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ABSTRACT

Changes in gene regulation are important for pheno-
typic and in particular morphological evolution. How-
ever, it remains challenging to identify the transcrip-
tion factors (TFs) that contribute to differences in
gene regulation and thus to phenotypic differences
between species. Here, we present TFforge (Tran-
scription Factor forward genomics), a computational
method to identify TFs that are involved in the loss
of phenotypic traits. TFforge screens an input set of
regulatory genomic regions to detect TFs that ex-
hibit a significant binding site divergence signature
in species that lost a particular phenotypic trait. Us-
ing simulated data of modular and pleiotropic regu-
latory elements, we show that TFforge can identify
the correct TFs for many different evolutionary sce-
narios. We applied TFforge to available eye regula-
tory elements to screen for TFs that exhibit a signif-
icant binding site decay signature in subterranean
mammals. This screen identified interacting and co-
binding eye-related TFs, and thus provides new in-
sights into which TFs likely contribute to eye degen-
eration in these species. TFforge has broad applica-
bility to identify the TFs that contribute to phenotypic
changes between species, and thus can help to un-
ravel the gene-regulatory differences that underlie
phenotypic evolution.

INTRODUCTION

Morphological differences are a hallmark of phenotypic di-
versity between species. It is assumed that changes in mor-
phology largely involve changes in the expression pattern of
genes that play key roles in development (1–3). Such expres-
sion changes are often due to differences in cis-regulatory

elements (CREs) such as promoters and distal enhancers
that control the expression level and pattern of a gene. Cis-
regulatory activity is determined by transcription factors
(TFs) that bind to a CRE and activate or repress transcrip-
tion. To understand how differences in morphology and
other phenotypes evolved, it is necessary to identify func-
tional differences in CREs. However, despite the availability
of numerous sequenced genomes and functional genomics
approaches that uncover CREs active in specific tissues, it
remains challenging to detect the TFs and CREs that con-
tribute to phenotypic differences between species.

To detect CREs that are associated with phenotypic dif-
ferences, we recently extended the general Forward Ge-
nomics framework (4) and developed a computational
method called Regulatory Element forward genomics (RE-
forge) (5). This approach focuses on phenotypes that are
lost in independent lineages and screens for regulatory el-
ements that exhibit TF binding site (TFBS) divergence in
species that lost the given phenotype. We expect CREs that
are only necessary for a single phenotypic trait to evolve
neutrally upon loss of this trait. Neutral evolution will lead
to a gradual decay of important TFBSs, eventually leading
to loss of regulatory activity in trait-loss species. In contrast,
these CREs typically evolve under selection to preserve reg-
ulatory activity in species that possess the trait. This selec-
tive pressure will often preserve binding sites for important
transcriptional regulators within the CRE sequence. Over
time, this difference between selection and neutral evolu-
tion is expected to result in a preferential maintenance of
TFBSs in trait-preserving lineages and a preferential decay
of these binding sites in trait-loss lineages. Given a set of
motifs of relevant TFs, REforge uses this characteristic di-
vergence signature to screen genome-wide for CREs that ex-
hibit preferential decay of TFBSs in the independent trait-
loss lineages.

The success of REforge crucially depends on prior knowl-
edge about TFs that are relevant for the given phenotype.
While functional annotations such as gene expression pat-
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terns or knockout phenotypes in model organisms (6) can
be used to select potentially relevant TFs, it is in general un-
known if these TFs actually contribute to the phenotypic
change. Furthermore, this annotation-based TF selection
strategy is limited to the small subset of phenotypes for
which relevant TFs are known. Finally, while many com-
putational methods exist to find motifs that are enriched in
a given set of DNA sequences, TFBSs that are overrepre-
sented in one set relative to another set, or TFBSs that are
evolutionarily-conserved (7–10), no computational method
exists to detect TFs that preferentially lost binding sites in
trait-loss species and thus may contribute to this phenotypic
change.

To computationally detect TFs that are associated with
phenotypic differences, we developed a new method called
TFforge (Transcription Factor forward genomics). In con-
trast to REforge, TFforge jointly considers a set of CREs
and screens a library of motifs to infer which TFs exhibit
a widespread binding site decay signature in the trait-loss
lineages. We validated TFforge on synthetic data obtained
by simulating regulatory element evolution. We further ap-
plied TFforge to the phenotype ‘eye degeneration in subter-
ranean mammals’, which provided novel insights into which
TFs are involved in this repeated trait loss. By identifying
transcriptional regulators, TFforge will help to understand
the changes that contribute to gene regulatory differences
and ultimately phenotypic changes between species.

MATERIALS AND METHODS

Overview of TFforge

The main idea behind TFforge is illustrated in Figure 1A.
If a TF is important for gene regulation in a certain cell
type or tissue in trait-preserving species, then its binding
sites should be largely conserved. If a TF becomes less im-
portant for this cell type or tissue in trait-loss species, it is
expected that neutral mutations weaken or destroy many
binding sites of this TF over time.

TFforge requires as input (i) a library of Position Weight
Matrices (PWMs) that represent the TF binding motifs, (ii)
a phylogenetic tree, (iii) a set of CREs and their ortholo-
gous sequences in a set of species (fasta format) and (iv) a
binary classification that assigns each species in the tree to
either group A or group B. Without loss of generality, we
assume in the following that group A species have lost a cer-
tain phenotype which is present in group B species and test
if the branches associated with group A (trait-loss) species
have a tendency to lose or weaken TFBSs compared to the
branches associated with group B (trait-preserving) species.
However, the general framework is flexible as branches can
be assigned to more than two arbitrary groups and the op-
posite direction of TFBS divergence (gain or strengthening
of binding sites) can be tested as well.

Given a set of CREs that are active in the tissues relevant
for the phenotype and a library of TF binding motifs, TF-
forge considers one TF at the time and determines if this
TF has a tendency to lose TFBSs in the trait-loss species
in comparison to all other species. CREs that are active in
the relevant tissues can be obtained from high-throughput
functional genomics approaches like ATAC-seq, DNaseI-
seq, or ChIP-seq for histone marks or transcription factors

(11–13). It is sufficient if the CRE annotation is provided for
only one species (for example human or mouse) that serves
as a reference species in the comparative framework, since
TFforge only uses sequences of other species that are orthol-
ogous to the given CREs. TFforge can be applied to both
tissue-specific CREs and CREs that are also active in other
tissues (pleiotropic CREs, see below).

Computing sequence scores

Given a CRE, we first reconstruct all ancestral sequences
in the phylogenetic tree with Maximum Likelihood, using a
multiple alignment of the CRE sequences of all species. TF-
forge uses a given TF motif to estimate the binding affinity
of this TF to the sequences that represent either extant or
ancestral species in the tree. To this end, we use the Hid-
den Markov model (HMM)-based method Stubb (14,15)
(version 2.1). Stubb uses the Forward Algorithm to com-
pute the probability that the sequence was generated by an
HMM that emits either TFBSs, sampled from the given mo-
tif, or background sequence. Stubb then computes the prob-
ability that the sequence was generated by a second HMM
that only emits background sequence without TFBSs. The
Stubb score is the log-likelihood ratio of both probabili-
ties, capturing how likely the sequence was generated by the
motif-emitting HMM. Since the Forward Algorithm con-
siders each possible path through the HMM, weighted by its
probability, Stubb does not require fixed thresholds for TF-
BSs but rather integrates the contribution of both weak and
strong binding sites proportionally to their strength. This
avoids a main drawback of threshold-based approaches that
ignore TFBSs just below the threshold and consider all TF-
BSs above it as equal regardless of their strength. Further-
more, Stubb makes no assumption about the absolute posi-
tion of a TFBS within the CRE sequence. Consequently,
if mutations destroy a TFBS at one place and create an
equivalent TFBS elsewhere in the CRE sequence (TFBS
turnover, (16,17)), the Stubb score will be largely the same.

TFforge starts by scoring the sequence of the common
ancestor, for which we let Stubb optimize the transition
probability from the background into the motif state with
expectation maximization. To avoid fluctuations in transi-
tion probability estimation that can influence the compara-
bility of Stubb scores, TFforge then uses the same transi-
tion probabilities to score the sequences of extant or ances-
tral species that descends from the common ancestor. While
the emission probabilities of the motif state are determined
by the PWM, the emission probabilities of the background
HMM state are estimated from a given background se-
quence. To make Stubb scores comparable between species,
we generated a fixed set of random sequences with differ-
ent GC-contents and use the pre-defined random sequence
that matches the GC-content of the real sequence as the in-
put background sequence. Finally, TFforge converts Stubb
scores into ‘sequence scores’ by shuffling the bases in each
sequence 10-times and subtracting the average Stubb score
of these 10 randomized sequences from the real Stubb score.
In contrast to Stubb scores, these sequence scores are on av-
erage zero for random sequences that contain TF binding
sites only by chance. TFforge uses this property to exclude
uninformative branches, as described below.
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Figure 1. Illustration of the TFforge principle. (A) Illustration of TFBS differences across a phylogeny of species. In contrast to the green-triangle and
orange-circle TF, the blue-diamond TF preferentially lost binding sites on the branches (red) leading to the trait-loss species (red cross). Dashed ovals
illustrate TFBS loss. Cases where the presence but not the position of TFBSs is conserved illustrate TFBS turnover. Black and gray dots in the phylogenetic
tree represent extant species and reconstructed ancestors, respectively. A grey filled box represents a tissue-specific or non-tissue-specific CRE experimentally
determined for the first (reference) species in the tree. The open box represents orthologous sequence of other species that aligns to this CRE. (B) Illustration
of branch scores. For each TF motif separately, TFforge scores binding sites in all extant and reconstructed ancestral sequences and computes the score
difference between the start and end of a branch, which captures TFBS differences that occurred on each branch. The height of the symbol represents
binding site strength. (C) Comparing branch score distributions. After computing all branch scores for all regulatory elements, TFforge compares the score
distributions between the two groups of branches (red versus black in panel A). If there is no preferential loss of TFBSs on the branches leading to trait-loss
species, both distributions will be similar, as shown for the orange-circle and green-triangle TF. In case of preferential loss of binding sites on the trait-loss
branches, as illustrated for the blue-diamond TF, there should be a significant difference between both distributions. Bimodality may arise from branches
along which TFBSs were conserved (score of ∼0) or lost (negative score).

Computing branch scores

Since species are phylogenetically related, the sequence
scores cannot be directly compared between species. There-
fore, TFforge adopts the Forward Genomics branch
method (18) and computes ‘branch scores’ that capture dif-
ferences in TFBSs for every branch in the phylogenetic tree.
TFforge traverses the phylogenetic tree from root to leaves

and computes for every branch the score difference between
the end and the start node (Figure 1B). These branch scores
are positive if existing TFBSs were strengthened or if new
TFBSs were gained. Weakening or loss of TFBSs results in
negative branch scores. A branch score of ∼0 indicates that
TFBSs remained largely the same; however, TFBS turnover
is allowed as there is no constraint that TFBSs must occur
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at the same positions. Alternatively, a branch score of ∼0
can also arise if both the start and end node of the branch
have sequence scores of ≤0, indicating that in comparison to
randomized sequences no significant TFBS is present. Since
such branches are uninformative, we excluded branch scores
for which both start and end node have sequence scores ≤0
for computing the significance (below). Since every branch
is phylogenetically independent, branch scores can be di-
rectly compared and no further correction for phylogenetic
relatedness is necessary.

Computing the significance of the TF motif

Given the list of group A and B species, TFforge employs
Dollo parsimony to assign all internal tree nodes to either
group A (trait-loss) or B (trait-preserving). Then, we assign
each branch to group A or B, depending on the group as-
signment of the end node of the branch. If binding sites of a
TF preferentially evolve neutrally on the group A branches,
the respective branch scores should be lower than the scores
of group B branches. To test this, TFforge pools the group
A and B branch scores from the entire set of CREs and
computes the significance P-value of a positive Pearson cor-
relation between the branch scores and the group assign-
ment. This P-value is used to identify the TFs that are sig-
nificantly associated with the given phenotypic difference.
Using simulated data (below), we tested the power of a t-
test, Wilcoxon-rank sum test and other methods, and found
that Pearson correlation performed best for our data (Sup-
plementary Figure S1). By considering each TF motif, one
at the time, TFforge outputs a list of TFs ranked by their
P-value. Finally, P-values are adjusted for multiple testing
by the Benjamini-Hochberg procedure. While TFforge con-
siders a single TF motif at the time, it combines the branch
scores obtained for a set of CREs, which typically provides
larger sample sizes and thus statistical power.

Construction of TF motif library

In order to compile a library of TF binding motifs, we in-
tegrated motifs from three widely used databases. First, we
downloaded all PWMs in forward complement orientation
from UniPROBE (19), a database containing TF motifs ob-
tained with protein-binding microarrays. We kept all motifs
for which the UniProt or Swiss-Prot ID of the TF could
be converted to an Ensembl gene ID. Second, we obtained
motifs from TRANSFAC Pro 2014.3 (20), a database for
eukaryotic TFs and their binding motifs. We focused on mo-
tifs of vertebrate TFs and required that each frequency ma-
trix is either based on at least 20 sequences or that the motif
was derived from 3D structures. Third, we downloaded the
collection of non-redundant vertebrate TFs from JASPAR
(21). All frequency matrices were converted into probabil-
ity matrices. We removed all unspecific motifs by requiring
that a motif has an information content of at least six bits
and removed motifs for which we could not determine the
Ensembl gene ID of the TF. This resulted in a total of 2197
motifs, which we converted into Stubb’s weight matrix input
file format.

In order to cluster highly-similar motifs or redundant
motifs for the same TF, we computed pairwise similarity

scores with Tomtom (22) (parameters: ‘-thresh 1’, ‘-dist ed’).
Motifs with a pairwise similarity score ≤0.0001 were clus-
tered together, resulting in 614 clusters. We then selected the
PWM that is most similar to all other motifs within a cluster
as the cluster representative. The motifs of the 614 clusters
representatives constitute our motif library (Supplementary
Table S1). While clustering very similar motifs reduces the
runtime of TFforge by avoiding scoring redundant motifs
repeatedly, clustering is an optional step.

Creating simulated CRE datasets

To test TFforge, we first generated a synthetic dataset of
CREs where the TFs whose binding sites evolve under puri-
fying selection along group B branches and neutrally along
group A branches are fully known. To this end, we made
use of GEMSTAT and PEBCRES (23,24) to simulate the
evolution of regulatory elements. GEMSTAT predicts reg-
ulatory activity from the sequence of a CRE using the bind-
ing preference of TFs and information of TF expression
level and activator/repressor strength. PEBCRES evolves
a CRE using a discrete-time Wright-Fisher model with a
fixed size population. In each generation, PEBCRES intro-
duces random mutations into the CRE sequences and sam-
ples sequences with replacement for the next generation.
The probability of sampling a sequence is proportional to
its fitness, which in turn is proportional to how well the pre-
dicted CRE activity matches a chosen ideal activity. The
ideal activity is a user-defined fixed expression profile. A
maximum fitness of 1 is reached if predicted and ideal ac-
tivity are equal. We set PEBCRES mutagenesis parameters
to mutation rate 1e-04, substitution probability 0.95, inser-
tion probability 0.5, and tandem repeat probability 0.2 and
simulated a population of 50 sequences.

First, we simulated modular (non-pleiotropic) CREs that
have an ideal activity of 100% expression level in a sin-
gle tissue. In this simulation, CRE activity is controlled by
five foreground TFs (Figure 2A), which have equal con-
centration levels in this tissue and are activators of equal
strength. These five TFs were selected from all UniPROBE
motifs and are sufficiently different from each other. The
start point for the simulation of a CRE’s evolution is
the sequence of the common ancestor. To this end, we
randomly generated a 200 bp sequence, in which we im-
planted five non-overlapping binding sites for randomly se-
lected foreground TFs at random positions. We discarded
all ancestral CRE sequences with a start fitness of <0.85.
Then we evolved the CRE sequence along every branch
in the 20-species phylogeny. The PEBCRES parameter
‘num generations’ was set such that the total number of mu-
tations expected on a branch is equal to the branch length
(e.g. 100 generations at a mutation rate of 1e-04 correspond
to 0.01 substitutions per site). After obtaining the evolved
population of 50 sequences at an internal node, we inde-
pendently evolved this population along the two descending
branches. For every internal node and every extant species
in the tree, we selected the sequence with median fitness out
of the 50 simulated sequences as the single representative
sequence to compute sequence and branch scores.

We assigned three independent species as trait-loss
species and the remaining 17 as trait-preserving species
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Figure 2. Application of TFforge to simulated data. (A) Motifs of the five randomly-selected foreground TFs. (B) The plots show the top-ranked 15 TF
motifs for three trait-loss ages (corresponding to neutral evolution for 0.03/0.06/0.09 substitutions per site). Red font indicates motifs for foreground TFs
that control the activity of 100 simulated type 1 CREs that evolve neutrally after trait loss. The inset on the right side shows the top 3 background motifs.
Despite belonging to different motif clusters, these background motifs partially resemble foreground motifs (ZIC1 has some similarity to GST-Notch and
Gli1, the two TBP motifs to Gat1). This suggests that predicted binding sites for these background TFs may overlap suboptimal binding sites of some
of the foreground TFs, which provides an explanation why TFforge detects these motifs at ranks 6 to 8. Importantly, the significance of these motifs is
substantially lower than the significance of the five foreground motifs. (C) Performance of TFforge on 100 subsamples of type 1 CREs of various sizes.
Violin plots show the distribution of the sensitivity at a precision of 100%, which corresponds to the number of foreground TF motifs that have a higher
significance than the most significant background TF motif. The vertical black bar inside a violin plot spans the first and third quartile, the white bar
indicates the median.

(Supplementary Figure S2). Trait-preserving branches
evolved under selection to preserve the ideal regulatory
activity by setting the PEBCRES selection parameters to
D max = 1, selectionExp = 2, selectionScale = 100, and se-
lectionCoeff = 0.1. Branches leading to a trait-loss species
were split into two parts. The first (upstream) part evolved
under purifying selection until the simulated trait loss event
occurred. After trait loss, the second (terminal) part of
the branch evolved neutrally by setting selectionCoeff = 0,
which removes the influence of fitness during the Wright–
Fisher selection step. We simulated three different trait-loss
scenarios where the events correspond to a final branch
length part of 0.09, 0.06 or 0.03 substitutions per site (Sup-
plementary Figure S2). For each of the three trait-loss time

points, we simulated the evolution of a total of 1000 of such
CREs, called type 1 CREs in the following.

To test TFforge on this single-tissue scenario, we ob-
tained background TF motifs that are irrelevant for the ac-
tivity of the simulated CREs by extracting the 567 motifs
from our library that are sufficiently distinct (Tomtom sim-
ilarity score ≥ 0.01) from any of the five foreground TFs.
Then, we determined if TFforge is able to detect the five
foreground TF motifs given a set of 572 motifs that con-
tains 99.1% background motifs.

We explored robustness of TFforge to detect foreground
TF motifs given an input CRE dataset that not only con-
tains type 1 CREs. To this end, we simulated two additional
types of CREs. Type 2 CREs are created using an identical
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simulation setting as type 1 CREs, but they evolve under se-
lection in all 20 species. Type 3 CREs evolve as type 2 CREs,
but they are active in another single tissue and regulatory
activity of these CREs is controlled by five different activa-
tor TFs.

To assess the influence of ancestral sequence reconstruc-
tion on the performance, we aligned the sequences of ex-
tant species with PRANK (25) (parameters ‘-once -gaprate
= 0.05 -gapext = 0.2 -termgap -showanc’) using the phylo-
genetic tree as input (Supplementary Figure S2). PRANK
also reconstructs all ancestral sequences, which we then
used instead of the known ancestral sequences to compute
branch scores.

Second, we simulated pleiotropic CREs that have regu-
latory activity in two tissues. To this end, we redefined the
ideal regulatory activity of a CRE as 100% expression in
two tissues. In the second tissue, five different TFs are ex-
pressed at an equal level and these TFs have an equal acti-
vating strength. For pleiotropic CREs, we assume that af-
ter trait loss expression in the first tissue is no longer under
purifying selection, but expression in the second tissue still
is. Therefore, after trait loss, we changed the ideal regula-
tory activity from 100% expression in both tissues to 100%
expression in the second tissue only. Since the CRE is still
under selection to maintain expression in the second tissue,
the regulatory input required for expression in this tissue
remains under selection, which limits the overall sequence
divergence of the CRE in the trait-loss species.

Application of TFforge to real data

We used a multiple genome alignment of 29 species with the
mouse mm10 assembly as the reference, generated by lastz,
axtChain, chainNet and Multiz (26–28), as described previ-
ously (18). To obtain conserved non-coding elements, we ex-
cluded coding exon regions from evolutionarily conserved
elements detected by PhastCons (29) and GERP (30).

Crx ChIP-seq data from adult mouse retina tissue was
taken from reference (31). We only considered peaks that
have a quality score of ≥45 and that were detected in both
replicates. For each peak, we obtained the region ±100 bp
around the center position and retained those regions that
overlap with at least 100 bp conserved non-coding elements
(CNEs). This resulted in 1075 genomic regions of which the
majority (769, 72%) does not overlap promoter regions (300
bp upstream of the transcription start site). Nrl ChIP-seq
peaks from adult mouse retina tissue were kindly provided
by Anand Swaroop (32). We restricted the analysis to the
central 200 bp regions and filtered peaks for CNE overlap as
done for Crx peaks. This resulted in 500 peaks, 401 (80%) of
which do not overlap promoter regions. Lens-specific Pax6
ChIP-seq data was obtained from reference (33) by select-
ing lens peaks that do not overlap forebrain Pax6 peaks pro-
vided in the same study. Filtering the central 200 bp region
of each lens-specific peak for a minimal CNE overlap of 100
bp resulted in 929 regions.

Given a CNE that overlaps these TF-bound regions, we
reconstructed all ancestral sequences with PRANK (25)
(parameters ‘-keep -showtree -showanc -prunetree -seed =
10’) using the species phylogeny (Supplementary Figure S3)
as input and applied TFforge to all placental mammals.

RESULTS

Proof of concept

To test TFforge, we first used synthetic CRE datasets and
determined if TFforge is able to detect the motifs of the five
randomly-selected foreground TFs from 567 background
TFs that are not used in the simulation. We generated three
sets of 100 CREs that differ in the age of the trait loss by
setting the final (neutral) part of the trait-loss branches to
0.09, 0.06 or 0.03 substitutions per site. As shown in Figure
2B, TFforge is able to detect significant binding site losses
for all five foreground TFs for the three trait-loss ages. The
P-values decrease with an increasing age of the trait loss,
which is expected since an increased number of neutral mu-
tations should lead to an increased amount of TFBS loss.
In contrast, the 567 background TFs, whose binding sites
should only occur by chance, do not show a pronounced
binding site loss for the three trait-loss ages.

We next explored how random variation in the simula-
tion affects the TFforge performance and how many CREs
are necessary to detect significant binding site loss for the
five foreground TFs. To this end, we first generated 900 ad-
ditional CREs for each of the three trait-loss ages. From
the total of 1,000 CREs, we then generated 100 subsam-
ples comprising 50, 40, 30, 20 and 10 CREs each. Since
only 0.87% (5 of 572) of the motifs correspond to fore-
ground TFs, we compared sensitivity (percent of correctly
detected foreground TFs) versus precision (percent of fore-
ground TFs among all detected TFs) in the following. As
shown in Figure 2C, for subsamples of 50 CREs, TFforge
achieves a median sensitivity of 100% at a fixed precision
of 100%, showing that 50 simulated CRE are sufficient to
distinguish the five foreground from all 567 background
motifs. For subsamples of less than 50, the sensitivity de-
creases; however, TFforge is often still able to correctly iden-
tify four (80% sensitivity) or three (60% sensitivity) of the
five foreground TFs at 100% precision. Overall, this sim-
ulated data serves as a proof of concept that TFforge can
identify TFs that have a tendency to lose binding sites on
trait-loss branches.

Testing TFforge on more realistic evolutionary scenarios

Up to now, all considered CREs of type 1 evolved without
selection to preserve a regulatory activity on the trait-loss
branches. For a real data set, consisting of CREs that are
active in a selected tissue, it is unlikely that all CREs evolve
neutrally in the trait-loss lineages. Therefore, we tested the
performance of TFforge on simulated data that additionally
includes CREs that still evolve under purifying selection in
the trait-loss species. To this end, we generated two addi-
tional CRE sets. The regulatory activity of type 2 CREs is
controlled by the same five foreground TFs, while the regu-
latory activity of type 3 CREs is controlled by five different
TFs. In contrast to type 1 CREs, type 2 and 3 CREs evolve
under purifying selection on every branch in the tree. Based
on our observations that a minimum number of ∼50 type 1
CREs is required to reliably detect foreground TFs, we ap-
plied TFforge to a combined dataset comprising 50 type 1,
150 type 2 and 150 type 3 CREs. As shown in Figure 3A,
having 86% type 2 and 3 CREs makes it harder to identify
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Figure 3. Performance of TFforge on simulated datasets containing different background CREs or pleiotropic CREs. (A) Plots show the 20 top-ranked
TF motifs for three trait-loss ages on a combined dataset that consists of 50 type 1, 150 type 2 and 150 type 3 CREs. Foreground TF motifs are shown in
red. (B) Performance of TFforge on 100 subsamples of datasets where the ancestral sequences were either known or were reconstructed from an alignment
of extant sequences. Each dataset consists of a total of 50 type 1, 150 type 2 and 150 type 3 CREs. Violin plots show the distribution of the sensitivity at
a precision of 100%, which corresponds to the number of foreground TF motifs that have a higher significance than the most significant background TF
motif. The vertical black bar inside a violin plot spans the first and third quartile, the white bar indicates the median. (C) Performance of TFforge on 100
subsamples of datasets where different percentages of modular type 1 CREs were replaced with pleiotropic type 1 CREs. Each dataset consists of a total
of 50 type 1, 150 type 2 and 150 type 3 CREs.

the five foreground TFs. However, TFforge still achieved a
median sensitivity of 20%, 60% or 100% at a high precision
of 100% for the three trait-loss ages of 0.03, 0.06 or 0.09 sub-
stitutions per site, respectively. Different numbers of type 2
and type 3 CREs give similar results (Supplementary Fig-
ure S4A). This shows that it is possible to identify the fore-
ground TF motifs also under conditions where <15% of the
input CREs are expected to exhibit preferential binding site
loss in the trait-loss species.

Next, we investigated the influence of computationally
reconstructing ancestral sequences on the performance of
TFforge. To this end, we compared the sensitivity at a pre-
cision of 100% for simulated CREs where the ancestral se-
quences were either known or were computationally recon-
structed. As shown in Figure 3B and Supplementary Fig-
ure S4B, computationally reconstructing ancestors does not
impair the performance, suggesting that TFforge is robust
towards ancestral reconstruction uncertainty.
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Another key assumption has been so far that CREs are
modular and control gene expression only at a specific
time and tissue. However, it is known that some CREs are
pleiotropic and control expression at multiple time points or
in different tissues, for example, many enhancers drive gene
expression in both the developing limbs and genitals (34).
After the loss of a trait that results in the absence of selec-
tion to maintain enhancer activity in one of these tissues,
purifying selection would still preserve the regulatory activ-
ity in the other tissues. Therefore, we tested the performance
of TFforge on simulated pleiotropic CREs that have regu-
latory activity in two tissues, controlled by two sets of five
TFs. We adapted the simulation such that after trait loss pu-
rifying selection acts exclusively on regulatory activity in the
second tissue. We combined various percentages of modular
and pleiotropic CREs to obtain a total of 50 type 1 CREs
and added 150 type 2 and 150 type 3 CREs. As shown in
Figure 3C, replacing various percentages of modular CREs
by pleiotropic CREs has only a minor effect on the ability
of TFforge to identify the five foreground TFs. We conclude
that the ability of TFforge to identify TFs that preferentially
lose binding sites on trait-loss branches is largely unaffected
by the presence of pleiotropic CREs that do not evolve en-
tirely neutrally after trait loss.

Application of TFforge to real regulatory data

To validate TFforge on real data, we applied it to identify
TFs that are likely involved in the degeneration of eyes in the
blind mole-rat, naked mole-rat, star-nosed mole, and cape
golden mole (Supplementary Figure S3). These four inde-
pendently evolved subterranean mammals have poor vision
or are completely blind and possess degenerated retinas and
lenses (35–37). Furthermore, the genome of these mammals
has been sequenced (38,39) and ChIP-seq datasets exist that
provide genomic regions bound by eye-related TFs in the
retina of mouse, which we used as the reference species in
this analysis.

We first focused on genomic regions bound by Crx (cone-
rod homeobox), a TF that is required for photoreceptor de-
velopment (31). We applied TFforge to all Crx-bound re-
gions that overlap CNEs and screened our library of 614
similarity-clustered TF motifs for preferential binding site
loss on the branches leading to the four subterranean mam-
mals. This screen identified the Crx motif as the most signif-
icant out of all TF motifs (Figure 4A, Supplementary Ta-
ble S2), suggesting that subterranean mammals have lost a
substantial number of Crx binding sites. Many other top-
ranked motifs are similar to the Crx motif; however, they
also highlight other TFs that have roles in the eye and inter-
act with Crx. For example, the motif at rank 2 describes the
binding preference of other homeobox TFs, among them
Otx2 that is also required for photoreceptor development.
Interestingly, Otx2 directly interacts with Crx and regulates
Crx expression (40,41). Consistent with previous observa-
tions that Otx2 co-binds regulatory elements of Crx tar-
get genes (42), we found that 91% of the analysed Crx-
bound CNEs overlap Otx2 ChIP-seq data obtained from
the mouse retina (43). The motif at rank 4 is Gtf2ird1, a
TF that directly interacts with Crx and regulates gene ex-
pression in rod and cone photoreceptors (44). This suggests

that not only Crx but also co-factor binding sites preferen-
tially evolve neutrally in Crx-bound regions in subterranean
mammals.

Next, we used TFforge to analyse CNEs bound by Nrl
(neural retina leucine zipper), a TF that is necessary for
the development of rod photoreceptors (45). TFforge iden-
tified the Nrl motif at rank 7 with an adjusted P-value of
3e-10 (Figure 4B, Supplementary Table S3), consistent with
a substantial loss of Nrl binding sites in subterranean mam-
mals. Interestingly, our screen identified many of the same
TFs that show preferential binding site loss in subterranean
mammals in Crx bound CNEs (Crx, Otx2, Gtf2ird1; Fig-
ure 4B). This is likely explained by the fact that Nrl in-
teracts, co-binds regulatory regions and co-regulates many
photoreceptor genes with these TFs (32,44,46,47). This is
further supported by our observation that 60% and 78% of
the analysed Nrl-bound CNEs overlap Crx and Otx2 ChIP-
seq data, respectively. In addition, the analysis of Crx- and
Nrl-bound CNEs also identified other TF motifs that have
a role in specific cell types within the eye (Figure 4A, B).
For example, TFforge detected the motif of an AP-2 tran-
scription factor (encoded by Tfap2c) that is specifically ex-
pressed in retinal amacrine cells (48). The top-ranked mo-
tifs also include Vsx1 (visual system homeobox 1), a TF
required for cone bipolar cell development that binds the
opsin locus control region (49–51), c-Maf, a TF necessary
for lens development (52), and Lhx2, a factor necessary for
Mueller glia cell development (53). Finally, applying TF-
forge to lens-specific Pax6 ChIP-seq data (Supplementary
Table S4) highlights a preferential loss of binding sites of
additional TFs, such as N-myc, a TF required for fiber cell
differentiation during lens development (54), Isl1, a direct
target gene of Pax6 in the lens that is involved in retinal
ganglion cell differentiation (55,56), and NeuroD, which is
required for photoreceptor survival (57).

Given that we used a set of Crx- or Nrl-bound genomic
regions as input, it might not be surprising to detect the Crx
or Nrl motif. However, TFforge is different from tools that
detect motif enrichment, as our scoring procedure does not
count binding site occurrences but contrasts the conserva-
tion pattern of such binding sites on two sets of branches in
the phylogeny. To illustrate this difference, we applied TF-
forge to the same set of genomic regions but selected other
mammals as ‘trait-loss species’. Specifically, we considered
all 4809 combinations of four placental mammals that do
not contain sister species and do not include subterranean
mammals. None of these 4809 combinations results in P-
values for the Crx and Nrl motifs that are lower than the P-
values obtained for the four subterranean mammals (Sup-
plementary Figure S5A, B). This indicates that the subter-
ranean mammals collectively have the strongest tendency to
lose Crx and Nrl binding sites in genomic regions bound by
these TFs in retina tissue. We further computed the aver-
age branch scores for the four individual branches leading
to these species (Figure 4C, D). This revealed differences in
the amount of binding site loss between the subterranean
mammals with the cape golden mole and blind mole rat
showing the strongest tendency to lose Crx and Nrl bind-
ing sites, respectively, while the naked mole rat has lost the
fewest binding sites for both TFs.
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Figure 4. TFforge identifies TFs associated with eye degeneration in subterranean mammals. (A, B) Ten top-ranked motif clusters for Crx-bound (A) and
Nrl-bound (B) regions in mouse retina. TFs that are Crx/Nrl co-factors or that have a role in eye development and function are shown in blue font. (C,
D) Boxplots show the distribution of branch scores of the Crx (C) and Nrl (D) motif for the branches leading to the four subterranean mammals. Red
diamonds indicate the average. For visual clarity, a few outlier data points outside the branch score range [−3,3] are not shown.

DISCUSSION

TFforge is a new method to identify motifs of TFs that pref-
erentially lose binding sites in species that lost a given phe-
notype. Using datasets obtained by simulating the evolu-
tion of cis-regulatory elements under selection and under
neutrality on different branches, we showed that TFforge
is able to identify the correct motifs for a variety of sce-
narios and parameters. We found that it is not necessary

to assume that CREs evolve entirely neutrally, as TFforge
could also identify many correct motifs when applied to
pleiotropic CREs that control expression in different tissues
and that still evolve under purifying selection to preserve
the regulatory activity in some of the tissues. This is likely
important as the degree of pleiotropy of CREs is not well
characterized. For example, a recent study found that many
enhancers control expression in both the developing limbs
and genitals (34), suggesting that pleiotropic CREs might
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be more common than previously thought. While simulat-
ing modular or pleiotropic CREs certainly represents a sim-
plification of regulatory element evolution, it allowed us to
establish a proof of principle for TFforge and to probe the
limitations of the method.

To gain insights into the TFs that are likely involved in the
degeneration of eyes in subterranean mammals, we applied
TFforge to eye TF ChIP-seq datasets obtained from mouse
retina tissue. Screening our library of 614 motifs, TFforge
detected a significant binding site decay signature in subter-
ranean mammals of the TFs that were immunoprecipitated
(Crx and Nrl) as well as motifs of other TFs that interact or
co-bind with Crx and Nrl and are also involved in eye de-
velopment. Importantly, systematic hypothesis tests involv-
ing non-subterranean mammals showed that the four sub-
terranean mammals collectively have the most significant
tendency for losing binding sites of the immunoprecipitated
TFs, showing that TFforge not simply detects overrepresen-
tation of a motif but rather specific divergence patterns of
the respective binding sites.

TFforge will help to identify TFs that are involved
in a given phenotypic change, and thus reveal the tran-
scriptional regulators that contribute to phenotypic evolu-
tion. Given the rapid increase in the number of sequenced
genomes and advances in functional genomics that make
it possible to comprehensively identify relevant CREs, TF-
forge has broad applicability to identify TFs that are in-
volved in phenotypes that differ between the sequenced
species. By utilizing the ever-growing list of TF binding mo-
tifs to detect such TFs based on a large-scale binding site de-
cay signature, our approach is complementary to predicting
phenotype-relevant TFs based on functional annotations.
Thus, TFforge will also be a valuable upstream step of RE-
forge, which can then detect associations between individual
CREs and phenotypic differences between species and thus
provide insights into the genomic basis of nature’s pheno-
typic diversity.
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