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ABSTRACT
◥

Lung cancer remains the leading cause of cancer-related death
worldwide, despite declining smoking prevalence in industrialized
countries. Although lung cancer is highly associated with smoking
status, a significant proportion of lung cancer cases develop in
patients who have never smoked, with an observable bias toward
female never smokers. A better understanding of lung cancer
heterogeneity and immune system involvement during tumor
evolution and progression in never smokers is therefore highly
needed. Here, we used single-nucleus transcriptomics of surgical
lung adenocarcinoma (LUAD) and normal lung tissue samples
from patients with or without a history of smoking. Immune cells as
well as fibroblasts and endothelial cells responded to tobacco smoke
exposure by inducing a highly inflammatory state in normal lung
tissue. In LUAD, characterization of differentially expressed tran-
scriptional programs in macrophages and cancer-associated fibro-

blasts provided insight into how the niche favors tumor progression.
Within tumors, eight subpopulations of neoplastic cells were iden-
tified in female smokers and never smokers. Pseudotemporal
ordering inferred a trajectory toward two differentiated tumor cell
states implicated in cancer progression and invasiveness. A prolif-
erating cell population sustaining tumor growth exhibited differ-
ential immune modulating signatures in both patient groups.
Collectively, these results resolve cellular heterogeneity and
immune interactions in LUAD, with a special emphasis on female
never smokers.

Significance: Single-cell analysis of healthy lung tissue and lung
cancer reveals distinct tumor cell populations, including cells with
differential immune modulating capacity between smokers and
never smokers, which could guide future therapeutic strategies.

Introduction
The widespread establishment of smoking prevention programs

has led to a decrease in the prevalence of smoking, which today
accounts for more than 90% of lung cancer cases (1). Nonetheless,
lung cancer is still the leading cause of cancer-related deaths
worldwide in both men and women, with an age standardized
incidence of 18 cases per 100,000 people per year (2). Although
many factors contribute to lung cancer susceptibility, a pronounced
gender bias among never-smoking patients has been observed. In

the year 2000, it was estimated that more than 50% of lung cancer
cases in women worldwide occurred in never smokers, compared to
only 15% in men (3). Investigating lung cancer with an emphasis on
nonsmoking patients and especially female never smokers is there-
fore becoming increasingly important (4).

Clinical manifestations of lung cancer are diverse and classification
has traditionally been based on histopathologic observations. Broadly,
lung cancers are divided in two subclasses based on histopathology,
non–small cell lung carcinoma (NSCLC) and small-cell lung carci-
noma (SCLC), with NSCLC accounting for about 80% of all cases (5).
Within NSCLC, the most frequent subgroup is lung adenocarcinoma
(LUAD), which is with 60% to 70%, also the most prevalent in
nonsmoking patients (3).

In addition to histologic features, recent efforts to stratify
patients for improved treatment choices have largely focused
on genomic alterations (6), and novel single cell sequencing tech-
nologies have dramatically improved our mechanistic understand-
ing of LUAD development (7). This led to the discovery of epithelial
transcriptional programs that are deregulated in tumors. A longi-
tudinal study of patients of targeted therapy also identified a
transcriptional signature reminiscent of alveolar cells in residual
tumor cells during treatment, whereas cells that acquired drug
resistance and support tumor progression showed an increase
in inflammatory signaling (8). Single-cell studies of LUAD
have further focused on the tumor microenvironment (TME),
providing evidence for changes in cell type composition and
transcriptomic profiles in the immune compartment in LUAD.
Most notably, these included different subtypes of tumor infiltrating
B cells, implicated in NSCLC growth inhibition, as well as depletion
of cytotoxic CD8þ T cells and antigen presenting macrophages in
the tumor vicinity (9–11).
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Fibroblast subtypes have been distinguished based on differential
expression of e.g., different sets of collagens and endothelial cells
showed expression signatures that might contribute to angiogenesis
and tissue remodeling (7, 12). However, the complex interplay of
different immune cells and those of the TME remains only partially
understood, and therapeutic approaches targeting these cells are still
controversially discussed due to intratumor as well as interpatient
diversity (13). Cellular heterogeneity in the immune compartment has
profound implications for immune checkpoint therapy, but has
proven to be very successful in only a subset of patients. It remains
unclear how this heterogeneity, both between patients and within one
tumor, might influence therapeutic outcomes for LUAD (13). In
particular, the role of inflammation as a key immune response
contributing to tumor development demands further investigation.
Inflammation may be caused by extrinsic factors such as tobacco
smoke, as well as air pollution or viral infection, but also by intrinsic
processes such as chemokine release, and it promotes cancer initiation
and progression by providing an immunosuppressive and tumorigenic
environment (14).

Therefore, studying LUAD in the context of smoking history with a
special focus on female never smokers provides important insights to
guide novel therapeutic approaches, which is especially timely with an
increasing proportion of LUAD cases not attributable to smoking. In
this report, we employed single nucleus RNA sequencing to study
transcriptional heterogeneity and differentiation of LUAD tumor cells,
as well as the TME, in patients with different smoking habits.

Materials and Methods
Sample procurement

Cryopreserved surgical lung tissue from patients with lung adeno-
carcinoma was provided by the Lung Biobank Heidelberg. All subjects
gave their written informed consent for inclusion before participation
in the study.

This study was conducted in accordance with the Declaration of
Helsinki and the Department of Health and Human Services Belmont
Report. The use of biomaterial for this study was approved by the local
ethics committee of the Medical Faculty Heidelberg [S-270/2001
(biobank vote) and S-056/2021 (study vote)].

Tumor tissue and an additional representative part of normal lung
tissue distant from the tumor (>5 cm) was collected during routine
surgical intervention. Pieces of 0.5 to 1 cm3 were cut immediately after
resection snap-frozen in liquid nitrogen within 30 minutes after
resection, with no direct contact of samples and nitrogen. After
snap-freezing, the vials were stored at�80�Candmonitored regarding
temperature until use.

All patients included in this study did not receive any cancer
treatment before surgical resection.

Single-nucleus RNA sequencing
Single nuclei were prepared from frozen tissue as described in (15).

Briefly, snap-frozen healthy lung tissue from lung adenocarcinoma
patients was cut into pieces with less than 0.3 cm diameter and single
nuclei were isolated at low pH by homogenizing the cells in 1 mL of
citric acid-based buffer (sucrose 0.25 mol/L, citric acid 25 mmol/L,
Hoechst 33342 1 g/mL) at 4�C using a glass Dounce tissue grinder.
After one stroke with the “loose” pestle, the tissue was incubated for 5
minutes on ice, further homogenized with 3 to 5 strokes of the “loose”
pestle, followed by another incubation at 4�C for 5 minutes. Nuclei
were released by five additional strokes with the “tight” pestle, and the
nuclei solution was filtered through a 35-mm cell strainer. Cell debris

was removed via centrifugation at 4�C for 5minutes at 500� g, and the
supernatant was removed, followed by nuclei cell pellet resuspension
in 700 mL citric acid--based buffer and centrifugation at 4�C for 5
minutes at 500 � g. After carefully removing the supernatant, the
nuclei cell pellet was resuspended in 100 mL cold resuspension
buffer [25 mmol/L KCl, 3 mmol/L MgCl2, 50 mmol/L Tris-buffer,
400 U RNaseIn, 1 mmol/L DTT, 400 U SUPERaseIn (AM2694,
Thermo Fisher Scientific), 1 g/mL Hoechst (H33342, Thermo Fisher
Scientific)]. Nuclei concentration was determined using the Countess
II FL Automated Cell Counter, and optimal nuclei concentration
was obtained by adding additional cold resuspension buffer, if needed.
Subsequently, samples were processed using the 10� Chromium
device with the 10� Genomics scRNA-Seq protocol v2 to generate
cell and gel bead emulsions, followed by reverse transcription,
cDNA amplification, and sequencing library preparation following
the manufacturers’ instructions. Libraries have subsequently
been sequenced one sample per lane on HiSeq4000 (Illumina;
paired-end 26 � 74 bp)

Data preprocessing
For alignment of raw sequencing reads the CellRanger software

version 2.1.1 (10× Genomics) together with the human reference
genome hg19 was used. Low-quality cells were removed using Seurat
version 3.1.3 (RRID:SCR_016341; ref. 16). based on the following on
detected genes, RNA molecules and mitochondrial reads (discarded
were cells with: genes detected <200 or, depending on the sample
>3,000–10,000; molecule count >7,000–90,000; and <10% mitochon-
drial reads).

Remaining cells were further processed using the Seurat software
for log-normalization, scaling, clustering and UMAP visualization.
Afterwards all healthy control samples were merged using the
“FindIntegrationAnchors” and “IntegrateData” functions. Tumor
derived samples were then merged with the integrated control data
set by the same method, using control data as reference.

Cell type assignment
Cell types in healthy samples were assigned using canonical marker

expression. Subsequently cells of the tumor microenvironment were
identified using the “FindTransferAnchors” and “TransferData” func-
tions of the Seurat software, using healthy control data as reference.
Similarity scores with reference cell types combined with canonical
marker expression were used for cell type assignment. Tumor cell
cluster with low similarity scores to reference data and ambiguous
marker expression were marked as unidentified.

Cell type compositional changes
The statistical analysis of cell type compositional changes has to

overcome many obstacles inherent to single-cell experiments,
including low number of replicates and sample size as well as
high technical variability. It further has to take into account
proportional changes, so that a reduction in one cell type is
not falsely interpreted as an increase in other cell types. We
therefore employed here a Bayesian model approach developed
and published as “sccoda” (17), which is based on a hierarchical
Dirichlet–Multinomial distribution.

Differential expression and gene set enrichment
Cluster-specific gene expression was calculated using Wilcoxon

rank-sum test as implemented in the “FindMarker” function of Seurat.
Only genes with adjusted P value below 0.01 were considered for
further analysis. Gene set enrichment was performed using
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clusterProfiler (RRID:SCR_016884; ref. 18) and version 7.2 of Gene
Ontology terms (19).

To decrease the influence of interpatient heterogeneity, when
comparing in a given cluster cells from smokers and never smokers,
differential gene expression analysis was performed for each patient
separate against all other cells within the same cluster from patients of
the other smoking group. Only genes that where differentially
expressed in at least 40% of patients in each respective group were
considered for further analysis.

Cell-cycle scores
Cell-cycle scores were calculated with the method implemented in

Seurat as “CellCycleScoring” with S-phase genes (MCM5, PCNA,
TYMS, FEN1, MCM2, MCM4, RRM1, UNG, GINS2, MCM6,
CDCA7, DTL, PRIM1, UHRF1, MLF1IP, HELLS, RFC2, RPA2,
NASP, RAD51AP1, GMNN, WDR76, SLBP, CCNE2, UBR7, POLD3,
MSH2, ATAD2, RAD51, RRM2, CDC45, CDC6, EXO1, TIPIN,
DSCC1, BLM, CASP8AP2, USP1, CLSPN, POLA1, CHAF1B, BRIP1,
E2F8) and G2–M-phase genes (HMGB2, CDK1, NUSAP1, UBE2C,
BIRC5, TPX2, TOP2A, NDC80, CKS2, NUF2, CKS1B, MKI67,
TMPO, CENPF, TACC3, FAM64A, SMC4, CCNB2, CKAP2L,
CKAP2, AURKB, BUB1, KIF11, ANP32E, TUBB4B, GTSE1, KIF20B,
HJURP, CDCA3, HN1, CDC20, TTK, CDC25C, KIF2C, RANGAP1,
NCAPD2, DLGAP5, CDCA2, CDCA8, ECT2, KIF23, HMMR,
AURKA, PSRC1, ANLN, LBR, CKAP5, CENPE, CTCF, NEK2,
G2E3, GAS2L3, CBX5, CENPA)

CNV inference
To infer copy number variations from single cell transcriptome

data the method implemented in the inferCNV software (RRID:
SCR_021140) was employed (20). Briefly, patient raw counts of
matched healthy control samples were used as baseline expression
for an aggregate of genes in proximal genomic location and compared
to average expression levels of genes from tumor samples at the same
genomic location. Higher average expression in tumor samples was
used as indication for copy number gain, while lower expression was
indicative of copy number loss at a given genomic location.

Cell–cell communication
For interrogating cell to cell communication, the curated database of

ligand-receptor pairs and statistical framework as implemented in
CellPhoneDB (RRID:SCR_017054; ref. 21) was used. Raw counts for
each cell were normalized by library size andmean expression for each
gene in the database is calculated. Cells are pooled by cell cluster
annotation and the percentage of cells in this cluster expressing each
gene is assessed. Through random shuffling of cell labels a null
distribution for each gene pair is derived, taking into account the
expression levels. This is compared to the observedmean expression of
ligand and receptor in two clusters of cells and a P value for their
expression, specifically in this pair of clusters derived from the null
distribution. Ligand-receptor pairs are then ranked by P value and
significant interactions are determined.

Correlating clinical parameters
Clinical parameters were assessed based on data generated by the

TCGA Research Network: https://www.cancer.gov/tcga and con-
ducted in R using the packages TCGA2STAT, survival and survminer.
In brief RNA expression counts of the LUAD cohort from TCGAwere
used and a Cox proportional hazards regression model fitted based on
days of the patient survival and the average expression for the assessed
genes per patient.

Validation offindingswithpublished single-cell expressiondata
Data have been downloaded from the repository of a single-cell

expression study combining different datasets (22). These data were
filtered to only include cells from samples with known age and
smoking habit and taken from either healthy lung or tumor adjacent,
pathologically normal lung samples.

Transcription factor networks
Transcription factor networks were inferred using a three-step

algorithm implemented in the SCENIC software (23) (RRID:
SCR_017247). First a set of coexpressed genes for each transcription
factor is established using GRNBost2. Genes in each set are then
filtered by positive correlation with the transcription factor binding
motif and scored for their importance in each cell, by the AUCell
method further described in the SCENIC software documentation.

Trajectory analysis
Inference of a possible developmental trajectory was realized using a

framework employing principal graph inference, published as
STREAM (24). Briefly, the integrated and normalized expression
matrix of all malignant cells is used to first define variable genes using
nonparametric local regression, which are the used to reduce the
dimensionality of the data employing modified locally linear embed-
ding. This method provides a continuous embedding, by considering
local similarity to its neighbors. In this space, cells are cluster employ-
ing the affinity propagation method. The result is then used to
construct a minimum spanning tree to use an initial tree structure
for the construction of an elastic principal graph.

Nonnegative matrix factorization
Matrix factorization was conducted with the use of algorithms

implemented in the NNLM software (25). The matrix of integrated,
normalized gene counts and cells was decomposed in two matrices
with one fixed dimension, the factor number. Contribution of either a
factor to a cell or a gene to a factor was calculated on the appropriate
decomposed matrix.

IHC staining
Paraffin-embedded tissue sections were deparaffinized and perox-

idases were blocked for 10minutes at room temperature (RT) using 3%
H2O2 (Applichem). Antigen retrieval was performed in a steamer with
sodium-citrate-buffer (10 mmol/L sodium citrate, 0.05% Tween 20,
pH 6.0) for 15minutes. The staining procedure for the polyclonal anti-
glycodelin antibody (sc-12289, Santa Cruz Biotechnology; RRID:
AB_2251998) was performed with DAKO EnVisionþ System-HRP
(AEC) for rabbit primary antibodies (Dako). The tissue slides were
incubated overnight at 4�C with an anti-glycodelin antibody at a
concentration of 2.5 mg/mL. A linker (rabbit anti-goat IgG, A27011,
Thermo Fisher Scientific; RRID:AB_2536076) antibody was used for
30 minutes at room temperature before tissue sections were incubated
with secondary antibody for another 30 minutes at room temperature.
Visualization of glycodelin was performed with AECþ Substrate-
Chromogen (Dako). For ANXA1 staining, the staining procedure was
performed with SignalStain DAB Substrate Kit (#8059, Cell Signaling
Technology) according to the manufacturer’s instructions, using
rabbit polyclonal anti-ANXA1 antibody (#32934, Cell Signaling Tech-
nology; RRID:AB_2799031). Cell nuclei were stained using Mayer’s
Hematoxylin Solution (Sigma-Aldrich). Staining was observedwith an
Olympus IX-71 inverted microscope. Pictures were taken with an
Olympus Color View II digital camera and Olympus Cell-F software
(cellSense dimension, V1.11, Olympus). Tiffs were assembled into
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figures using Photoshop CS6 (Adobe; RRID:SCR_014199). Only
changes in brightness and contrast were applied. Scoring was per-
formed by multiplication of staining intensity (0–3) with the propor-
tion of positive cells (0–4). For each patient, five randomly selected
pictures were analyzed and median was calculated.

Statistical analysis and visualization
Statistical analysis and visualization have been performed using

python 3.7 (RRID:SCR_008394) or R 3.6.3 (RRID:SCR_001905)
togetherwith beforementioned software, ggplot2 (RRID:SCR_014601)
and ComplexHeatmaps (RRID:SCR_017270; ref. 26).

Data availability
Raw sequencing access-protected data on the European Genome-

Phenome Archive are available at https://www.ebi.ac.uk/ega/home
under EGAS00001006331. Count and sample meta data are available
at https://doi.org/10.5281/zenodo.6645820. Data can also be interac-
tively explored at http://singlecell.charite.de/.

Results
To investigate the specific characteristics of LUAD in never smo-

kers, we retrospectively obtained fresh-frozen tissue samples from 19
treatment na€�ve patients from patient groups (Supplementary Tables
S1 and S2). These included 16 female and 3 male patients between 40
and 60 years of age, to exclude older age as themain confounding factor
for any cancer development, and 7 elderly female patients between 75
and 90 years of age. Out of these, 8 of the 16 younger women had a
history of smoking while the rest were never smokers. In addition, we
included healthy lung tissue from three patients of each group, which
we already characterized in a previous publication (Fig. 1A; ref. 27).
From all 38 frozen samples, 122,779 intact nuclei were isolated and
single nucleus RNA libraries were generated.

Smoking leads to an increase in alveolar macrophages and AT2
cells

We used our previously published atlas of healthy lung single
nucleus RNA sequencing (snRNA-Seq) data to serve as a reference
for the analysis of single nucleus gene expression in LUAD. After
integrating data from the 12 healthy lung samples to eliminate
technical variation by canonical correlation andmutual nearest neigh-
bor analysis (Supplementary Fig. S1A–S1C; ref. 16), cell types were
identified based on differential expression of canonical marker genes
(Fig. 1B; Supplementary Table S3; Supplementary Fig. S1D).

While cell type composition was broadly comparable between
patient groups, we employed a Bayesian model of compositional
changes to evaluate statistically significant differences and identified
fold changes (FC) of cell type frequencies between patient groups.
Compared with young female never smokers, young female smoker
lung samples showed increased numbers of alveolar macrophages
[20.4% in young female smokers compared with 10.4% in never
smokers; log2(FC) ¼ 1.12] and AT2 cells [43.1% in young female
smokers compared with 34.1% in never smokers; log2(FC) ¼
0.43; Fig. 1C]. These changes might reflect the adverse influence of
smoking on lung cell type composition and increase of immune
activity in the tissue.

Utilizing the established expression patterns of healthy tissue, we
inferred cell identities of the tumor microenvironment in all tumor
samples (Fig. 1D). Cell type composition was comparable in tumors
from all patient groups, and no statistically significant difference could
be detected employing a Bayesian model of compositional changes

(Fig. 1E). All cell types identified in healthy tissue were also detected in
tumor samples, as verified by their expression of canonical marker
genes. In addition, 37,596 cells derived from the tumor samples
showed low similarity scores with known lung cell types (Supplemen-
tary Fig. S1E) and did not specifically express any of the used marker
genes (Fig. 1F), suggesting that they represent neoplastic cells.

Our cell type annotation of LUAD and healthy lung samples
provides a foundation to further characterize the LUAD tumor tissue
and investigate changes in healthy tissue upon tobacco smoke
exposure.

Inflammatory markers are highly upregulated in female
smokers compared with never smokers

Exposure to tobacco smoke causes damage to the lung and elevates
cell death, leading to increased infiltration of leukocytes and activation
of cellular repair mechanisms (28, 29). This inflammatory environ-
ment is thought to promote lung cancer development and progression.
To investigate the effect of smoking in females on gene expression for
the diverse lung cell types, we focused on healthy tissue samples of
smokers and never smokers between 40 and 60 years of age, thus
excluding age and gender as potential confounding factors.Differential
expression and gene ontology analysis revealed an enrichment of gene
sets relating to inflammation and activation of immune response in
smokers (Fig. 2A; Supplementary Table S4). Genes involved in these
pathways that were upregulated in smokers included S100A9,
SLC11A1, and NFKB, which contribute to leukocyte activation and
migration, as well as CCL2, CSF3, and IL6, as general mediators of
inflammation (Fig. 2B).

To identify cell type interactions mediating this inflammatory
response, we evaluated the expression levels of a curated set of ligand
receptor pairs (21) across all cell types, and narrowed down our
analyses to cell types with the highest mean expression levels of
inflammatory signature genes: immune cell types (dendritic cells, T
cells, macrophages, and alveolar macrophages) and fibroblasts, endo-
thelial cells, and smooth muscle cells. While the overall number of
putative ligand receptor interactions is equivalent in smoking and
never-smoking patients (Supplementary Fig. S2A), interactions of
certain drivers of inflammation are increased in smoker lung samples
(Fig. 2C). For example, inflammatory cytokines IL6 and CSF3 display
an increased expression in endothelial cells and fibroblasts (Fig. 2D),
promoting activation of their corresponding ubiquitous receptors
expressed from IL6R and CSF1R (Supplementary Fig. S2B). We also
identified increased interactions of ICAM1 on endothelial cells, fibro-
blasts, and muscle cells with various integrin complexes on cells of the
immune system (Fig. 2C).

All patients included in this study were not under current antibiotic
or anti-inflammatorymedication, except for one young female smoker
who received cortisone treatment due to an underlying chronic
condition. As cortisone reduces inflammatory responses, we conclud-
ed that this single case was unlikely to bias our results, and at most
would lead us to underestimate the increased inflammation seen in
smokers.

Thus, expression changes in fibroblasts and endothelial cells con-
tribute to an inflammatory environment in normal lung tissue in
smoking patients, prompting the question whether these differences
translate into different tumor phenotypes according to smoking status.

High intratumoral heterogeneity with distinct cellular subtypes
in young female patients

Based on our annotation of tumor sample cells using the healthy
lung tissue as reference (Fig. 1D; Supplementary Table S5), cells that
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Inflammation and cell interactions in the smoker lung.A,Differential gene expression andgene set enrichment analysis between cells derived fromnever smokers and
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could not be assigned to any endogenous lung cell type were hypoth-
esized to be the transformed cells of the tumor. The deviation from
endogenous gene expression signatures in tumor tissue is often caused
by mutations or large-scale structural genomic aberrations, such as
gains or deletions of chromosomal parts (30, 31). To corroborate the
malignant identity of unassigned cells, we deduced copy number
variations (CNV) from transcriptomic data by comparing the average
expression levels of genes in close proximity on the genome to a
baseline derived from patient-matched normal lung samples (Supple-
mentary Fig. S3A). This method works under the assumption, that
parallel large gene expression changes from genes in close genomic
proximity arise from genomic copy number variation, while other
transcriptional changes in tumor tissue would not affect clusters of
genes in the same concordant manner (20). Clustering of cells accord-
ing to their CNV profiles (Supplementary Fig. S3B) revealed two
clusters devoid of copy number variations, which included cells from
all patients analyzed (cluster 4 and 5), while the other clusters harbored
distinct losses or gains and were mostly patient-specific. Clusters
containing CNVs were enriched for cells not representative of any
healthy lung cell type (Supplementary Fig. S3B), confirming that these
previously unassigned cells are of malignant origin, while the remain-
ing clusters with low CNV prevalence were correctly annotated as cells
belonging to the tumor microenvironment.

It has been widely demonstrated that solid tumors do not consist of
one homogeneous malignant cell population, but represent a heter-
ogenous tissue of diverse cellular states (32). A high degree of inter-
patient heterogeneity has also been observed in LUAD (33). After
harnessing our transcriptomics data from elderly female never smo-
kers and male never smokers for cell type assignment as described
above, given our limited number of samples, we therefore focused our
subsequent analysis on young female smokers and never smokers.

Clustering of the subset of 37,596malignant cells fromyoung female
LUADpatients based on their transcriptome identified ten distinct cell
clusters (Fig. 3A; Supplementary Fig. S4A) with characteristic gene
expression (Fig. 3B). All 10 clusters comprised cells fromboth smokers
and never smokers, with some heterogeneity between patients (Sup-
plementary Fig. S4B and S4C). Enrichment analysis of cluster-specific
genes revealed eight expression signatures representative of prolifer-
ating cells (labelled “Prol”), transcription and cellular respiration
(“Res”), cell adhesion (“Adh”), metabolism (“Met”), morphologic
changes (“Mor”), phospholipid binding (“Phos”), and immune related
profiles (“Imm”; Supplementary Tables S6 and S7). By analyzing the
expression of transcription factors together with coexpression of their
target genes (23), we determined gene regulatory networks contrib-
uting to this functional heterogeneity (Supplementary Fig. S5). Pro-
liferating cells (Prol) highly express genes linked to networks regulated
by ATF4, which is involved in stress responses and amino acid
homeostasis (34), and POU5F1, also known as OCT4, with a critical
role in embryonic stem cell self-renewal (35).

Cells enriched for the immune modulating signature (Imm) show
additional expression of genes regulated by transcription factors
FOXN3 and MEF2A, which are known to be involved in cell-cycle
checkpoint control and contribute to EMT (36, 37).

To investigate possible prognostic implications of these identified
malignant cell clusters, we performed Cox regression analysis on a
public dataset of bulk RNA-seq and clinical outcome data from 183
LUAD tumors generated by the TCGA research network using overall
survival as prognostic factor (Fig. 3C). This revealed elevated hazard
ratios for genes defining “Prol_2” (HR 1.3 (CI, 1–1.7); P ¼ 0.039),
“Adh_1” (HR, 1.83; CI, 1–1.9; P ¼ 0.04) and lowered hazard ratio for
the gene set derived from “Res_1” (HR, 0.59; CI, 0.42–0.82; P¼ 0.002),

indicating that tumors with enhanced expression of proliferation and
adhesion related genes are associated with a worse prognosis.

Together, these results identify eight functional subpopulations of
malignant LUAD cells in both smokers and never smokers.

Trajectory of differentiation and characterization of malignant
cells in context of smoking history

As tumors are evolving and differentiating tissues (38), we applied a
graph-based trajectory inference method (24) to malignant cell tran-
scriptomes from young female never smokers and smokers to discern a
differentiation trajectory linking the ten functional malignant cell
subpopulations identified above. Pseudo-temporal ordering assigned
cells to four branches labelled S1–4, with the junction point S0 (Fig. 3D
and E). One branch (S0-S1) consisted of mitotic cells (cluster Prol_1)
and immune related signatures (cluster Imm_1) and was therefore
selected as the trajectory origin, with pseudotime subsequently
increasing through the junction point S0 towards the most distant
points on each of the other branches (Fig. 3E). The proliferative state of
cluster Prol_1, Prol_2 and Imm_1 was confirmed by scoring the cell
cycle based on marker genes (Supplementary Fig. S6A and S6B) and
compared in smokers and never smokers Supplementary Fig. S6C and
S6D). Differential expression and gene set enrichment analysis con-
firmed cell cycle related gene expression by cells on branch S0-S1, in
line with previous findings of cluster signatures (Supplementary
Table S8). Branch S0-S4 comprised cells from all identified malignant
clusters and was not significantly enriched for specific GO terms; as it
was limited to cells at intermediate pseudotimes, some of which were
cycling, this branch likely represents undifferentiated tumor cells. Cells
on branch S0-S3 largely belonged to cells with morphological changes
(cluster Mor_1) and consistently expressed genes involved in cell
adhesion, substrate binding and wound healing. Branch S0-S2 mainly
harbored respiratory cells (clusters Res_1 and Res_2) with gene
expression related to autophagy (Fig. 3F; Supplementary Table S9).
Together with the respiratory signature of these clusters, this signifies
the tight connection between oxidative phosphorylation and autop-
hagic processes, due to mitochondrial turnover or nutritional need in
highly active tissue (39).

The developmental trajectory thus comprises proliferating and
intermediate undifferentiated cells as well as two distinct tumor cell
states. Importantly, equivalent trajectories were identified when a
separate analysis on malignant cells from young female smokers and
never smokers was performed (Supplementary Fig. S7A and S7B),
indicating shared functional tumor cell types and a conserved differ-
entiation hierarchy regardless of smoking status. Furthermore, to
assess similarities to untransformed cell types along pseudotime, we
included selected epithelial cell types (AT1, AT2, ciliated cells, secre-
tory cells and basal cells) and the identified malignant cell types in the
trajectory analysis. The resulting overall shapes for the trajectory were
similar to the ones obtained for malignant cells only (Supplementary
Fig. S7C and S7D). AT1 and ciliated cells are found at the end of two
respective branches and we find AT2 cells at the branching point close
to proliferating malignant cells, hinting to a close relationship between
cycling tumor cells and AT2 cells.

While LUAD from smokers and never smokers in our cohort share
the same functional malignant cell types and differentiation trajectory,
tobacco smoke exposure might induce more subtle gene expression
differences within specific malignant cell types. Comparing gene
expression between smokers and never smokers for each malignant
cell cluster separately, we observed that the majority of differentially
expressed genes were unique to one or two patients, indicating
substantial interpatient transcriptional heterogeneity in agreement
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Figure 3.

Functional heterogeneity ofmalignant LUADcells.A,Gene set enrichment analysis of differentially expressed genes inmalignant cells of female patients identified44
cluster-specific GO terms (Supplementary Table S6) that were combined into 8 functional signatures, named Proliferating (Prol_1/2), Respiration (Res_1/2),
Adhesion (Adh_1), Metabolism (Met_1), Morphological (Mor_1), Phospholipid binding (Phos_1), and Immune modulation (Imm_1). Dot sizes indicate the ratio of
member genes present in the gene set that were detected in each cell population. Colors represent P values (hypergeometric test after Benjamini-Hochberg
correction).B,Normalized expression of representative genes for each functional signature acrossmalignant cell clusters in female patients. C,Overview of HRswith
95% confidence intervals, fitted by the Cox linear regression model for average gene expression of the top 25 genes derived from each identified malignant cluster.
Analysis is based on overall survival of 183 individuals from the TCGA LUAD cohort. D, Three-dimensional projection of cellular gene expression profiles bymodified
locally linear embedding of all identified malignant cells from young female patients to infer a trajectory of differentiation with four branches (S1–4). E, Same
projection as inDwith cells colored by pseudotime. F,Malignant cluster proportions along pseudotime are depicted. Differential expression and gene set enrichment
analysis performed for each branch indicate enrichment of proliferative (S1-S0), undifferentiated (S4-S0), autophagy (S2-S0) or wound healing (S3-S0) signatures,
as highlighted by the bar plots, with the x-axis showing the proportion of gene set members enriched on each branch and the color representing adjusted P values
(hypergeometric test after Benjamini-Hochberg correction). Full names of GO terms can be found in Supplementary Table S7.
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with the previous analyses (Supplementary Fig. S3B; Supplementary
Fig. S1A).

We therefore restricted our attention to genes that were differen-
tially expressed in at least half of the female patients of the same
smoking habit, and identified consistent gene expression changes
across patients for cluster Imm_1 (Fig. 4). Here, gene set enrichment
analysis uncovered a difference in immune modulating pathway gene
expression, with genes including ANXA1, C1QB and PAEP upregu-
lated in smokers, and genes such as HLADQA2, HLA-DRB5,WFDC2
upregulated in never smokers. We also observed differential expres-
sion of genes involved inmigration, EMT andmetabolism, withMSLN
and FNDC3B upregulated in smokers and AGR3, CLDN10, IG2FR,
and PCDH7 upregulated in never smokers (Fig. 4A). To validate
gene expression, two exemplary candidate proteins involved in
immune modulation pathways were stained in samples from both
smokers and never smokers by immunohistochemistry (Fig. 4B
and C). Representative stainings indicate an increased expression
of ANXA1 and glycodelin (PAEP) in the majority of female
smokers. Quantification of staining intensity revealed a trend for
upregulation of both proteins in young female smokers compared to
never smokers. Moreover, staining intensity and average gene
expression level based on scRNA-seq for each patient correlated
for glycodelin, with a trend also observed for ANXA1 (Fig. 4D
and E). This divergence implies differential immune modulating
capacity of proliferating tumor cells in female never smokers
compared to smokers.

Tumor microenvironment transcriptome is highly deregulated
in LUAD

Transformed tumor cells rely to a large extent on interactions
with their surroundings, which might either hinder tumor devel-
opment or work to its benefit (40). To delineate transcriptomic
states within the previously identified cell types of the tumor
microenvironment that may contribute to tumor progression, we
used non-negative matrix factorization (NMF) to decompose the
gene expression matrix for all nonmalignant cell types into the
product of two matrices, with the first comprising signatures of co-
expressed genes (factors) across all cells and the second capturing
the contribution of all genes to these factors (Supplementary
Table S10). This approach revealed factors that contribute to cell
type identity (Fig. 5A), but also factors that separate cell types into
distinct cell states (Fig. 5B).

Two of these factors (factor 5 and 6) represent two cell states within
the macrophage population with decreased expression in tumor tissue
compared with healthy lung (Fig. 5C), and contain genes involved in
immune cell activation and inflammation (e.g., PPARG, C1QA,
MARCO, GRN and SLC11A1, MSR1, GPCPD1, CD68). Specifically,
factor 6 contains genes with a role in macrophage activation, such as
SLC11A1, a divalent transition metal transporter whose activity is
associated with pro-inflammatory processes (41), and MSR1, which
been implicated in several pathological processes, like worse prognosis
after lung transplantation (42). Downregulation of this signature
indicates a reduced activation of macrophages in the presence of
LUAD. Factor 5 delineates another subpopulation of macrophages
with lower expression of inflammatory genes in tumor tissue, includ-
ing PPARG and MARCO. The latter has been suggested as a possible
treatment target in NSCLC, because antibody targeting of MARCO
expressing macrophages reduced tumor growth in a recent study (43).
Consistent with our observation that only a subset of macrophages
downregulatesMARCO, the same study foundMARCO expression in
only a subset of tumor-associated macrophages. Anti-MARCO anti-

body treatment was thereforemost effective in combinationwith other
immune checkpoint markers (43).

Along with macrophages, fibroblasts can also support or hinder
tumor development. We identified a population of fibroblasts with
decreased expression of genes in the SLIT/ROBO pathway in tumor
samples (factor 2). The SLIT/ROBO pathway has often been found to
be differentially regulated in cancer, where its complex involvement in
tumor progressionmay include beneficial as well as detrimental effects
on tumor growth (44). The observed decreased expression of SLIT2
may facilitate tumor survival and cell progression (44), while SLIT3
downregulation might enhance epithelial to mesenchymal transition
(EMT) (45). Another population of fibroblasts showed increased
expression of type I and type III collagens in neoplastic tissue (factor
10). As part of the tumor microenvironment, different extracellular
matrix components provided by fibroblasts have been found to affect
tumor behavior (46). Increased expression of type I and type III
collagens, as observed here, is thought to promote invasion and
metastasis in lung cancer (47, 48).

Our results thus resolve different macrophage and fibroblast sub-
populations in LUAD, with distinct gene expression signatures con-
tributing to a tumorigenic environment in both smokers and never
smokers.

Discussion
In this study, we employed single-nucleus RNA-seq of fresh frozen

surgical tumor samples of LUAD, together with patient-matched
healthy lung samples, to investigate cellular heterogeneity, cellular
interactions and the TME in patients with or without a smoking
history.

In worldwide never smoker lung cancer cases, there exists an
observable bias toward women (49). We therefore focused this study
on female smokers and never smokers.

Tumor cell heterogeneity is increasingly recognized to play a crucial
role in tumor progression, with implications for tumor evolution and
efficacy of treatments (8). Within the LUAD malignant cell compart-
ment, we resolved distinct cell populations with eight gene expression
signatures representing cell proliferation, cellular respiration, tran-
scription, cell adhesion, metabolism, morphological changes, phos-
pholipid binding and immune modulation pathways. Linking these
signatures to transcription factor expression also indicated gene
regulatory networks contributing to the observed functional hetero-
geneity. Expression of the gene sets definingmalignant cell populations
as proliferation, adhesion or respiration related at bulk tissue level were
associated with differential survival in a public dataset, while the
remaining malignant cell signatures showed no prognostic signif-
icance. However, signatures based on single cell populations as
derived in the current study might very well be obscured in data
from bulk tissue, where expression is averaged over all cells.
Accurate evaluation of the prognostic value of the signatures
identified here will therefore require single-cell and clinical out-
come data from a larger cohort of patients.

By ordering malignant cells along a pseudotemporal trajectory, we
inferred a progression of cell states from proliferating cells, via an
undifferentiated state that comprised cells from the majority of
malignant cell types, towards two distinct endpoints representing
signatures of either autophagy or wound healing processes. Wound
healingmechanisms have long been suggested to be involved in cancer
progression, invasion and metastasis by creating a niche that fosters
proliferation and tissue remodeling (50, 51). The detection of autop-
hagy signatures may reflect the struggle or development of cells in this
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Immunemodulating cell population in smokers and never smokers. Cells from young female patients in cluster Imm_1 were assessed for gene expression differences
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trajectory. Autophagy has an ambiguous role in cancer progression
with implications for mitochondrial turnover in metabolically highly
active cells and is often an indicator for nutrient deficiency in poorly
vascularized tissue (39, 52).

Furthermore, we resolved specific gene expression signatures that
were downregulated in macrophages in the LUAD tumor microen-
vironment compared to healthy lung, and two populations of cancer

associated fibroblasts with differential expression of genes involved in
cell migration, angiogenesis, and metastasis. These expression signa-
tures could aid in the design of therapeutic approaches that target the
TME.

Interestingly, no distinct cell populations unique to female smokers
and never smokers were detected in either normal or malignant tissue
samples, and tumor developmental hierarchies were equivalent across
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patient groups (Fig. 4; Supplementary Fig. S7; Supplementary Fig. S8).
As the patient samples used in this studywere obtained at a stage where
the tumor is already established, it cannot be ruled out that the
increased immune activation observed in smokers results in distinct
mechanisms of tumor initiation and growth at very early stages.
Moreover, by assessing pseudotemporal ordering of malignant cells
in relation to untransformed epithelial cell types, we found a similar
trajectory, with AT2 cells close to cycling malignant cells at the
branching point. This is indicative of a close relationship between
proliferating tumor cells andAT2 cells, suggesting a possible tumor cell
type of origin.

Taking into account the profound interpatient heterogeneity
(Fig. 3A and B; Supplementary Fig. S1A), we resolved distinct
transcriptional properties of the cluster of malignant immune mod-
ulating cells (Imm_1) according to smoking history, with increased
expression of immune-related genes such asANXA1,C1QB, SLC11A1,
CD68, PAEP in smoker cells andHLA-DQA2,HLA-DRB5,WFDC2 in
female never smokers. In the same cell cluster, we also identified genes
involved in migration and development that were specifically
expressed in smokers (MSLN, FNDC3B) or never smokers (AGR3,
CLDN10, IGF2R, PCDH7). We validated the increased expression of
ANXA1 and glycodelin (PAEP) by IHC. Annexin A1 (ANXA1)
inhibits cytosolic phospholipase A2 (PLA2) and is therefore consid-
ered as an anti-inflammatory agent (53) and has been reported to
promote tumorigenesis in lung cancer cells (54).

Moreover, ANXA1 expression has been shown to be elevated in
patients with COPD (55), but lowered in female never smokers with
NSCLC (56). Therefore, ANXA1might be upregulated through smok-
ing behavior, which could lead to a more protumorigenic microen-
vironment in lung and the development of lung cancer.

Glycodelin has been well characterized concerning its immuno-
suppressive function at the fetomaternal interface (57, 58), but has also
received increasing attention as an immunomodulatory marker for
cancers including melanoma (59) and NSCLC (60) over the last
decade. The subset of proliferating cancer cells might therefore
differentially modulate the immune microenvironment according to
patient background and smoking status, with potential significance for
immunotherapies. Together with the identified heterogeneity in the
population of malignant cells, implicated in differential survival
(Fig. 3C), preclinical studies might be able to harvest this information
to design drugs that are able to target the full complexity of tumor
subpopulations.

In addition to gene expression differences within the malignant cell
compartment, our analysis of normal lung tissue samples identified an
increase in inflammation and immune activation induced by tobacco
smoke exposure, with inflammatory signalingmolecules such as CSF3,
ICAM1, and IL6 mediating communication between immune cells as
well as fibroblasts and endothelial cells (Fig. 2). To evaluate our
findings independently, we harnessed published single cell expression
data of healthy lung and lung cancer samples (12, 61–63). Despite
major caveats, such as differences in sample procurement and proces-
sing, we found evidence to support our finding of increased inflam-
matory signaling in fibroblast and epithelial cell types, indicated by
increased expression of, for example, IL6 and CCL2 in subpopulations
of these cells (Supplementary Fig. S9).

This was consistent with an increased proportion of alveolar
macrophages and AT2 cells in smoking patients (Fig. 1C) in our data.
AT2 cells serve as alveolar stem cells and are capable of transdiffer-
entiating into AT1 cells upon injury of the alveolar compartment (64).
Our findings are therefore suggestive of tissue damage and an overall

inflammatory response with accompanying macrophage invasion into
the tissue, consistent with higher alveolar macrophage numbers in
smoker lungs also found in other studies (65, 66). The increased
proportion of AT2 cells that we observed might also reflect a higher
proliferative activity of AT2 cells in smokers although this could not be
confirmed in our data. Through increased cell division rates, AT2 cells
could constitute a potential cell type of origin of LUAD, in line with
previous studies (67). We found no statistically significant increase in
AT2 cells in smokers from published data (12, 61–63), however
detected a shift in a cell type population called “transitional club/AT2
cells” (0.3% in never smokers; 1.4% in smokers), which might support
our notion of alveolar regeneration in response to increased tissue
damage in smokers.

Similar consequences have been proposed based on histology,
lavage, elevated inflammatory molecules in peripheral blood or bulk
transcriptome samples (28, 29, 68, 69). While more recent single-
cell transcriptomic studies investigated the effects of tobacco smoke
in systemic immune cells and upper airway epithelial cells (70–72),
cell types in the alveolar region and their interplay had not been
addressed at this resolution. Our results might thus aid in the
identification of therapeutic agents that could counteract the known
tumorigenic effects of inflammation, a challenge that remains
unsolved (73).

A significant obstacle in the analysis of tumor tissues within this
study was the substantial inter-patient heterogeneity, as previously
observed. Due to differences in genetic background, epigenetic mod-
ifications, patient history and comorbidities, this can only partly be
overcome by larger sample sizes and molecular patient stratification.
Computational methods that exclude patient specific features without
losing biologically relevant signals will be necessary to further refine
analyses of malignant cell populations across patients at the single cell
level. In addition, our results based on single cell transcriptomics could
be tested in larger patient collectives using bulk omics approaches.
Furthermore, it should be noted that this study is limited in investi-
gating any influence of driver mutations on the identified expression
changes, because mutation profiles were not routinely checked in this
patient cohort. This would however be a very interesting aspect to
follow up in future research, as some mutations, such as epidermal
growth factor receptor (EGFR) driver mutations are more frequently
found in female never smokers and targeted treatment for this
mutation often results in better outcome for never smokers compared
to smokers (3).

As smoking prevalence decreases, future studies should also address
other environmental and intrinsic factors contributing to inflamma-
tion. These include inflammatory diseases such as chronic obstructive
pulmonary disorder (COPD), which increases the risk of lung cancer
independent of age, sex and smoking status (74).

In conclusion, we here identify key cell types and pathways
contributing to the highly inflammatory environment in smoker
lungs. Analyzing the especially susceptible group of female never
smokers, we provide a refined description of cellular heterogeneity
within LUAD tumors and their microenvironment, and define
transcriptional signatures for distinct transformed cell states. While
the cell type composition and differentiation hierarchy of LUAD
were equivalent in female smokers and never smokers, we identified
a subset of cells with differential immune modulating activity
dependent on smoking status. These findings will aid in the
selection and development of treatments that take into account
the complex interplay of disease etiology, intratumoral heteroge-
neity, and interactions with the tumor microenvironment.
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