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Spin Seebeck mechanical force
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Electric current has been used to send electricity to far distant places. On the other hand, spin

current, a flow of electron spin, can in principle also send angular momentum to distant

places. In a magnet, there is a universal spin carrier called a spin wave, a wave-type excitation

of magnetization. Since spin waves exhibit a long propagation length, it should be able to

send angular momentum that can generate torque and force at a distant place: a new function

of magnets. Here we observe mechanical angular momentum transmission and force gen-

eration due to spin waves injected into Y3Fe5O12 by the spin-Seebeck effect. The spin-wave

current, transmitted through a Y3Fe5O12 micro cantilever, was found to create a mechanical

force on the cantilever as a non-local reaction of the spin-Seebeck effect. Spin-wave current

can be generated remotely even in open circuits, and it can be used to drive micro mechanical

devices.
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In 1915, Einstein and de Haas reported that an object starts
rotating when it is magnetized: the Einstein-de Haas effect1–3.
They explained the effect in terms of angular momentum

conservation between magnetization and mechanical motion. A
similar effect may arise from ferromagnetic resonance (FMR),
where a magnet is rotated by a reaction of magnetization
damping4,5. However, entire torque created by the Einstein-de
Hass effect is limited by total spins in a sample, a situation which
has made its application difficult. On the other hand, recently
discovered spin-wave current6–8 can create a continuous flow of
angular momentum9, which makes it possible to inject unlimited
total angular momentum into a matter10.

The spin-Seebeck effect (SSE)11–14 is a practical way to generate
such a powerful spin-wave current; when a part of a sample is heated,
spin waves are created and flow out of the part. According to an
analysis of SSE15, SSE can create much greater flux of angular
momentum than the standard spin-pumping methods16, since SSE
drives a broader energy range of spin waves17,18 than spin pumping.

Here we show that spin waves transmit angular momentum
and create force to drive mechanical motion in an insulating
magnet. In the present study, spin waves are injected into a small
magnetic insulator Y3Fe5O12 (YIG). When the spin waves are
relaxed in a part of the magnet, there should be its reaction on the
magnet; due to the angular momentum conservation between
spin waves and the lattice system of the magnet, the part of the
magnet may start rotating (see Fig.1). Observing this unexplored
spin-mechanical torque is our target in the present study.

Results
Sample description and characterization. Figure 2a, b shows a
schematic illustration and a scanning electron microscope (SEM)
image of an YIG cantilever used in the present study. The

mechanical torque is observed as force acting on a micro-canti-
lever, one of the most sensitive force detectors19–22. When
mechanical torque along the y axis acts on the cantilever, as
shown in Fig. 2a, the cantilever bends along the z axis. The
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Fig. 1 Schematic illustration of spin Seebeck mechanical force. a A
schematic illustration of spin Seebeck effects. When a part of a magnetic
insulator is heated, a spin wave is excited and flows out of the part: the
spin-wave spin Seebeck effect. A spin wave carries angular momentum.
b Relaxation of spin waves generates macroscopic mechanical torque and
force due to the angular momentum transfer
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Fig. 2 Sample system. a A schematic illustration of the sample used in the
present study. The sample consists of a cantilever made of Y3Fe5O12(YIG)
connected to an edge of a YIG film and a heater placed on the YIG film around
the root of the cantilever. An electric current applied to the heater generates
heat, which flows across the YIG film and the GGG substrate toward the
sample holder. The heat current creates spin-wave (magnon) accumulation at
the surface and the bottom of the YIG film. The accumulation injects spin
current into the YIG cantilever connected around the surface of the film. b A
scanning electron beam microscope (SEM) image of the YIG cantilever used in
the present study. The heater wire is connected to a current source via the
electrode pad. c A magnified view around the root of the cantilever. d A block
diagram of the measurement system. Vertical fluctuation of the tip of the
cantilever is measured by using a laser-Doppler interferometer. An a.c. heat
with the frequency fH is generated by applying an a.c. current with the
frequency fH/2. An a.c. magnetic field with the frequency F is applied
simultaneously. e A schematic illustration of the control sample, in which a
trench filled with carbon was introduced between the heater and the cantilever
(the black bar in the Figure). f A SEM image around the root of the
control sample
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cantilever was fabricated by a focused-ion-beam (FIB) technique
from a single-crystalline YIG with 3-µm-thick on a Gd3Ga5O12

(GGG) substrate23 (see “Methods” for details). The length, width,
and thickness of the cantilever arm are 200, 3.5, and 1.6 μm,
respectively. We put a thin heater wire on the bulk joint part
made of YIG to which the cantilever is connected, as shown in
Fig. 2c. By applying current pulses to the heater, the YIG joint is
locally heated, creating spin waves. The spin waves then flow into
the cantilever as a spin-wave current, a phenomenon called the
spin-wave SSE, and it is expected to generate torque via the spin-
wave relaxation in the cantilever. The distance between the wire
and the cantilever, 3.8 μm, is shorter than the spin-diffusion
length of spin waves in YIG, 8.7 μm3.

In Fig. 3a, we show the amplitude of cantilever fluctuation as a
function of its frequency f measured without any external
excitation to oscillation; the amplitude is simply due to thermal
fluctuation. In the spectrum, a broad peak around f0= 22.8 kHz
appears. f0 is consistent with the numerically calculated frequency
of the fundamental vibration of the cantilever (see Supplementary
Note 1 for details). At the frequencies inside the broad peak,
significant thermal fluctuation of the cantilever is always excited
due to the room temperature heat, which means that, inside the

peak, the cantilever is quite sensitive to external force due to the
mechanical resonance. Taking advantage of the sensitivity, we
performed dual-frequency a.c. measurements22 by applying a.c.
spin-wave currents with the frequencies within the broad peak to
detect spin-wave mechanical force (see “Methods” for details).

Cantilever fluctuation measurements. We then applied heat
pulses (a.c. heat) to the sample with the repetition frequency fH=
19.792 kHz. Surprisingly, a clear sharp peak emerges at
22.793 kHz in the amplitude spectrum (shown as Δ in Fig. 3b)
signaling unconventional cantilever motion superimposed on the
broad thermal background peak. In the measurement, the
external a.c. magnetic field is applied perpendicular to the can-
tilever with the modulation frequency F= 3.0010 kHz. The fre-
quency at which the sharp peak Δ appears fp= 22.793 kHz
coincides with the frequency sum fH+ F, showing that the sharp
peak Δ is due to cantilever motion synchronized with the heat-
current pulses created in the cantilever. In all measurements, the
d.c. component of the magnetic field is zero.

The sharp peak Δ has nothing to do with the conventional
thermal expansion or distortion, but it is attributed to the spin-
wave angular momentum transfer. We fabricated a sample in
which a cantilever is magnetically isolated from the spin-wave
injector but it is thermally coupled24, which we call the control
sample. Figure 2e is a schematic illustration of the control sample:
the root of the YIG cantilever is replaced with nonmagnetic
carbon, which conducts heat well but blocks out spin waves.
Because the thermal conductivity of carbon is comparable to that
of YIG25,26, the control sample exhibits similar thermal properties
to the YIG cantilever. Nevertheless, in the control sample, no
sharp peaks are observed in the amplitude spectra even when the
same heat pulses and fields are applied, while the broad peak
corresponding to the background thermal vibration is almost
unchanged as shown in Fig. 3c. The result indicates that the
cantilever motion at the sharp peak is driven by the torque
magnetically transmitted through the cantilever, ruling out
phonon mediated effects as well as thermal stress. The similar
behavior is observed in other samples, showing the universality of
the present effect (see Supplementary Note 2 for details).

To double-check the spin-wave angular momentum transfer, we
confirmed that the sharp peak Δ completely disappears when the
magnetization of the YIG is directed parallel to the cantilever length
by applying a field along the x direction, as shown in Fig. 3d. Since
the angular momentum carried by the spin waves is directed along
the magnetization, the fundamental vibration of the cantilever cannot
be excited by the spin-wave angular momentum when the
magnetization is along the cantilever length, which is consistent
with the observed magnetization-direction dependence. We also
confirmed that the sharp peak Δ disappears when either the external
a.c. field or the heat pulses are switched off, as shown in Fig. 3e, f.

Current and field dependence of cantilever fluctuation. The
amplitude of the cantilever fluctuation d at various values of the
heating current I is shown in Fig. 4a, where fH+ F is indicated as
the dotted line. The intensity of the sharp peak Δ increases
monotonically with increasing I. The amplitude calculated by
subtracting background from d at the frequency fH+ F, Δd, is
proportional to the heating power I2, as shown in the red disks and
the solid curve in Fig. 4b. Since the spin-wave current intensity is
proportional to the heating power I2, the experimental result is
consistent with the torque generation due to the spin-wave SSE.
Figure 4c shows the spectra of the cantilever oscillation at various
external a.c. fields. The sharp peak was found to be suppressed
at fields below 4.0mT. In the field range, magnetic domains
are introduced around the root of the cantilever, according to
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Fig. 3 Amplitude of cantilever fluctuation d as a function of fluctuation
frequency f. a Background thermal fluctuation. The spectrum was obtained
without any external excitation. A broad peak around 22.8 kHz is the
fundamental thermal vibration of the cantilever induced just by heat.
b Fluctuation spectrum obtained with an a.c. current and an a.c. field
perpendicular to the cantilever. The frequencies of the current fH/2 and the
field F are 9.8960 kHz and 3.0010 kHz, respectively. A sharp peak is
labeled as Δ. c Fluctuation spectrum obtained for the control sample with
an a.c. current and an a.c. field perpendicular to the cantilever. The
frequencies of the current fH/2 and the field F are 10.4272 and 3.0500 kHz,
respectively. d Fluctuation spectrum obtained with an a.c. field parallel to
the cantilever and an a.c. current. The frequency of the current fH/2 and the
field F are 9.9038 and 3.0010 kHz, respectively. e Fluctuation spectrum
obtained with an a.c. field perpendicular to the cantilever without
current. The frequency of the field is 3.0010 kHz. f Fluctuation spectrum
obtained with an a.c. current without fields. The frequency of the current
is 9.8960 kHz
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micro-magnetic simulation27 (see Supplementary Note 3 for
details). Since a domain wall scatters spin waves9, the efficiency of
the spin-wave transmission or the resultant torque should decrease
in such a low field range, as shown in Fig. 4c. The change in the
resonance frequency f0 with increasing field strength is attributed to
the ΔE effect28,29, which refers to the modulation of Young’s
modulus via magnetostriction, and we tuned the excitation fre-
quency, fH+ F, to f0−10 Hz in the measurement.

Discussion
The microscopic mechanism of the angular momentum transfer is
likely composed of spin-orbit interaction, dipole-dipole interaction,
and/or spin-rotation interaction30–33, but we phenomenologically
assumed that the spin-wave angular momentum is totally transferred
to the cantilever dynamics via the spin-wave relaxation, similar to the
Einstein-de Haas effects and the mechanical rotation due to damping
of FMR. By considering the mechanical boundary conditions, we
estimated the force as |Fz| ~ 10−15 N for the heating current I=
300 μA, which is consistent with the minimum detectable force by
the cantilever at room temperature, Fmin= 1.33 × 10−15 N (see
Supplementary Note 4 for details). Thus, the longitudinal relaxation
of the spin wave converts spin-wave angular momentum into
mechanical force on the cantilever with fp ~ 20 kHz4,5.

In magnets, spin-wave relaxation is sensitive to the magnetic shape
anisotropy via the many-body scattering of magnons28, in our
sample, the shape anisotropy in the thin cantilever arm is stronger
than that in the bulk joint part. The magnons created in the joint part

are thus strongly dissipated in the arm part, exerting torque on the
cantilever. The shape anisotropy can be controlled in terms of shapes
of a magnet, and one can design where a spin wave is created in a
magnet and where it is converted to mechanical torque. Furthermore,
the present mechanism can generate mechanical torque ceaselessly,
different from the conventional Einstein-de Haas effects. These
advantages can be applied to make various micro machines which
can be driven from a distant place free from wiring, but using heat or
microwaves.

Methods
Sample fabrication. The YIG cantilever used in the present study was fabricated
with a dual beam FIB/SEM system (Versa3D DualBeam; FEI company) from a 3-
µm-thick YIG (111) film epitaxially grown on a single-crystalline GGG substrate by
a liquid-phase epitaxy method. First, we prepared the electrode pads by the
electron-beam lithography. Next, we patterned a cantilever shape by focused Ga+

ion beam milling. To avoid magnetic-field disturbance from the YIG layer which
surrounds the cantilever21, the surrounding YIG layer was removed about 30 µm
away from the cantilever. Then, the Pt heater wire with the width of 0.4 µm was
fabricated by the FIB deposition. The ends of the wire were connected to the
electrode pads. Finally, the part under the cantilever was milled away by using an
obliquely incident Ga+ ion beam. In the control sample, the trench at the root of
the cantilever was shaped by Ga+ ion beam milling after the process explained
above. The depth of the trench is greater than 5 µm, enough to cut the YIG layer.
After the milling, the trench was filled with carbon by the FIB deposition.

Measurement setup. In the present study, we measured vertical displacement of the
cantilever by means of dual-frequency a.c. measurements based on a heterodyne
detection method. The displacement was measured with a laser-Doppler interferometer
(MSA-100-3D; Polytec, Inc.). During the measurements, an a.c. heat with the frequency
fH and an a.c. magnetic field with the frequency F were applied to exclude effects of
thermal stress from the displacement. In the condition, the signal of the spin Seebeck
mechanical force, which depends on both the a.c heat and the a.c field, appears at the
frequency of fH ± F, and any signals due to thermal stress, which are independent of the
a.c. field, appear at the frequency of fH. Therefore, we can distinguish the spin Seebeck
mechanical force from other artifacts originated in thermal effects. By tuning the
excitation frequency fH+ F into the resonance band of the cantilever, the signal at fH+
F is resonantly amplified compared to off resonance bending. The signal at fH−F is out
of range of the resonance band of the cantilever, and it is not detectable.

The a.c. heat was generated by applying an alternating current I with the
frequency of fH/2 through the heater wire. The amplitude of I was controlled to be
constant by using a V-I converter. The field strength was monitored with a Hall
probe (HGT-2010; Lakeshore, Inc.). To separate the signal from a background, we
tuned the excitation frequency fH+ F to be about 5 Hz less than the centre
frequency of the cantilever fluctuation. Note that, in the single-frequency
measurement in which an a.c. heat and a d.c. magnetic field were applied, the
obtained signal does not depend on the field direction, which means that the signal
of spin Seebeck mechanical force is completely hidden by thermal effects. All
experiments were performed at room temperature in a high vacuum (10−4 Pa).

Data availability
The data that support the findings of this study are available from the corresponding
author on request.
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