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Abstract
The discovery of the myofibroblast has allowed definition of the cell responsible
for wound contraction and for the development of fibrotic changes. This review
summarizes the main features of the myofibroblast and the mechanisms of
myofibroblast generation. Myofibroblasts originate from a variety of cells
according to the organ and the type of lesion. The mechanisms of
myofibroblast contraction, which appear clearly different to those of smooth
muscle cell contraction, are described. Finally, we summarize the possible
strategies in order to reduce myofibroblast activities and thus influence several
pathologies, such as hypertrophic scars and organ fibrosis.
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Introduction
Wound healing has interested the medical praxis since the beginning 
of human history, but for many centuries the effort of physicians has 
concentrated more on empirical therapeutic strategies rather than 
on the understanding of its biological mechanisms. During the last 
few centuries, however, a gradual progress has been achieved in 
defining and understanding several physiological aspects of wound 
healing. In particular, the formation and evolution of granulation 
tissue has been described in the second half of the 18th century, 
mainly thanks to the British surgeon John Hunter, and in the last 
century it has been shown that wound contraction is due to an active 
contraction of granulation tissue, mainly thanks to the work of the 
French surgeon Alexis Carrel1. The discovery of the myofibroblast 
more than forty years ago allowed the identification of the cell 
responsible for this phenomenon2. This coincided with the early 
establishment of the cytoskeleton concept3. The myofibroblast was 
then considered to be a contractile non-muscle cell4. Since the first 
description, our knowledge of myofibroblast structure and activity 
has progressed enormously. The purpose of this article is to briefly 
summarize the biological features of the myofibroblast and to 
discuss some of the promising strategies to suppress this cell’s 
activity in order to achieve the possibility of influencing impor-
tant pathological situations, such as fibrotic lesions, that presently 
cannot be cured successfully.

Evolution of the myofibroblast concept
Initially, the myofibroblast was described by means of electron 
microscopy revealing the presence of prominent cytoplasmic 
microfilament bundles and peripheral focal adhesions in the fibrob-
lastic cells of granulation tissue2. Electron microscopy further 
showed the existence of gap junctions connecting myofibroblasts, 
thus reinforcing the suggestion of similarity between myofibrob-
lasts and smooth muscle (SM) cells5. The production of a specific 
antibody against α-SM actin, the actin isoform typical of vascular 
SM cells, allowed the demonstration that myofibroblasts express 
α-SM actin and are hence equipped with a typical SM protein6.

In the early phases of granulation tissue formation after the pro-
duction of a wound, local fibroblasts begin moving from the unaf-
fected dermis and subcutaneous tissue toward the wound center 
and acquire bundles of microfilaments, similar to in vitro stress fib-
ers, containing only β- and γ-cytoplasmic actins; these cells have 
been named proto-myofibroblasts and evolve generally into α-SM 
actin containing differentiated myofibroblasts that are responsible 
for wound contraction7. When the wound closes, myofibroblasts 
disappear through apoptosis8, and a scar persists in the affected 
area. When myofibroblasts persist in a closed wound, they 
indicate the development of a hypertrophic scar, an important 
pathological evolution of wound healing, particularly frequent 
after burn injury7,9. Myofibroblasts are also present in all fibrotic 
diseases, such as scleroderma, as well as liver, kidney, and lung 
fibrosis and are prominent in heart failure and repair after myo-
cardial infarction. Finally, myofibroblasts are the main components 
of the stromal reaction to several epithelial tumors7,10. It should be 
noted that both proto-myofibroblasts and differentiated myofibrob-
lasts can be found in normal tissues, for example in lung alveolar 
septa and at the periphery of intestinal crypts, respectively7, where 
they probably exert physiological mechanical functions.

Much work has been performed in order to find specific markers 
of the myofibroblastic phenotype. As stated above, α-SM actin 
discriminates myofibroblasts from fibroblasts and has become the 
most used marker for this cell. Several other markers have been 
proposed, but no specific marker has been identified until now. 
However, several SM cell markers are not expressed in myofi-
broblasts, such as SM myosin heavy chains, h-caldesmon, and 
smoothelin11; this underlines the functional differences between the 
two cells, as we shall discuss below.

Mechanisms of myofibroblast formation and evolution
After a wounding insult, blood extravasation and clot formation 
occur followed by an inflammatory phase that allows an accumula-
tion of blood-borne cells, liberating many cytokines and growth 
factors essential for the onset of the following phase of granula-
tion tissue formation12. In early granulation tissue, motile proto- 
myofibroblasts appear and start to synthesize extracellular matrix 
(ECM) components, such as collagen type I and III7. Another rel-
evant new component of ECM is cellular fibronectin, which con-
tains the alternatively spliced segments EDA (or EIIIA) and EDB 
(or EIIIB) and is present in connective tissue during development 
but reappears in pathological situations such as granulation tissue 
and fibrotic lesions13,14. EDA fibronectin has been shown to be 
essential for the differentiation of myofibroblasts15. The early 
transformation of fibroblasts into proto-myofibroblasts appears 
to depend on the mechanical changes taking place in the wound 
compared to the normal skin, in particular increased stiffness7,16; 
moreover, platelet-derived growth factor has been shown to stimu-
late proto-myofibroblast motility17. The development of α-SM 
actin synthesizing differentiated myofibroblasts is essentially 
due to the action of transforming growth factor (TGF)-β1 in the 
presence of EDA fibronectin15,18. TGF-β1 is present in the ECM 
as a large latent complex including latency-associated peptide and 
latent TGF-β1-binding protein9. It can be liberated by proteolytic 
enzymes as well as by integrin-dependent mechanically induced 
mechanisms9. The force exerted by stress fibers through trans-
membrane integrins is enough to free TGF-β1 from the large 
latent complex, and the strained ECM is capable of maintain-
ing a feedback mechanism, assuring a persistent fibrotic activity 
by the myofibroblast19,20; moreover, straining and/or stiffening of 
the ECM can increase the availability of TGF-β121,22 (Figure 1). 
Straining and stiffening are consequences of fibroblast and myofi-
broblast remodeling activities. Matrix stiffening is additionally 
promoted by fibroblast and inflammatory cell-derived collagen 
crosslinking enzymes including lysyl oxidases and lysyl oxidase-
like enzymes, as reviewed in 20,23. The incorporation of α-SM 
actin into stress fibers has been shown to significantly increase the 
contractile activity of fibroblasts24; the force generated by myofi-
broblast stress fibers is transmitted to the ECM through focal adhe-
sions that contain specialized transmembrane integrins25. As stated 
above, myofibroblasts disappear when a wound closes, mainly 
through apoptosis8. The mechanisms of apoptosis induction, or 
conversely of myofibroblast persistence, in hypertrophic scars are 
not clarified; however, the importance of a focal adhesion complex 
component, Hic-5, a paxillin homologue, in maintaining the myofi-
broblast phenotype has been demonstrated26. Moreover, myofi-
broblasts can disappear by means of accelerated senescence27 and 
even, at least in some instances, revert to the normal phenotype28.
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Mechanism of myofibroblast contraction and 
mechanotransduction
The initial studies suggesting a similarity between myofibroblast 
and SM cell contractile activities4 were gradually reconsidered 
in light of the consideration of the different functional activities 
of the two cells: SM cell contraction is rapid and short in dura-
tion, whereas myofibroblast contraction is rather long lasting and 
results in a permanent tissue retraction, probably stabilized by 
ECM deposition7. Evidence has gradually accumulated suggest-
ing that, in addition to the classical calcium-calmodulin-myosin 
light chain kinase-dependent SM cell contraction mechanism11, 
myofibroblast contractile activity can be regulated by the activation 
of the Rho/ROCK/myosin light chain phosphatase pathway7,29–31. 
This long-duration type of contraction underlines an essential 
difference between the SM cell and the myofibroblast and could 
explain the characteristic tissue remodeling activity of this cell.

The forces generated by the contractile activity of myofibroblasts 
are transmitted to the surrounding ECM through specialized 
focal adhesions containing transmembrane integrins. As a result, 
strained and more compacted ECM develops. Interestingly, the 
mechanical conditions generated by the myofibroblast feedback 
leads to their sustained pro-fibrotic activity10,19. More recently, it 
has been shown that megakaryoblastic leukemia factor 1 (MKL1), 

also named myocardin-related transcription factor (MRTF), is 
crucial for myofibroblast differentiation and mechanotransduction. 
In various myofibroblast precursor cells, it links mechanical stress 
to the transcriptional activity of muscle-cell genes via the polym-
erization state of actin32–36. Inhibition of MRTF reduces experimen-
tally induced skin fibrosis in rodents37, as well as differentiation of 
human colonic myofibroblasts38. Similarly, YAP/TAZ transcription 
factors, known to mediate mechano-responses39, positively regulate 
myofibroblast activation40–44.

Myofibroblast origin
One of the intriguing features of the myofibroblast is that it 
can derive from a large variety of cell types. As stated above, 
mesenchymal cells with myofibroblastic features are present in 
normal tissues, including the uterine submucosa, follicles of lymph 
nodes and spleen, intestinal villous cores and crypts, theca externa 
of the ovary, periodontal ligament, adrenal capsule, lung septa, 
and bone marrow stroma7. It appears more and more evident that 
the term fibroblast comprises a heterogeneous cell population10,45, 
thus it is possible that only some specialized fibroblastic cells 
generate myofibroblasts in normal and pathological situations, as 
recently supported by studies on skin and heart fibrosis46–48. Dur-
ing pathological situations, local fibroblasts allegedly represent 
the major source of myofibroblastic cells10; however, in particular 

Figure 1. Mechanical activation of TGF-β1. In normal connective tissue, loosely arranged collagen protects resident fibroblasts and latent 
transforming growth factor (TGF)-β1 complexes from being strained with the extracellular matrix (ECM). Fibroblasts in normal tissue do 
not express or present the integrin receptors that bind and activate latent TGF-β1. During tissue repair and in organ fibrosis, activated 
myofibroblasts express αv integrins that connect the contractile actin/myosin cytoskeleton to latent TGF-β1. The accumulation of collagen and 
its excessive remodeling (crosslinking) by these myofibroblasts result in denser and straighter ECM fibers, which leads to overall higher tissue 
stiffness. Because ECM fibers are straighter, even smaller strains applied to the fibrotic ECM externally, or by residing myofibroblasts, will be 
sufficient for the release of active TGF-β1 (modified from Hinz B and Suki B [2016] Does breathing amplify fibrosis? Editorial on 21).
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cases, other local cells become the main precursors, such as SM 
cells in coronary atheromatous plaque49, keratocytes in the eye50,51, 
perisinusoidal cells in the liver52, and pericytes in many organs53–55. 
In addition, myofibroblasts may develop through the process of 
epithelial-mesenchymal transition56,57 or endothelial-mesenchymal 
transition58. Finally, myofibroblasts may derive from circulating 
bone marrow-derived specialized inflammatory cells called fibro-
cytes and participate in fibrotic lesions in several organs59,60. Cir-
culating and/or resident mesenchymal stromal/stem cells (MSCs) 
are prominent precursors of myofibroblasts in a variety of organs 
and injury situations61,62. Because delivery of MSCs is an attrac-
tive approach to regenerate organs that are beyond repair within 
the body’s own capacity63,64, understanding MSC-to-myofibroblast 
activation (fibrogenesis) will be of particular importance for the 
success of MSC therapies40,65.

There is considerable variability and dispute in the literature con-
cerning the proportions of different precursor cells contributing to 
the myofibroblast pool. However, different research groups seem 
to generally agree that myofibroblast sources can differ between 
different individuals, organs, animals, or particular injury mod-
els. For example, in the corneal fibrosis model, 30 to 70% of 
myofibroblasts are derived from bone marrow-derived precursors 
depending on the type of wound and the individual that is wounded 
(reviewed in 51). Thus, using drugs that modulate myofibroblast 
activation from specific precursor cells can be an effective strategy 
to inhibit fibrosis in an organ-specific manner.

Perspectives
As we have seen, the myofibroblast represents an eclectic cell whose 
major function appears to be the remodeling of connective tissue. 
If we consider the variety of its possible origins, the myofibrob-
last could be defined as a phenotypic variant of many cell types, 
developing upon the appearance of appropriate stimuli. Myofibrob-
last activity can be physiological, e.g., regulation of ventilation/ 
perfusion ratio in pulmonary alveoli, and useful for wound healing 
but noxious in many pathological situations, e.g., fibrotic lesions7.

Despite many attempts and despite the clinical importance of 
fibrotic lesions9,12, there is not at present any clinically accepted 
pharmacological tool capable of influencing myofibroblast activ-
ity and thus the evolution of these diseases. We shall discuss some 
strategies that could possibly lead to the development of effi-
cient tools. Despite the heterogeneity of origin, all differentiated 
myofibroblasts perform the same functions, i.e. tissue remodeling 
and synthesis of ECM. Hence, the processes regulating these func-
tions appear to represent promising targets of therapeutic strate-
gies. TGF-β1 would appear as an ideal target in order to control 
myofibroblast activity. Unfortunately, until now no relevant results 
have been obtained by using direct inhibitors; however, several 
pathways of TGF-β1 action remain to be explored and a number of 

clinical trials that target TGF-β1 are pending66. EDA fibronectin is 
necessary for myofibroblast differentiation15 and its absence results 
in wound healing or pulmonary fibrosis reduction67, suggesting 
that EDA fibronectin could be addressed as a therapeutic target. 
The observation that α-SM actin is essential for the remodeling 
activity of the myofibroblast and the finding that its N-terminal 
peptide Ac-EEED is essential for α-SM actin incorporation into 
stress fibers68 have suggested that this peptide could represent a 
tool for decreasing myofibroblast activity. This possibility has 
been demonstrated in vitro and in rat wound healing69, suggest-
ing that this peptide or, possibly more efficiently, a mimetic com-
pound could be used therapeutically. The recent observation that 
tropomyosin 1.6/7 isoforms play an essential role in the stable 
incorporation of α-SM actin into fibroblast stress fibers70 points 
to a new target for the reduction of α-SM actin expression in 
myofibroblasts with the consequent reduction of their remod-
eling activity71. Another way to regulate myofibroblast remod-
eling activity could be the control of the Rho/ROCK/myosin light 
chain phosphatase pathway. In this respect, it has been shown 
that the ROCK inhibitor Y-27632 decreases granulation tissue 
contraction31. Closely related to reducing cell contraction is the 
idea of blocking myofibroblast adhesion to the ECM via integrins. 
This will have two potential beneficial outcomes: reduced force 
transmission to the ECM and, provided the correct integrins are 
targeted, reduction of TGF-β1 activation72,73.

Further work is needed in order to develop an efficient therapeutic 
approach to excessive wound healing and fibrotic diseases. Impor-
tantly, myofibroblast research will need to cross organ boundaries 
to exploit the full potential of drugs that are effective in one system 
but not studied in others. For instance, mitomycin C was shown 
to block fibrosis development after eye surgery74, but its action in 
other organs is unknown. We feel confident that during the next 
few years the above-discussed strategies will allow the discovery of 
new, efficient tools to control these devastating diseases.
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