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Abstract:

The COVID-19, the disease caused by the novel coronavirus 2019 (SARS-CoV-2),

has caused graving woes across the globe since first reported in the epicenter Wuhan,

Hubei, China, December 2019. The spread of COVID-19 in China has been success-

fully curtailed by massive travel restrictions that put more than 900 million people

housebound for more than two months since the lockdown of Wuhan on 23 January

2020 when other provinces in China followed suit. Here, we assess the impact of

China’s massive lockdowns and travel restrictions reflected by the changes in mobil-

ity patterns before and during the lockdown period. We quantify the synchrony of

mobility patterns across provinces and within provinces. Using these mobility data,

we calibrate movement flow between provinces in combination with an epidemiolog-

ical compartment model to quantify the effectiveness of lockdowns and reductions

in disease transmission. Our analysis demonstrates that the onset and phase of local

community transmission in other provinces depends on the cumulative population

outflow received from the epicenter Hubei. As such, infections can propagate further

into other interconnected places both near and far, thereby necessitating synchronous

lockdowns. Moreover, our data-driven modeling analysis shows that lockdowns and

consequently reduced mobility lag a certain time to elicit an actual impact on slow-

ing down the spreading and ultimately putting the epidemic under check. In spite of

the vastly heterogeneous demographics and epidemiological characteristics across

China, mobility data shows that massive travel restrictions have been applied consis-

tently via a top-down approach along with high levels of compliance from the bottom

up. Our results show that such highly coordinated nationwide lockdowns have been

able to effectively suppress the average number of secondary infections and thus

central to mitigate and control early-stage outbreaks and avert a massive health cri-

sis otherwise. Our work sheds light on that large-scale coordination of collective

actions, albeit costly in the short term such as complying with lockdown orders, is

urgently needed to fight this pandemic and get our life back to normal.
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I. INTRODUCTION

Global health and humanity has been constantly threatened by emerging novel zoonotic dis-

eases [1, 2], such as Zika [3], Ebola [4], and more recently the COVID-19 [5, 6]. The relentless

siege of SARS-CoV-2, the pathogen causing COVID-19 infections [7, 8], has upended everyone’s

normal life and caused health crises, lockdowns, and economic percussions at an unprecedented

pace and scale. The world has resorted to mandatory non-pharmaceutical interventions (NPI), in-

cluding lockdowns, face-covering, and social distancing, so as to mitigate disease impact before

effective pharmaceutical interventions (e.g., vaccines) become available [9–11]. Such top-down

approaches consider the society as a whole and attempt to optimize intervention measures from

the perspective of central planners. On the other hand, adopting personal intervention measures

such as complying with lockdown measures incurs a cost to oneself, but collectively protects the

community especially these vulnerable. To address these issues, infectious disease dynamics has

been an important research area in relevant mathematical and biological fields [12–14]. Over the

years, researchers have proposed behavioral epidemiology as a means of integrating the study of

epidemiology with an understanding of health decisions made by individual actors responding to

infection risks [15–20].

Models of spatial epidemiology have been extensively studied using mathematical approaches

combined with real data, with a focus on revealing the spatio-temporal pattern of epidemic spread-

ing [21–23]. In particular, it is shown that the persistence and resurgence of local community

transmissions can be driven by movement between interconnected populations. To understand the

persistence and cycles of measles outbreaks, prior work has found that the ubiquitous community

structure and their intrinsic heterogeneity can hamper public health efforts to control and prevent

childhood diseases [22]. Moreover, previous studies take into account the network topology of

communities along with their interconnected mobility in metapopulation models [24, 25]. These

prior results provide novel insights into understanding the impact of individual movement on dis-

ease dynamics and implications for interventions. In recent years, with the increasing availability

and particularly unprecedented dataset about human mobility data [26–28], it becomes feasible to

study infectious disease and spatial epidemiology with more realistic considerations [29, 30].

Of particular interest, previous research has demonstrated the effectiveness of travel restric-

tions to mitigate respiratory virus transmission, yet there are also significant limitations of this

approach [31–34]. As aforementioned, epidemics in interconnected regions, partly due to the het-
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erogeneity of underlying epidemiological characteristics, can exhibit complicated dynamics dur-

ing an outbreak [21, 22, 25]. Among others, one of the important driving factors is movements, or

more generally mobility patterns, that accounts for local commutes and domestic and international

travels [29, 30]. It is known that COVID-19 has a relatively long incubation period [35] and can be

contagious before the onset of symptoms (even asymptomatic transmission is more pervasive than

previously thought [36]). Thus, in the very early phase of COVID-19 outbreaks when infrastruc-

tures like digital contact-tracing, high throughput testing capacity, and isolation stations are still

lacking or insufficient to handle overwhelming exponential outgrowth of the epidemic, the some-

what brute-force lockdowns (through travel restrictions) seem to be the last resort to mitigate the

disease impact and save time for development and deployment of other alternative interventions

such as vaccines and treatments. However, as time goes by, testing, contact tracing, and isolation

may provide a feasible approach for controlling local outbreaks of COVID-19 [10, 11].

In the wake of COVID-19 outbreaks, a wealth of studies focus on investigating how reduc-

tions in international travels through various forms of lockdowns and travel bans would lessen

the impact of the pandemic around the world [37–41]. Retrospectively, these studies invariably

confirm the importance of curbing imported cases so as to prevent cross seeding of infections due

to the spatial and temporal heterogeneity in epidemics, particularly when local transmissions are

outweighed by the risk of imported cases [37]. Noteworthy, [42] analyzes how the cumulative pop-

ulation outflow from the epicenter impacts the timing of onset of local community transmissions

in other receiving locations. The authors find a positive correlation between the two quantities,

thereby enabling a leading time for predicting the onset of local outbreaks.

As an initial pandemic response when there are not any other pharmaceutical interventions at

disposal, drastic lockdown imposes tremendous short-term cost but it can bring long-term positive

impact if implemented with ideal timing and coordination. From the top-down management per-

spective, prior research has extensively investigated optimization of intervention policy using sim-

ple epidemic models [43–48], including vaccination [49] and isolation [50, 51]. In regard to adap-

tive social distancing, prior work uses evolutionary game theory [52] or differential games [53]

from the perspective of individuals to understand factors of behavioral compliance. While these

prior models shed light on adaptive social distancing, it remains urgently needed to examine the

effectiveness of lockdowns and assess their actual impact on disease mitigation and control using a

data-driven approach. For this purpose, changes in mobility patterns can be a good proxy to study

the impact of non-pharmaceutical interventions (NPI) such as lockdowns and social distancing on
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behavior changes that help reduce community transmissions in an interconnected setting of spatial

epidemiology.

In the meantime, it is not uncommon that some people protest against measures of lockdowns

and NPIs [54], together with debates about their cost-effectiveness and impacts on health and

society [55, 56] (see a recent comprehensive review in [57]). To examine and validate conditions

for lockdowns to be effective, we take a second look at China’s containment efforts. Despite its

vast size and huge populations, China’s lockdowns have been able to mitigate and control local

outbreaks through massive travel restrictions. In early 2020 when knowledge about the COVID-19

is still rather limited, the decision to lockdown came after many deliberations and amid tremendous

uncertainty. Even so, to put a population of more than 1.4 billion on lockdowns and in some

provinces strict home quarantines for an exceedingly long period is a hard, top-down decision

that comes at an astronomical economic cost. Yet it turns out to have long-term positive impacts

mainly because the stringent lockdowns have been implemented effectively.

Here, we use a data-driven modeling framework to assess the effect of lockdowns on trans-

mission reductions and improve our understanding of the necessity of uniform and highly syn-

chronous lockdowns in light of the spatio-temporal pattern of COVID-19 outbreaks. To this end,

we explore China’s COVID-19 lockdowns as a concrete example, examine the level of synchrony

of implementing travel restrictions across China, and quantify the impact of lockdowns on people

movements.

Our data analysis based on the massive mobility data reveals that lockdowns are implemented

highly synchronously and uniformly at multi-levels, that is, between provinces (30 administrative

regions) and within provinces (at the level of prefecture within a given province such as Hubei). As

demonstrated in theoretical research about spatial epidemiology [21, 22, 25], highly coordinated

nationwide massive travel restrictions are central to effective mitigation and control of COVID-19

in China, especially during the early stage of epidemic outbreaks. Such massive travel restrictions

ultimately lead to successful control of COVID-19, saving the country from the blink of a huge

health crisis. Albeit the immeasurable loss of lives and economy, it is a remarkable achievement,

which is made possible by the sacrifice of each and every one of ordinary people just like everyone

elsewhere who has been impacted by this pandemic.
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II. RESULTS

In late December 2019, the outbreak of COVID-19 is first reported in Wuhan, Hubei, which is

a central transportation hub (especially for trains). The situation is rapidly escalated to a public

health emergency after local case surges and excessive hospitalizations that cause hospital overflow

(Fig. S1 in the SI). On 23 January 2020, the Chinese government imposed the largest scale of

lockdown measure in human history amidst the busiest period of domestic travels around the

Lunar New Year (Fig. 1) (as a reference, approximately 2.97 billion trips in total were made

during a similar time window in the year before [58]).

The implementation of lockdown is well coordinated across the nation with the highest level of

epidemic response (Level 1). As shown in Fig. 1, both the influx and the outflux of travelers for

each province approach rock bottom after a short period of chaos and panic. In some provinces,

people desperately try to get in and get out amid the announcement of lockdowns and travel re-

strictions. Even worse, people may find themselves suddenly trapped in the middle of their way

but still need to continue their trip for their final destinations. Such disruptions are reflected in

the temporary increases in travel volume (indicated by the Baidu mobility index). For people

who attempted last-minute moving in and moving out, inter-province mobility is not immediately

suppressed but rather surges across many parts of the regions. Noteworthy, such initial lags in

achieving actual mobility reductions are also attributed to the seasonal peaks in domestic travels

near the Lunar New Year when people (including migrant workers) travel back home to reunite

with their family (‘chunyun’, the biggest annual migration of humans in the world).

Due to the strict implementation of national lockdowns, the travel volume eventually ap-

proaches desired control target (Fig. 1). In particular, the epicenter Hubei experiences the strictest

ever travel restrictions and there are barely any free people movements except for essential travels

for an exceedingly long period (Fig. 1). As a matter of fact, Wuhan residents are strictly con-

fined in their homes for months (in total 76 days) until early April 2020. In late February 2020,

a month after the lockdown, many provinces lower their response levels and lift their lockdowns.

As a consequence, travels rebound but still, the impact of lockdowns on mobility is long-lasting.

Despite lower numbers of active cases, the reopening up efforts by the government see little effect

as people need time to feel comfortable about traveling again due to the fear of lockdowns and the

potential risk of infections.

Fig. 2 shows the pairwise mobility index between provinces; the lump sum of each column and
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each row, respectively, gives the total volume of ‘move in’ and ‘move out’ in Fig. 1. The order of

listed provinces is ranked according to their final epidemic size by the end of our study. The level

of inter-province mobility appears to be correlated with their epidemic sizes, forming a cluster on

the upper right corner (Fig. 2).

The heatmap plots provide us with an intuitive visual guide for understanding the degree of

interconnectedness between provinces in terms of their bidirectional travel volume (Fig. 2). After

two weeks since the lockdown (Feb 4, 2020), the travel reduces to a bare minimum that is required

to maintain essential living and work. The entire nation is paused at a massive scale and at a highly

coordinated pace (Fig. 2). In most places, the intra-province mobility is reduced dramatically more

than 90%, and even more, the inter-province travels are cut almost at 100%, in particular for the

travel from and to the epicenter and other most affected provinces (see the upper rows, those

provinces that had the largest outbreaks, of the heatmaps in the middle row of Fig. 2). Taken

together, these results demonstrate that China’s lockdowns are highly synchronous and effectively

stop long-range spatial spreading due to domestic travels.

As an outbreak unfolds, its emerging spatio-temporal pattern is highly dependent on the un-

derlying multi-scale and multi-layer population structure, among others, most crucially on the

mobility pattern [22, 24, 30, 42]. People make local and non-local movements during which in-

evitable close contact/proximity with others can seed infections near and far. Fig. 3 presents an

overview of the emergent spatio-temporal pattern of the COVID-19 outbreak in China. In ac-

cordance with Fig. 2, most affected provinces suffering the largest outbreaks by 10 March 2020

are those with the greatest levels of interconnectedness with, and thus receiving the largest pop-

ulation outflow from, the epicenter Hubei, including Guangdong, Henan, Zhejiang, Hunan, and

Anhui (highlighted in Fig. 3a). Fig. 3b further demonstrates how the phase and magnitude of

outbreaks in each province correlate with the cumulative population outflow received from Hubei.

The greater outflow received from the epicenter, the earlier onset of the local outbreaks will be de-

tected along with a larger number of cases (Fig. 3b). These data-based results provide a direct and

intuitive rationale for synchronous lockdowns that are required to ultimately control and possibly

eliminate infections, at least in the early phase of an epidemic when limited options other than

costly non-pharmaceutical interventions are possible. Altogether, our analysis based on China’s

COVID-19 dataset suggests such population outflow from epicenters determines the timing and

scale of the outbreaks (Fig. 3).

To further quantify the synchrony of lockdowns implemented across China, we perform com-
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prehensive comparative statistics of inter-province and intra-province time series of mobility data

(Fig. 4). The correlations on the level of provinces range from 0.77 to 0.98 (with value one suggest-

ing perfect synchrony) (Fig. 4a). Further zooming in, we take a close look at the prefecture level

within the epicenter Hubei province: the synchrony of mobility changes due to well-coordinated

lockdowns between the capital Wuhan and other cities within Hubei is significant and with little

variations (correlations ranging from 0.85 to 0.95) (Fig. 4b).

We further use an SEIR compartment model with a data-driven approach to infer the time-

dependent transmission rate βi(t) (see Methods & Model, and also the SI). This parameter reflects

how well mobility patterns (reductions and changes) translate into effective transmission rates (in-

fections via contacts) (Fig. 4c). We can see that the impact of lockdowns on reducing transmissions

does not occur immediately, but lags a certain time (on average two weeks or so) to reach desired

effective behavioral changes that eventually lead to reductions in transmissions. This result implies

that lockdown measures need to last sufficiently long enough so as to see their positive mitigation

impact, partly because people need some time to fully adjust to, and more importantly comply

with, quarantine orders, especially strict home quarantine.

We also estimate the effective basic reproductive ratio, Rt, in order to characterize the impact

of interventions on controlling the epidemic over time. Fig. 5 shows the best estimated Rt for

each province, most of their values varying from 2 to 10. Owing to the unique demographics of

each province, the heterogeneity of Rt requires a distinct level of interventions. For example, the

epicenter Hubei has an Rt ∼ 4 prior to lockdowns, whereas its strongly interconnected province

Guangdong has an Rt ∼ 15. Despite such drastically different epidemiological characteristics

and population densities and sizes, the universal lockdowns implemented almost synchronously

have managed to contain the epidemic outbreaks in each province, which would have become too

overwhelming to handle otherwise. Fig. 5 also reveals the intrinsic difference in the persistence

of COVID-19 and the effectiveness of interventions across the nation. In Zhejiang and Shanghai

(which are economically developed regions), the interventions are highly efficient and bring down

the Rt below one within days. In contrast, as for the epicenter Hubei, it takes a month to curb

the level of infections below the critical threshold. Although lockdown is not a one-size-fits-all

approach, there should be no question about its effectiveness, as long as implemented in synchrony

across the target population, in control and mitigation of an emerging epidemic.
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FIG. 1: Universal lockdowns across China along with a highly coordinated nationwide epidemic response.

The plots each show the inter-province mobility, measured by daily total influx and outflux of inter-province

travels using Baidu migration data, changes for the period from late December 2019 to March 2020. The

Chinese government imposed by far the largest scale of strict travel restrictions on more than 11 million

people (beyond) on January 23, 2020 (Level 1 response), amid the busiest period of the year for domestic

travels (‘chunyun’, travels made during the Lunar New Year). Such massive travel restrictions have caused

a dramatic reduction in travel volume, not only for the outflow from the epicenter Wuhan (Hubei) but also

nationwide. Depending on the level of regional disease mitigation efforts, only a few provinces relax their

travel restrictions (lowering from Level 1 to Level 3) a month later. The color corresponds to the level of

response prior to and after the epidemic outbreak in Wuhan.
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FIG. 2: Changes in inter-province and intra-province mobility over key dates throughout the epidemic out-

break. The non-diagonal elements of each heatmap plot show the migration index (a quantity proportional

to the overall volume, as defined by Baidu) of pairwise travel destinations from province A (source) to

B (target) while the diagonal the intra-province mobility index (travels within a given province). Prior to

lockdowns, the travel peaks correspond to popular domestic travel routes during the Lunar New Year such

as from Guangdong to Hunan (e.g., migrant workers return from coastal areas to inner lands to reunite with

family). Both the inflow to and the outflow from Hubei (epicenter) are kept at extremely low levels except

for essential travels that support epidemic response and basic living needs. These heatmaps complement

Fig. 1 by providing more detailed views of mobility during the outbreak.
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FIG. 3: Spatio-temporal pattern of early-stage epidemic spreading of COVID-19 in China. The phase and

magnitude of local outbreaks within each province depend on the cumulative population inflow received

from epicenter Hubei. Panel (a) shows the cumulative cases on the date 10 March 2020 and the red color

corresponds to the most affected provinces. Panel (b) shows the timing of emerging infections (the appear-

ance of the 10th diagnosed case) of each province versus the cumulative mobility index (proportional to the

overall volume of travels received from Hubei for the period from 1 Jan 2020 to 27 Jan 2020). The dot size is

proportional to the cumulative number of cases during that time window. Most affected provinces are those

receiving greater population outflow from Hubei along with much earlier phases of epidemic outgrowth.

III. DISCUSSION & CONCLUSION

In the very early stage of an unprecedented outbreak of COVID-19 started in the epicenter,

Wuhan, Hubei province, China, the Chinese government imposed by far the largest scale of strict

travel restrictions on more than 11 million people (beyond) on January 23, 2020, amid the busiest

period of the year for domestic travels (‘chunyun’, travels made during the Lunar New Year).

Such massive travel restrictions have caused a dramatic reduction in travel volume, not only for

the outflow from Wuhan (Hubei) but also nationwide (Figs. 1 and 2). Control measures like this

help reduce the number of imported cases to other provinces, which can possibly slow down the

onset of epidemic outbreaks in other regions and potentially weaken the impact of the disease.

In this work, we use a data-driven approach to estimate the effectiveness of such massive travel

restrictions in the mitigation of disease impact. Our work shows that highly coordinated massive
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FIG. 4: Quantifying synchrony in reduced mobility due to national lockdowns and massive travel restric-

tions and assessing their impacts through reductions in disease transmissions inferred from our data-driven

modeling. Panel (a) show the intra-province mobility and their strong correlations with the curve of Hubei

province. Compared to the year before (numbers given in brackets in the legend), the mobility patterns

exhibit significantly higher correlations, suggesting a high level of synchrony during the lockdown period.

Panel (b) shows the correlation of mobility index among prefectures within Hubei province. Panel (c) shows

the inferred transmission rates using a data-driven multi-compartment framework. In all provinces, reduced

mobility levels translate to drastically suppressed transmissions. The effect of lockdowns on transmission

reductions has seen a pronounced delay (varying by one or two weeks) for two reasons: (1) people need time

to adjust to reduced social contacts despite decreasing mobility (2) local community transmissions cannot

be easily controlled unless strict ‘cordon sanitaire’ (home quarantine) is enforced. The color corresponds to

the level of epidemic response.

travel restrictions are central to effective mitigation and control of COVID-19 outbreaks in China.

Pandemics are not new to human societies, yet tremendous challenges still remain particularly

in the wake of the ongoing novel coronavirus pandemic [45, 46, 59]. Successful top-down man-

agement of the pandemic and governance of the collective in the face of infectious disease threats

relies heavily on individual behavior and attitude changes from the bottom up [60]. However, the
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FIG. 5: Province-specific effective basic reproductive ratio, Rt, inferred from data-driven modeling. Highly

coordinated nationwide massive travel restrictions are able to suppress infections across China, despite each

province’s distinct pace and magnitude of epidemic impact mitigation. The plot shows that province-specific

Rt is heterogeneous and has a distinctive pattern with respect to the implementation of local lockdown

measures across provinces, but Rt is uniformly suppressed after two weeks of nationwide lockdown and

invariably drops well below one after one month.
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tragedy of the commons can arise as a result of ‘free-riding’ in this important context [61]. Individ-

uals may not follow disease intervention measures suggested by public health officials, especially

if the epidemic curve is being bent down, but the uptick of cases, in turn, causes individuals to

become more vigilant and increase their compliance levels. The feedback loop of this sort gives

rise to oscillatory dynamics of disease prevalence and behavioral compliance to top-down public

health measures, as seen in the current pandemic with multiple waves of infection [52]. In addi-

tion to the social dilemma aspect of disease control, tremendous uncertainty associated with early

detection of local community transmission and overall pandemic forecasting makes top-down sce-

nario planning and optimization of intervention and mitigation extremely challenging [62]. As

such, top-down and bottom-up modeling approaches need to go hand in hand in order to better

inform public health efforts for effective disease interventions.

One potential incomplete data issue of the present work is the aggregate Baidu mobility data

based on phones we used. Admittedly, such mobility data can be underestimated due to population

heterogeneity in phone usage and user privacy settings. However, as compared to a study published

decade ago [63], China is now one of the leading countries in smartphone usage and ownership for

both rural and urban populations: a recent Pew survey reported extraordinarily high smartphone

ownership [64]. Keep in mind our analysis is based on the levels of inter-province and intra-

province mobility which already has a large population size. While accurate calibration for such

potential sampling biases in mobility data is out of the scope of the present work, our results on

understanding the spatio-temporal pattern of COVID-19 spreading and quantifying the impact of

lockdowns are still of relevance and interest even as a case study of massive travel restrictions.

It remains an open problem to promote bottom-up behavior and attitude changes for the greater

good [65]. Compliance with public health recommendations and orders is an outstanding issue

plaguing many parts of the world and greatly compromising efforts to mitigate the pandemic.

Lockdowns had been attempted across the world, yet with drastically different outcomes. Many

regions tried varying degrees of enforcement but met with resistance due to privacy and civil rights

concerns. In contrast, China has a unique regime and governance structure to enforce a national

lockdown through a well-considered top-down approach.

Our work provides data-driven evidence for supporting highly coordinated lockdowns that

should be implemented in the early onset of pandemics in order to be effective. Only when ap-

plied in concert with all regions are strict lockdowns effective. Across the world, other countries

like Singapore and New Zealand have also seen successes in containing COVID-19 using well-
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coordinated national lockdowns. Undoubtedly, such lockdowns come at a huge cost — business

shutdowns, worker layoffs, and lack of child care, just to name a few – and inflict economic reper-

cussions. On the other hand, it is necessary to do so in the early phase of the global pandemic

when effective pharmaceutical interventions (like vaccines and anti-viral treatments) are lacking

or still under rapid development.

With the increasing options of interventions and especially ramping up vaccination, it becomes

hopeful to get our life back to normal. Massive travel restrictions are no longer needed to contain

case surges [66], provided that responsive and targeted local lockdowns by means of high-precision

contact tracing as well as testing and isolation are in place. Since the full-scale national lockdowns

in January 2020, local outbreaks due to imported cases from time to time in China have been

successfully controlled and eliminated using such prompt, targeted testing and isolation so as to

avert serious and costly national lockdowns repeatedly.

In conclusion, the pandemic has fundamentally shaped the whole world and reminds us of

the importance of pandemic preparedness and global health management. The worst of all are

discrimination and hate crimes around the globe [67]. Large-scale cooperation is urgently needed

to solve many challenging issues facing our common humanity. Fighting this pandemic is yet

another wake-up call for that.

IV. METHODS & MODEL

a. Model description. Our modeling framework builds on multi-scale behavioral epidemi-

ological spreading processes that incorporate mobility patterns [29, 30, 37] of inter-province

migrations (which affect the spatial spreading among provinces). Specifically, we consider a

Susceptible-Exposed-Infected-Recovered (SEIR) model in a metapopulation structure with mi-

gration. The systems of ODEs describe the dynamics in continuous time t, that is, days since the

disease outbreak:
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dS i(t)
dt

= −βi(t)S i(t)
Ii(t)
Ni(t)

−
∑
j, j,i

αi j(t)S i(t) +
∑
j, j,i

α ji(t)S j(t);

dEi(t)
dt

= βi(t)S i(t)
Ii(t)
Ni(t)

− σi(t)Ei(t) −
∑
j, j,i

αi j(t)Ei(t) +
∑
j, j,i

α ji(t)E j(t);

dIi(t)
dt

= σi(t)Ei(t) − γi(t)Ii(t);

dRi(t)
dt

= γi(t)Ii(t).

Here, the subscript i refers to the ith compartment on the provincial level. Ni(t) = S i(t)+ Ei(t)+

Ii(t) + Ri(t) is the total population size of compartment i at time t.
∑

j, j,i αi j(t) [S i(t) + Ei(t)] is

the total outflow from compartment i to other compartments, and
∑

j, j,i α ji(t) [S i(t) + Ei(t)] is the

total inflow to compartment i from other compartments. To parameterize migration flows between

compartments, we use the real provincial level mobility data from the Baidu Map service, which

provides aggregate level tracking of domestic travels on a daily basis. The impact of lockdowns

and travel restrictions on aggregate behavioral responses/changes that lead to transmission reduc-

tions is characterized by the province-specific transmission rate βi(t). More detailed modeling and

data analysis can be found in the SI.

Epidemiological model parameters:

• unit of time t: day.

• βi(t): transmissibility rate, which can be time dependent, due to lockdown efforts (home

quarantine and travel restrictions) [68].

• 1/σi(t): incubation period, which ranges from 1 ∼ 14 days [35, 36].

• 1/γi(t): number of days remain infectious, which ranges from 1 ∼ 14 days [69].

• R0 = βi(0)/γi(t): the initial values of R0 are bounded within 1.4 ∼ 4 [70, 71].

Uncertainty quantification and sensitive analysis. We apply the dual annealing algorithm to

perform a nonlinear least square fitting procedure for estimating time-varying epidemiological

parameters, denoted by a vector θ̂, combined with real mobility data. We further calculate the co-

variance matrix cov(θ̂) = s2(F′F)−1,with F =
∂ f (θ)
∂θ

∣∣∣
θ=θ̂

, and hence standard errors of the estimated

parameters (the diagonal elements of θ̂). The covariance matrix contains complete information
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about the uncertainty of parameter estimations. Following a Student’s t-distribution, the confi-

dence interval at (1 − 2α) significance is given by θ̂1−2α = θ̂ ± tαn−p

√
diag cov(θ̂) (see, e.g., the

uncertainty quantification for our predicted curve in Fig. S11 in the SI, where the uncertainty

of prediction, denoted by the shaded area, propagates as a function of the mean behavior of the

spreading dynamics).

b. Datasets. Mobility data is obtained from Baidu https://qianxi.baidu.com.

COVID-19 data is collected and curated by DXY and archived at https://github.com/

BlankerL/DXY-COVID-19-Data.

c. Open code. Source code is available at the GitHub repository https://github.com/

fudab/China-COVID-19-mobility. An interactive website can be found at https://fudab.

github.io/covid-19/china.
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zalez JP, Swanepoel R. 2005 Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576.

[5] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al.. 2020 A novel

coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine.

[6] Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, Cowling BJ, Lipsitch M, Le-

ung GM. 2020 Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan,

China. Nature medicine 26, 506–510.

[7] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020 The proximal origin of SARS-

CoV-2. Nature medicine 26, 450–452.

[8] Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. 2020 A novel coronavirus emerg-

ing in China? key questions for impact assessment. New England Journal of Medicine 382, 692–694.

[9] Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure

FX et al.. 2020 Compassionate Use of Remdesivir for Patients with Severe Covid-19. New England

Journal of Medicine.

[10] Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, Munday JD, Kucharski AJ, Ed-

munds WJ, Sun F et al.. 2020 Feasibility of controlling COVID-19 outbreaks by isolation of cases and

contacts. The Lancet Global Health 8, e488–e496.

[11] Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D, Fraser C.

2020 Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing.

Science.

[12] Anderson RM, May RM. 1992 Infectious diseases of humans: dynamics and control. Oxford univer-

sity press.

[13] Hethcote HW. 2000 The mathematics of infectious diseases. SIAM review 42, 599–653.

[14] Levin BR, Lipsitch M, Bonhoeffer S. 1999 Population biology, evolution, and infectious disease:

convergence and synthesis. Science 283, 806–809.
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