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ebate continues in the medical literature on the role of the renin angiotensin system (RAS) in Coronavirus
disease 2019 (COVID-19) pathophysiology and the implications for the use of cardiovascular drugs acting
on the RAS. Could these drugs – which include angiotensin converting enzyme inhibitors (ACEIs) and
angiotensin receptors blockers (ARBs) – be harmful or potential key therapeutic agents in COVID-19? And,
could potentially helpful measures be available and in plain view on the pharmacy shelf?
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Debate has arisen due to the finding that underlying cardio-
vascular disease and hypertension are associated with
significantly increased risk of hospitalisation and death in
COVID-19 [1,2], in addition to the viral receptor being
angiotensin-converting enzyme-2 (ACE-2) [3–5]. Coronavi-
ruses down-regulate ACE-2 anti-inflammatory actions leading
to imbalance in ACE:ACE-2 [4] which may be fundamental in
COVID-19 pathophysiology. Key gender and genetic differ-
ences in the regulation of ACE:ACE-2 balance [6–8] may
explain differences observed in disease severity [2,9,10].
Social media amplification of concern about continuation

of renin angiotensin system (RAS) medications during the
current pandemic prompted cardiovascular societies to
publish position statements strongly advising continued use,
given a lack of evidence that RAS drugs were unsafe and the
substantial risk of hospitalisation when these drugs are
withdrawn from patients with valid indications for treatment
[11,12]. Three (3) large observational studies published in The
New England Journal of Medicine (NEJM) now support the
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view that there is no evidence for harm due to RAS medi-
cations in COVID-19 [10,13,14].
However, given the fundamental role of the RAS in

COVID-19, a broader therapeutic indication for ACEI and
ARBs, over and above treatment of patients with established
cardiovascular indications has been suggested [15,16] but is
yet to be tested in randomised trials. Vitamin D status may
also be linked to the RAS impacts of COVID-19, as vitamin D
is a negative regulator of renin synthesis, and a small study
has reported high rates of vitamin D deficiency in COVID
patients requiring intensive care [17]. Both vitamin D and
ACE have a role in the immune system, which may add a
complex dimension to the issue of RAS drugs and vitamin D
status in COVID-19 [18,19].
COVID-19 has a more severe course in patients with pre-

existing cardiovascular disease [1,2,10] and causes a signifi-
cant rate of cardiovascular events [20]. Further research is
required to define the pathological mechanisms and the basis
for the observed gender, age, and racial differences in
NZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ).
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severity. RAS medications can be used with greater confi-
dence in COVID-19 patients with valid indications for their
use, but a broader role for manipulation of the RAS in
COVID-19 will require randomised trial data.
Role of the RAS in Coronavirus
Infection
Coronavirus-2 (SARS-CoV-19) is believed to gain cell entry
via a viral spike protein binding to the ACE-2 receptor [3,4].
Virology research for other similar coronaviruses indicates
that viral cell infection is followed by rapid downregulation
of ACE-2 [4,5]. The ACE-2 system is the yang of the yin-yang
balance of the RAS hypertension system. ACE-2 is a zinc
metalloprotease, discovered in 2000 [21], which mainly
breaks down angiotensin II (Ang II), the main effector of the
RAS system, to Ang(1-7), resulting in a decrease in blood
pressure, vasoconstriction and decreased inflammation.
ACE-2 is usually membrane bound but is shed in COVID
infection, in acute lung injury and myocardial infarction [16].
Whilst the role of circulating ACE-2 is unclear, conditions
such as advanced heart failure have higher plasma ACE-2
proportional to worsening clinical status [22,23]. Serum
ACE-2 levels are also significantly higher in hypertensive
patients [23] and gender differences are described with up to
50% greater levels in male patients [23]. There is debate as to
whether the observed higher levels in male, hypertensive,
and diabetic patients are related to increased ACE-2
expression as a compensatory mechanism, or whether it is
due to increased ACE-2 shedding, limiting tissue ACE-2 ac-
tivity and causing excess tissue Ang II. The role of circu-
lating, versus tissue, ACE-2 levels in susceptibility to COVID
infection is unclear [24]. In viral downregulation of ACE-2,
unopposed ACE generates high Ang II causing increased
BP, vasoconstriction, inflammation and cell damage. To
exacerbate matters, the active metabolite generated by ACE-
2, Ang(1-7), can be broken down by ACE itself, accentuating
the RAS imbalance caused by COVID-19 [21] (Figure 1).
COVID-19 Pandemic
COVID-19 is highly contagious spreading from one prov-
ince, in December 2019, to the whole of China in 30 days,
despite extreme shutdown measures [2]. By May 2020, the
disease has infected 3,392,718 people with 239,178 deaths
worldwide [9] and is causing enormous global economic and
social impacts. Epidemiology for 72,314 confirmed, sus-
pected and asymptomatic cases in China suggested mild
disease in 81%, with 2.3% fatality overall [2]. Early mortality
figures in different countries have shown striking differences,
with greater mortality in Europe, compared to Asian coun-
tries [9], which may relate to fundamental differences in
racial ACE and ACE-2 polymorphisms, impacting both
susceptibility to the disease and subsequent pathological
severity. Population demographics clearly play a role with
elderly patients at greatest risk of severe disease and death.
Key differences in the speed of government actions to
implement extensive public health measures, as recom-
mended by the World Health Organization (WHO), have
also impacted mortality rates as hospitals in some countries
have been overwhelmed by a rapid rise in cases.

Factors Influencing Disease Severity
Why do 81% of cases have a mild disease and yet 19% have a
more severe disease? The Chinese Center for Disease Control
and Prevention (CCDC) epidemiology showed that there
was an overall mortality of 2.3% [2]. The death rate increased
with age and with co-morbidities, particularly cardiovascu-
lar disease (13.2%), diabetes (9.2%) and hypertension (8.4%),
all the risk factors typically seen in those with “metabolic
syndrome”. Whilst it is clear that co-morbidities and age
increase mortality, what is not clear is whether this excess is
due to the impact of the co-morbid conditions on host in-
flammatory response alone, or to the impact of a treatment
some of this patient group is taking [25]. Since the RAS
system is fundamentally involved in COVID-19 pathogen-
esis, there was great speculation that drugs widely used in
hypertension and heart failure treatment, acting on the RAS,
may impact disease severity, with some suggesting a pro-
tective effect [15,16] and others concerned about potential
harm [24]. These drugs include ARBs, ACEIs and the com-
bination drug valsartan/sacubitril (Entresto) which com-
bines an ARB with a neprilysin inhibitor (also known as an
angiotensin receptor-neprilysin inhibitor [ARNI]). Whilst
there is evidence that ACEI and ARB treatment may increase
expression of ACE-2 in some tissues in animal models, data
supporting or quantifying this effect in human subjects at
clinical doses of RAS medications is lacking [24]. Hence the
relevance of possible medication-induced alteration in ACE-2
levels, over and above the well-described significant differ-
ences in circulating levels of ACE-2 in advanced heart failure,
hypertension, males and diabetics, and the implications for
COVID-19 severity, is unclear [22,23,25]. Increased ACE-2
was speculated to increase susceptibility to COVID-19 by
allowing more virus into cells which, in turn, may exacerbate
disease severity. The counter argument is that, once infected,
having more ACE-2 could be protective against viral attack
and downregulation of the ACE-2 anti-inflammatory system
[26,27]. Three (3) large observational studies reported in the
NEJM have now examined this issue and found no evidence
for increased risk of adverse outcomes in COVID-19 patients
taking ACEI or ARBs [10,13,14] adding weight to previously
reported smaller retrospective clinical studies [28–30] which
also showed no excess mortality for ACEI/ARBs. Mehra
et al. [10] reported data for 8,910 patients admitted with
COVID-19 in 169 hospitals in Europe, Asia and North
America, and confirmed that age, coronary disease, heart
failure, cardiac arrhythmia, chronic obstructive pulmonary
disease and current smoking were all associated with
increased in-hospital mortality but there was no increased
risk of mortality associated with risk of ACEI or ARBs. They



Figure 1 Renin angiotensin system showing the balance between angiotensin converting enzyme (ACE) and ACE-2.
Diagram from Patel et al. Circ Res 2016 [21].
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did find that use of ACEI and statins was more common in
survivors, however this was not randomised data. A multi-
centre Chinese study of 1,128 hospitalised patients with
COVID-19 and pre-existing hypertension showed a death
rate of 3.7% in those on ACEI or ARB versus 9.8% in non-
users (p=0.03). The data was observational and not
randomised, but even after adjustment for confounding
variables a lower mortality, with a hazard ratio of 0.37
(p=0.03) persisted for those receiving ACEI/ARBs, with a
HR of 0.3 (p=0.03) compared to use of other antihypertensive
agents [28]. The study did not separate treatment with ARBs
from ACEI [29].

Polymorphisms of ACE and ACE-2
Impacting RAS Balance
The answer to observed differences in COVID-19 death rates
could lie in key differences in the ACE:ACE-2 system balance
related to age, gender and racial variation in genetic ACE
and ACE-2 polymorphisms and environmental factors
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influencing ACE-2 expression [6,31]. There are ACE gene
polymorphisms that cause insertion (I) or deletion (D) of a
sequence of the gene, and ACE activity levels in DD carriers
are approximately twice that found in II genotypes [7]. The
possible impact of ACE genotype in the COVID-19 disease
state, when the ability to breakdown Ang II is impaired,
could be hypothesised to cause a greater quantity of circu-
lating Ang II and a more marked imbalance of the RAS and
more severe disease. Genetic and environmental factors
influencing ACE-2 expression could also result in differences
in the risk of becoming infected in the first place by affecting
the affinity of the ACE-2 binding domain for the viral spike
protein and by causing differences in the density of ACE-2
receptors present in tissues such as the lungs. ACE-2 poly-
morphisms may then contribute to significant differences in
disease severity by determining the extent of the ACE:ACE2
imbalance, particularly in the endothelium of the lungs,
where the virus attacks at the same time as disabling the
ACE2-mediated repair systems.
Chen and co-workers (2020) [8] have analysed 30 tissues in

thousands of individuals and found significantly higher tis-
sue ACE-2 in Asian females compared to males and other
ethnic groups. They have described an age-dependent
decrease in ACE-2 expression and a highly significant
decrease in type II diabetic patients. The loci for higher ACE-
2 expression is almost 100% in East Asians and .30% higher
than other ethnic groups. ACE-2 is suppressed by inflam-
matory cytokines, by diabetes and induced by oestrogen and
androgen, both of which are decreased in the elderly. The
work by Chen and co-workers suggests a negative correla-
tion between COVID-19 mortality and tissue ACE-2 levels, at
both a population and molecular level [8]. Circulating ACE-
2, however, has been described to increase in pathological
states such as hypertension, diabetes and heart failure and
perhaps differences in circulating, shed ACE-2 and tissue-
bound ACE-2 are key in virus susceptibility and subse-
quent disease severity.

Gender Differences in ACE-2
ACE-2 is on the X chromosome, hence men have only one
allele and women have two [6,31]. Further to this, oestrogen
is believed to upregulate ACE-2 expression [32], giving pre-
menopausal women the advantage of two alleles and oes-
trogen upregulation, making a deficiency of ACE-2 and its
ability to rally less likely in the event of a viral attack. In
support of this hypothesis, the Chinese CDCC reported
overall female mortality of 1.7% including suspected cases as
well as serologically confirmed cases versus 2.8% in males.
This difference was more marked in serologically confirmed
cases, 2.8% female versus 4.7% male mortality. The overall
ratio was 1.06 males to 1.0 females believed infected [2].
Hence the men were not significantly less likely to become
infected, just more likely to have a more severe pathophys-
iological expression of the disease. Whilst the WHO sug-
gested [9] that these gender differences may be driven by
substantially greater rates of smoking in the Chinese male
population, the rates of smoking in the COVID-19 cases were
not provided in the epidemiological study. The X-linked
nature of the ACE2 gene, with females having a greater
range of phenotypes, may have a greater role than has been
yet been fully defined in coronavirus pathogenesis gender
differences. The range of ACE-2 phenotypes and their ability
to upregulate compensatory mechanisms in the face of viral
ACE-2 downregulation may play a role. Marked gender
differences in disease have been confirmed in other large
observational studies with Marcia et al. reporting 37%
women in 6,232 patients with COVID and Mehra et al. re-
ported 40% female patients in 8,910 COVID-19 patients
requiring hospital admission and furthermore reported
improved survival in female patients, independent of older
age [10].

Serum ACE-2 levels are reported to be significantly lower
in females [23] and there are fundamental differences in
immune responses to viral infections based on gender with
stronger humoral and cellular immune responses described
in females [33].

Smoking and COVID-19
Smoking has been linked to upregulation of ACE and
downregulation of ACE-2 [34], which could be hypothesised
to make smokers less likely than the general population to
become infected by virtue of having less ACE-2 required for
viral entry. However, if a smoker becomes infected, a pre-
existing ACE:ACE-2 imbalance may result in more severe
disease due to greater inflammation, higher risk of ARDS
and multi-factorial issues including poor baseline lung
function and bacterial superinfection. Evidence supporting
this picture is seen in data from Wuhan. Although smokers
are said to comprise 52.1% of the male population in China
[9], the rate of current smokers reported in COVID-19 series
seems well below this: 7% by Huang et al. [35], 12.6% in
Guan et al. [36], Zhou et al. reported 6% [1] and Zhang et al.
[37] 6.4%. However, once infected, current smokers have a
significantly greater mortality (9.4% versus 5.6% OR 2.96 CI
2.0–4.4) in the observational database of 8,910 COVID-19
patients [10].

Due to the extreme complexity of the RAS system, another
component may be relevant in causing greater mortality in
smokers with COVID-19. Neprilysin is a metalloprotease
that has a number of functions but can act to breakdown Ang
II to Ang(1-7), the role usually performed by ACE-2. It is
highly expressed in airways, pulmonary interstitium and
alveolar cells. A study examining circulating neprilysin
levels in 1,536 community-based subjects �45 years, found
that the lowest tertile group had the highest rates of smokers
(p,0.001) and higher rates of hypertension (p=0.04) [38]. If
smokers have low lung neprilysin activity, they may lack an
important safety mechanism that could overcome virally
mediated loss of the ACE-2. This might be relevant in pa-
tients taking Entresto (sacubitril/valsartan), a medication
with proven benefit in the treatment of patients with heart
failure. Neprilysin inhibition by the sacubitril component of
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Entresto may block the alternate method of generating the
anti-inflammatory mediator (1-7) when ACE-2, under viral
attack, is less able to do so. Clearly, this is a complex ques-
tion, impossible to answer without more data and even
recently reported observational studies did not have suffi-
cient patients taking Entresto to report on the safety of this
drug in COVID-19 [10,14,22].

Data Supporting RAS Activation in
Severe COVID-19
Reports from China showed that patients with severe dis-
ease, leading to intensive care unit (ICU) admission and
death, had features consistent with unopposed RAS activity,
such as higher blood pressure (BP) on admission to hospital
and higher BP on admission to ICU in non-survivors [1,35],
with a mean systolic BP of 145 mmHg in those requiring ICU
admission versus 122 mmHg in milder cases (p=0.018) [35].
Lower serum potassium levels, combined with high urinary
potassium has also been reported in more severe patients
[39], suggesting Ang II-mediated activation of aldosterone.
The presence of significant hypertension, instead of hypo-
tension, in a group of patients admitted to ICU versus those
not requiring ICU, is a particularly interesting clinical finding
with implications for the pathogenesis of COVID-19. Excess
RAS activity without ACE-2 balance to break down Ang II
and block adverse effects, such as cellular damage and
fibrosis, may play a key role in determining disease severity,
similar to the RAS pro-inflammatory effects well known to
contribute to heart failure (Figure 2).
Autopsy data published for four COVID-19 patients [40]

has described platelet rich clot formation occluding small
vessels and a microangiopathic picture, consistent with vir-
ally mediated vascular damage.

The ACE:ACE-2 Imbalance Caused by
Viral ACE-2 Downregulation
Understanding the ACE:ACE-2 imbalance in COVID-19, its
role in age, gender and racial differences in disease severity,
and the difference between tissue bound and circulating
ACE-2, could all prove key in treating this disease. In sup-
port of the fundamental ACE:ACE-2 imbalance having clin-
ical relevance, it has been reported that serum Ang II levels
are indeed significantly elevated in COVID-19 and correlate
with both viral load and lung injury [41,42]. Whilst ACE
formation of Ang II can be blocked by ACE inhibitors, up to
40% of Ang II is formed via non-ACE pathways such as
chymase [4], making ACE inhibitors potentially less effective
than ARB blockers in diminishing the problem of the excess
Ang II, since the ACEI may only block 60% formation of the
Ang II. On the other hand, the ARBs are highly selective
blockers of the main receptor for the Ang II, the angiotensin
receptor type 1 (AT1) receptor. ARBs do not decrease the
amount of Ang II produced in the first place, but by blocking
the AT1 receptors they activate a key counter regulatory
anti-inflammatory cascade to restore the ACE:ACE-2 bal-
ance. The excessive circulating Ang II, unable to bind
blocked AT1 receptors, binds AT2 receptors which trigger
counter-regulatory anti-inflammatory actions and up-
regulates ACE-2 expression [15] to remove excessive circu-
lating Ang II. A protective role of increased tissue ACE-2
expression seems plausible since groups with higher levels
such as younger people, premenopausal women and
possibly Asian populations [8] do seem to have lower disease
severity and mortality [2,9] compared to European pop-
ulations with an older population and high rates of co-
morbidities such as diabetes, hypertension and cardiovas-
cular disease, all of which have been described as having
higher circulating ACE-2 levels, due to increased ACE-2
shedding. It has been pointed out that in another RNA vi-
rus, human immunodeficiency virus (HIV), higher expres-
sion of binding sites such as CD4 actually protected from,
rather than increased, virulence [15].
Males have only one X-linked ACE-2 allele and could be

more vulnerable to phenotypes causing impaired ACE-2
regulation. Patients with pre-existing hypertension may
have a greater frequency of the ACE polymorphisms that
result in excessive Ang II levels, exacerbated by viral
impairment of Ang II clearance. COVID-19 is a disease
where a major battlefront is at the endothelium, fought by
the tissue RAS. There have already been cases reported in the
media of families tragically affected by very high rates of
severe disease and mortality, in line with genetic
factors playing a significant role in COVID-19 pathophysi-
ology [43].

Lipid Metabolic Pathways and Links
With Coronavirus Infection
Coronaviruses directly impact cellular systems, other than
the RAS, which are important in inflammatory pathways.
RNA viruses remodel host membranes and lipid metabolism
creating a suitable environment for their replication [44].
Lipid metabolism pathways are impacted in corona virus
infection, with glycerophospholipids and fatty acids signifi-
cantly elevated in SARS CoV-229E infected cells. Up-
regulated phosphatidylinositol (PI) may promote coronavi-
rus entry [45]. COVID-19 is associated with cardiac events
and significant serum troponin level elevation in a clinical
setting [36] and elevated lysophospholipids, including LP1,
have been reported in acute coronary syndromes from other
causes, undergoing coronary angiography [46].
HCoV-229E infection up-regulates fatty acids, believed to

promote efficient coronavirus replication. However, Yan and
co-workers [45] reported that exogenous addition of fatty
acids may interfere with viral replication by upsetting the
delicate balance of fatty acids, causing reversion of lyso-
phospholipids into phospholipids, limiting viral replication.
It is possible that the manipulation of fatty acids in a clinical
setting may upset the balance needed for viral replication.
Use of drugs such as statins may also impact viral ability to
harness cellular lipid pathways. Clearly more data is needed



Figure 2 ACE2 favourable role in cardiovascular disease, mediated by Ang1-7.
Diagram from Patel et al. Circ Res 2016 [21].
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to investigate the role of fatty acid and cholesterol manipu-
lation. The finding that statins decrease in-hospital mortality,
even in a non-randomised study [10], is of interest.

Possible Long-Term Sequelae of
Coronavirus Infection
Long-term sequelae of SARS, caused by a related coronavi-
rus (SARS Co-V), have been reported in follow-up studies in
survivors out to 15 years. These include sleep disturbance,
characterised by increased stage 2 sleep percentage, diffuse
myalgia, chronic fatigue, depression, lung damage and
avascular femoral head necrosis [47–49].
Deranged lipid metabolism has also been reported in

SARS survivors. Lipid metabolites, including phosphatidy-
linositol (PI) and lysophosphatidylinositol (LPI), are associ-
ated with cellular entry and/or egress of respiratory viruses.
LPIs and PIs were markedly upregulated in recovered SARS
patients. LPIs are thought to have a critical role in glucose
homeostasis. A large proportion of the recovered SARS pa-
tients reported glucose metabolic disorders, including
hyperinsulinaemia, insulin resistance, hyperglycaemia, and
type 1 or 2 diabetes [48]. Patients who died of SARS were
found to have extensive lung damage as well as features of
systemic vasculitis. Autoantibodies against human epithelial
and endothelial cells can develop after SARS-CoV infection
and this could explain the severe deterioration in some
patients in phase II of the disease and may lead to post-
infectious cellular injury and SARS-induced immunopa-
thology in survivors [50]. This long-term immunopathology
could also be a risk in COVID-19, a related virus which also
acts to inflame the endothelium and, due to gender
differences in immune function, female survivors may be at
greater risk to autoimmune mediated sequelae [33].

Immune System Role of Vitamin D and
ACE
Vitamin D deficiency can be related to immune system
dysfunction [18] and inflammation, and can cause a pro-
thrombotic state; it is common in Europe in winter.
Vitamin D is a potent negative endocrine regulator of the
RAS and works predominantly by suppressing renin syn-
thesis [51]. Vitamin D deficiency and genetic and
geographical variation in its function may be another factor
contributing to greater imbalance of the ACE:ACE-2 system
leading to differences in disease severity in COVID-19. It has
been suggested that vitamin D supplementation could
reduce the risk of COVID-19 infection and death [52]. Lau
et al. [17] reported a small study of vitamin D levels in 20
patients which is yet to be peer reviewed. They described
vitamin D deficiency in 84.6% of COVID-19 patients in ICU
and 57.1% of patients admitted to a ward bed. They found
that 100% of patients under age 75 admitted to ICU had
vitamin D deficiency (n=11).

ACE is best known for its role in blood pressure regulation
by converting angiotensin I to Ang II, but in fact it cleaves
many peptides and has a role in innate and adaptive immune
responses, with ACE expressed on both neutrophils and
macrophages. The role of ACE in immune responses and
inflammation is complex and includes defence against
intracellular pathogens, mediated via actions that are not
dependent on Ang II, as reviewed by Bernstein and co-
workers [18]. These complex interactions mean that ACEI
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and ARBs may not have the same impacts in COVID-19, a
disease impacting both haemodynamic and inflammatory
pathways.

Targets for COVID-19 Treatment
Many agents are under investigation or in clinical trial for the
treatment of COVID-19 but so far no anti-viral drugs or
vaccine have been officially approved for COVID-19 treat-
ment. Hundreds of trials are listed in the WHO COVID-19
Trial data base (www.who.int International Clinical Trials
Registry). A small trial using hydroxychloroquine and azi-
thromycin showed some promise in decreasing viral carriage
to only 3 to 6 days [53], an improvement on 20 days reported
from China [1]. This combination could, however, carry a
risk of arrhythmia due to long QT, in a group of patients
where abnormal troponins and endothelial dysfunction can
be present, with some arrythmias reported in China [1].
Longer trials will be needed.
Preliminary clinical data for the investigational RNA

antiviral agent, remdesivir, did not show a survival benefit in
a study of 237 patients in China but did show a trend to
earlier recovery [54], and the Adaptive COVID-19 Treatment
Trial (ACTT), a study of 1,063 patients with lung involve-
ment in the USA, has not yet been peer reviewed but a press
release from the National Institutes of Health (NIH) [55] re-
ports a 31% faster recovery time (p,0.001) of 11 versus 15
days and possibly a trend to a survival benefit with 8%
versus 11.6% mortality (p=0.059).
A variety of therapeutic approaches, in addition to a

vaccine, may contribute to COVID-19 treatment and pre-
vention in the medium and long term. However, in the
current more urgent situation there are 2,075,668 active
cases and 51,332 (2%) are serious or critical, with many
countries still in the exponential rise phase of new cases.
Treatment that can be distributed in large quantities is
needed if the economic impact of this pandemic is to be
addressed.
A meta-analysis of cardiac troponin results in COVID

patients reported that higher levels correlated with more
severe disease [20]. This is consistent with either myocarditis
or an acute coronary syndrome, conditions for which
manipulation of the RAS with commonly available drugs,
already have an indication, based on treating endothelial and
myocardial inflammation. Use of these drugs in COVID-19
patients meeting the definition for an acute coronary syn-
drome or for another valid cardiovascular indication can
now be given with more confidence in light of recent studies
showing no detriment for these drugs in COVID-19
[10,14,22].This approach may be one that is directed at
fundamental viral vascular pathogenesis.
A broader therapeutic role for RAS inhibition in COVID-

19 is being investigated in two randomised trials exam-
ining the effects of the ARB losartan on the severity and
prognosis in COVID-19, in hospitalised COVID-19 patients
(NCT 04312009) and in non-hospitalised patients
(NCT04311177).
Conclusion
In the current global COVID-19 pandemic, many countries
are in lockdown with social and economic paralysis. The
impact of COVID-19 has been described as a warzone with
many patients dying a lonely death, isolated from loved ones
in overcrowded and hastily expanded hospitals. Currently,
only supportive care is available. Whilst many therapeutic
agents are under investigation [56,57], none have yet been
approved for use in COVID-19, nor demonstrated a signifi-
cant survival benefit. Even if some agents are proven to be
effective, it will take time for trials and for production on a
large scale.
Thinking of COVID-19 as a fundamentally cardiovascular

disease that attacks the endothelium could provide mo-
mentum to use safe, established and widely available med-
ications acting on the RAS, where they are already indicated
for acute coronary syndrome and cardiac dysfunction, pre-
sent in many patients with COVID-19. Whilst more data on
the role of vitamin D in COVID pathogenesis is needed,
replacing an essential vitamin when it is deficient, seems a
safe, cost effective and easily achieved therapeutic strategy.
Any successful shift to milder disease severity will ease the

burden on health care systems. Switching on endogenous
anti-inflammatory pathways may also play a key role in
decreasing the risk of long-term vascular and autoimmune
sequelae in COVID-19 survivors, which could pose a further
economic burden once the pandemic is over.
Although there may be more questions than answers and

hot debate in the medical literature about the role of the RAS
and drugs acting on this system in COVID-19, the consensus
opinion is they are safe to use in COVID-19 [11,12], a view
now supported by retrospective clinical data [10,14,22,28–
30]. In managing a global pandemic with a high death rate,
treatments aimed at the fundamental pathology, that can
meet the scale of the problem, are an appealing option. Data
from randomised clinical trials examining a broader role for
RAS agents in COVID-19, beyond existing indications, is
awaited and will further define the role of these medications.
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