only mechanism by which erythrocytes can
provide NADH for the reduction of glutathione, the major
defense against oxidative stress in these cells. Genetic
defects in this pathway are generally seen in the next step,
glucose-6-phosphate dehydrogenase, which results in ex-
treme sensitivity to environmental insults, leading to he-
molytic anemia (32). Environmental stressors, which
provoke anemia in individuals with a defective pentose
shunt, include Fava beans (favism) or drugs such as
primaquine. These genetic defects are highly prevalent in
populations that have historically been highly exposed to
malarial infection, such as Africa, India, the Middle East,
and southern Europe; therefore, in studies of A1C, it will
be very important to control for these defects (or indeed
other hemoglobinopathies such as sickle cell) if study
populations have a significant proportion of ancestry from
these regions (Fig. 1).

So, despite the grumbles regarding GWA studies and
disease prediction, it is clear that these insights demon-
strate the immense value of the GWA studies performed
during the last 3 years to diabetes research. We also have
to realize that this is only the start of the genomic
revolution. Indeed, the current reports are based on geno-
typing chips that query only the most common variation in
the genome and represent a mere scratch on the surface of
the genetic architecture of human complex disease. The
use of new genotyping platforms with increased genetic
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content, the completion of the 1,000 genome project, and
widespread adoption of whole-genome sequencing should
provide another quantum jump in our understanding of
interindividuality in disease processes and will hopefully
allow us to provide truly personalized medicine in type 2
diabetes.
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