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Abstract: Sphingolipids are important structural membrane components and, together with choles-
terol, are often organized in lipid rafts, where they act as signaling molecules in many cellular
functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflam-
mation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and
sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to
ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion
and internalization), sphingosine, which is released from ceramide by the activity of ceramidases,
kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural
component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced
sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingo-
sine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of
cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the
propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that
the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the
subsequent death of the bacteria.

Keywords: sphingosine; sphingolipids; ceramide; sphingosine-1-phosphate; sphingosine kinases;
infection; bacteria; viruses; fungi

1. Introduction

Sphingolipids are a class of inter-convertible bioactive lipids that have dynamic
functions in cellular signaling and membrane composition. All sphingolipids consist of a
hydrophobic sphingoid skeleton, which contains a hydrocarbon chain, an amine group,
and two hydroxyl groups. The amine group is bound to a fatty acid that, depending on
the sphingolipid, has a different chain length and degree of saturation. One of the two
hydroxyl groups can be changed to a phosphate, phosphocholine, or carbohydrate [1].
It has long been understood that sphingolipids serve as structural components of cell
membranes, but multiple recent studies have also described their crucial functions in
the regulation of physiological and pathological processes [2–5]. The key molecules of
sphingolipid signaling are ceramide, sphingosine, and sphingosine-1-phosphate (S1P),
which are involved in very diverse cell processes, such as proliferation, endocytosis,
necrosis, apoptosis, and migration [2,5–7] (Figure 1). Sphingolipids are also important
membrane components for pathogens, which use these components as receptors to adhere
to the host cell membrane. In addition, sphingolipids, particularly sphingomyelin and
ceramide, together with cholesterol lipid rafts, act as signaling platforms for adherence
and invasion receptors [8] (Figure 2). This review focuses on sphingosine and its role
in infectious diseases, and briefly discusses ceramide—a bioactive sphingolipid—and its
derivative, sphingosine-1-phosphate.
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Figure 1. Sphingolipid metabolism and their biological functions. There are several pathways to 
synthesize ceramide. The de novo pathway generates ceramide after initiation with serine and pal-
mitoyl CoA. Ceramides are then converted into other complex sphingolipids, including sphingo-
myelin, glycoceramides, and ceramide-1-phosphate. Ceramides can be acylated to acylceramide or 
deacylated by ceramidase to sphingosine. Sphingosine kinases phosphorylate sphingosine to 
sphingosine-1-phosphate. In turn, sphingolipid catabolic pathways result in ceramide from sphin-
gomyelin, ceramide-1-phosphate, glycosphingolipids, and sphingosine. Ceramide, sphingosine, 
and sphingosine-1-phosphate are biologically active sphingolipids that are involved in several 
cellular processes. 

 
Figure 2. Model illustrating the different effects of ceramide and sphingosine on microbial infec-
tions. While sphingosine prevents many bacterial, viral and fungal infections, ceramide often pro-
motes pathogenic infections, by mediating adhesion and internalization or by interfering with the 
killing strategies of the host. 

Table 1. Microbes attacked by sphingosine. 

Microbes Species References 

bacteria 

Acinetobacter baumannii [21] 
Brevibacterium epidermidis [25] 

Burkholderia cepacia [21] 
Corynebacterium bovis [18] 

Corynebacterium striatum  [18] 
Corynebacterium jeikium [18] 

Escherichia coli  [18,26,27] 
Haemophilus influenzae [21] 

Micrococcus luteus [25] 
Moraxella catarrhalis [21] 
Neisseria gonorrhoeae [28] 

Propionibacterium acnes [25] 

Figure 1. Sphingolipid metabolism and their biological functions. There are several pathways to
synthesize ceramide. The de novo pathway generates ceramide after initiation with serine and
palmitoyl CoA. Ceramides are then converted into other complex sphingolipids, including sphin-
gomyelin, glycoceramides, and ceramide-1-phosphate. Ceramides can be acylated to acylceramide
or deacylated by ceramidase to sphingosine. Sphingosine kinases phosphorylate sphingosine to
sphingosine-1-phosphate. In turn, sphingolipid catabolic pathways result in ceramide from sph-
ingomyelin, ceramide-1-phosphate, glycosphingolipids, and sphingosine. Ceramide, sphingosine,
and sphingosine-1-phosphate are biologically active sphingolipids that are involved in several
cellular processes.
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Figure 2. Model illustrating the different effects of ceramide and sphingosine on microbial infections.
While sphingosine prevents many bacterial, viral and fungal infections, ceramide often promotes
pathogenic infections, by mediating adhesion and internalization or by interfering with the killing
strategies of the host.
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Ceramide is formed either by the hydrolysis of sphingomyelin through the activity
of neutral, acidic, or alkaline sphingomyelinases or through de novo synthesis and/or
the breakdown of complex sphingolipids. Several bacteria, viruses, and parasites exploit
acid sphingomyelinase and/or the neutral sphingomyelinase–ceramide system to infect
mammalian cells (for a recent review, see [9]). Ceramide enters a metabolic pathway and
can be converted into sphingosine by the action of (acid) ceramidase. Sphingosine is further
metabolized by phosphorylation via an ATP-dependent sphingosine kinase (Sphk), which
leads to sphingosine-1-phosphate (S1P) [10].

Sphingosine 1-phosphate (S1P) regulates the proliferation, survival, and migration of
mammalian cells through both extracellular receptor-mediated and intracellular mecha-
nisms, either through intracellular targets or by activating a family of specific G-coupled
receptors (S1PR) [11]. S1P is produced during inflammation and upon tissue damage,
and it has well-described roles in cell signaling, the cell death/survival decision, and
mediation of the pro-inflammatory response, including in the context of immunity [12].
An increasing number of reports describe the ability of pathogens, including mycobacteria,
different viruses, and parasites, to dysregulate S1P signaling by modulating the Sphk/S1P
axis reviewed in [13]. Therefore, agents targeting the generation of S1P are being actively
developed as therapeutics for cancer and inflammatory and infectious diseases.

Sphingosine (Sph) constitutes a class of natural products containing a long aliphatic
chain with a polar 2-amino-1,3-diol terminus (2-amino-4-trans-octadecene-1,3-diol). It oc-
curs in the cell membranes of all animals and many plants and plays an important role in
various complex biological processes, such as cell growth, differentiation, autophagic pro-
cesses and development [14,15]. After its release from complex sphingolipids, sphingosine
is mainly reacylated by ceramide synthase or phosphorylated by sphingosine kinase to
generate sphingosine-1-phosphate [16] (Figure 1). Sphingosine has been connected with
a variety of cellular processes, such as the induction of cell cycle arrest and apoptosis by
modulating protein kinases and other signaling pathways [14]. It has roles in regulating
the actin cytoskeleton and endocytosis, and has been shown to inhibit phosphokinase C
(PKC) [17]. In addition to its functions in cell signaling, sphingosine has broad-spectrum
antimicrobial properties. The antimicrobial activity of sphingosine has been described for
Gram-positive and Gram-negative bacteria [18], enveloped viruses [19], and fungi [20]
(Table 1). Sphingosine’s role as an antimicrobial is important in tissues such as the skin,
respiratory epithelium, and the oral cavity. Chronic diseases, such as cystic fibrosis (CF),
in which the normal sphingosine level is reduced in epithelial cells [21,22], are associated
with problems related to high infection susceptibility. Therefore, exogenous sphingosine
may be a successful antimicrobial therapeutic. Inhaled nebulized sphingosine has been
shown to be effective in both preventing and treating pneumonia in multiple CF mouse
models without producing severe toxic side effects [21–24].
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Table 1. Microbes attacked by sphingosine.

Microbes Species References

bacteria

Acinetobacter baumannii [21]

Brevibacterium epidermidis [25]

Burkholderia cepacia [21]

Corynebacterium bovis [18]

Corynebacterium striatum [18]

Corynebacterium jeikium [18]

Escherichia coli [18,26,27]

Haemophilus influenzae [21]

Micrococcus luteus [25]

Moraxella catarrhalis [21]

Neisseria gonorrhoeae [28]

Propionibacterium acnes [25]

Pseudomonas aeruginosa [21,22,25,27,29–32]

Staphylococcus aureus [18,23,25,27,29,33,34]

Staphylococcus epidermidis [35]

Streptococcus mitis [18]

Streptococcus pyogens [25]

Streptococcus sanguinis [18]

viruses

Hepatitis C virus [19]

Herpes simplex virus type 1 [36]

SARS-CoV-2 [37]

fungi

Candida albicans [25]

Epidermatophyton floccosum [33]

Trichophyton mentagrophytes [33]

Trichophyton tonsurans [33]

2. The Role of Sphingosine in Infectious Diseases
2.1. Sphingosine and Bacteria

Since the middle of the last century, microbiologists have recognized that the skin is a
natural barrier in the defense against microbial infections, and that skin lipids can reduce
infections caused by Gram-positive bacteria [33,38]. However, due to methodological limi-
tations and historical reasons, these lipids were not completely identified until the end of
the 20th century. Since then, several reports on the broad-spectrum antimicrobial properties
of sphingosine have been published. Sphingosine has been shown to have remarkably
potent antibacterial activity against a variety of pathogens, including Pseudomonas aerug-
inosa, Staphylococcus aureus, Acinetobacter baumannii, Haemophilus influenzae, Burkholderia
cepacia, Moraxella catarrhalis, Escherichia coli, Fusobacterium nucleatum, Streptococcus sanguinis,
Streptococcus mitis, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium
jeikeium [20,21,23,26,33,39,40]. Among these pathogens, Staphylococcus aureus and Pseu-
domonas aeruginosa are the most studied. Therefore, herein, we focus on the bactericidal
effect of sphingosine, as well as the mechanisms behind it, on these two bacterial species.

2.1.1. Staphylococcus aureus

Staphylococcus aureus (S. aureus) is a ubiquitous and opportunistic Gram-positive
coccoid bacterium, and a prevalent skin pathogen. It causes severe respiratory tract and
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systemic infections, especially among patients with previous viral infections, burn wounds,
trauma, or sepsis; those requiring mechanical ventilation; and those with cystic fibrosis
(CF) (for recent reviews, see [41,42]). Treating S. aureus infections is an increasing challenge
due to multi-drug resistance against common antibiotics caused by methicillin-resistant
Staphylococcus aureus (MRSA).

Bibel et al. first described the antimicrobial activity of the skin lipid sphingosine in
1992 [25]. The authors found that sphingosines were profoundly effective against S. aureus
(strain 502A), with a 4-log reduction at 20 µM and a 2-log reduction at 2.5 µM. The optimal
inhibition was observed after 60 min incubation at 37 ◦C and pH 6.5, and the antimicrobial
activity of sphingosines was Ca++ dependent. Accordingly, Arikawa et al. found a signif-
icantly downregulated sphingosine level in patients with atopic dermatitis, which was
caused by the decreased activity of acid ceramidase [39]. The decreased sphingosine level
was associated with enhanced vulnerability to colonization by S. aureus in atopic dermatitis
patients. Parsons et al. further reported that toxic fatty acids, including sphingosine, per-
meabilized the membrane and released the pathogen’s intracellular ATP into the medium
without causing complete dissolution of the cytoplasmic membrane or a significant mor-
phological change [34]. Other groups observed that sphingosine caused multiple cell wall
lesions, membrane evaginations, the loss of ribosomes, and ultrastructural damage in S.
aureus through the use of electron microscopy [26,33].

In addition to skin infections, S. aureus infections often occur in chronic obstructive
pulmonary disease (COPD) and cystic fibrosis (CF) patients [43–46]. Cystic fibrosis is a
disease caused by mutations in the cystic fibrosis transmembrane conductance regulator
(CFTR) protein, and it is the most widespread recessively inherited disorder in North
America and Europe [46–49]. Notably, the most common cause of morbidity and mortality
in CF patients is chronic pulmonary infection with bacterial pathogens, particularly Pseu-
domonas aeruginosa (P. aeruginosa) and S. aureus. [50]. CF mice showed a marked sphingosine
reduction and ceramide accumulation in the respiratory tract due to the repressed activity
of acid ceramidase [21,45,51]. Following the discovery of low levels of sphingosine in CF
mice [21], Tavakoli et al. studied the bactericidal effect of sphingosine and ceramide on
S. aureus (strain E25) in CF mice [23]. The authors confirmed that CF mice had a high
susceptibility to S. aureus infection compared with wild-type mice. More importantly,
inhalation of C18-sphingosine 30–40 min before infection could protect the CF mice from
infection with S. aureus. This work was the first to report that sphingosine administered by
inhalation acted against S. aureus in airways and could prevent airway infection. Based on
these findings, the use of sphingosine on implanted medical devices was proposed to pre-
vent staphylococcal infections [29,35]. About 25% of mechanically ventilated patients are
affected by ventilator-associated pneumonia, which has an estimated mortality of 13% [52].
Both Gram-negative and Gram-positive bacteria cause ventilator-associated pneumonia,
and S. aureus is the most common Gram-positive bacterium responsible for this disease [53]
(we later discuss Gram-negative bacteria, specifically P. aeruginosa). Seitz et al. coated the
plastic surfaces of endotracheal tubes with high sphingosine concentrations. As a result,
the adherence and growth of methicillin-resistant S. aureus (MRSA) on the plastic surface
were significantly reduced [29].

Along with S. aureus, Staphylococcus epidermidis (S. epidermidis) is a dominant skin
colonizer and is prevalent in orthopedic infections. The inhibitory effect of sphingosine
(10 µM) on S. epidermidis was described by Beck et al. [35], who expanded the application of
sphingosine to implant materials [35]. Periprosthetic infection is a devastating complication
of joint replacement surgery, and results in bacterial biofilm formation [54]. Bacteria that
adhere to implant surfaces produce a complex hydrated matrix of glycocalyx that coats
the bacteria and forms a biofilm layer [55]. The authors generated S. epidermidis biofilms
on different implant materials and determined the bactericidal effect of sphingosine on
the formed biofilms. When a concentration of 100 µM was used for coating, sphingosine
eliminated at least 94% of the pathogens. Coating implant samples (titanium, steel, and
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polymethylmethacrylate) with sphingosine prevented implant contamination and resulted
in a significant reduction in biofilm formation on the implant surfaces [35].

2.1.2. Pseudomonas aeruginosa

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative rod-shaped
bacterium that, similar to S. aureus, is quite often associated with burn wounds, trauma,
sepsis, cystic fibrosis, and chronic obstructive pulmonary disorders (COPD), and it causes
significant infections in patients who need mechanical ventilation [43,44,56–58]. Worldwide,
P. aeruginosa is known to be one of the most common Gram-negative pathogens associated
with pneumonia [59] and is, in addition to S. aureus, the leading pathogen and main cause
of death in CF patients [56–58,60–62].

The high susceptibility of cystic fibrosis mice and patients to P. aeruginosa infections
was found to be significantly reduced by treatment with sphingosine, which is exten-
sively downregulated in the tracheal and bronchial epithelia of cystic fibrosis patients and
mice [21]. The inhalation of sphingosine restores the reduced sphingosine levels of CF
tracheal and bronchial epithelia, thereby protecting mice from infection with P. aeruginosa
(strain PA14, ATCC 27853, and ATCC 762).

In 2017, our group showed that the high susceptibility of cystic fibrosis patients and
mice to P. aeruginosa, S. aureus, and Acinetobacter baumanii was related to β1-integrin ac-
cumulation due to the increased ceramide level on the luminal membrane upper-airway
epithelial cells in these hosts [22]. The results revealed that the accumulation of ceramide in
cystic fibrosis cells trapped β1-integrins in the luminal membrane of CF bronchial, tracheal,
and nasal epithelial cells. Ectopic β1-integrins in the luminal membrane downregulate the
expression of acid ceramidase (which converts ceramide to sphingosine) in human and
murine CF airway epithelial cells. Reduced acid ceramidase expression further mediates
ceramide accumulation, thereby forming a positive feedback loop between ceramide and
β1-integrins with the concomitant depletion of sphingosine. The blockade of β1-integrin
and this vicious cycle normalizes sphingosine levels in epithelial cells from cystic fibrosis
patients and cystic fibrosis mice and prevents them from developing severe P. aeruginosa
infections. This work explained the low level of sphingosine in the cystic fibrosis model [22].
It remains unknown how β1-integrin manipulates acid ceramidase and how CFTR defi-
ciency leads to the β1-integrin-mediated downregulation of acid ceramidase. Following the
finding that sphingosine prevents infections in the cystic fibrosis model, sphingosine was
also proven to prevent P. aeruginosa infections in other mice models, such as ceramidase
synthase-2-deficient, aged, burn-injured, and septic mice [21,30–32]. Interestingly, the
genetic deletion of sphingosine kinase (Sphk), which phosphorylates the lipid sphingosine
to generate sphingosine-1-phosphate (S1P), also protected mice from P. aeruginosa-mediated
lung inflammation [63,64], further supporting an anti-bacterial effect of sphingosine, which
very likely accumulated upon deletion of the kinase.

Fischer et al. investigated the uptake of several sphingoid bases, including sphingo-
sine, by Escherichia coli (E. coli) and S. aureus and assessed their subsequent ultrastructural
changes via electron microscopy. While sphingosine-treated S. aureus underwent drastic
membrane disruption, the cytoplasmic and outer membranes of E. coli appeared to remain
intact. Both E. coli and S. aureus cells contained unique internal inclusion bodies that may
reflect lipid uptake [26]. These observations excluded the possibility that sphingosine kills
bacteria by simple lysis or destruction of the pathogen structure. Recent findings from our
group shed light on the mechanism of sphingosine-mediated bacterial killing [27]. The
results indicate that sphingosine has an in vitro bactericidal effect on P. aeruginosa and S. au-
reus. Upon treatment with sphingosine, the permeabilization of the bacterial membranes,
the release of intracellular ATP, decreased metabolic activity, and reduced bacterial survival
were observed. This bactericidal effect depends on the NH2 group of sphingosine. NH2
groups can be protonated and are positively charged under neutral and slightly acidic
pH [65]. This might explain the observation that sphingosine maintains its bactericidal ac-
tivity only under neutral or acidic pH, whereas this effect is profoundly reduced at alkaline
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pH. Positively charged sphingosine NH2 groups interact with cardiolipin in pathogens
and effectively kill bacteria, while bacteria that lack cardiolipin synthase are resistant to
sphingosine treatment. Incorporating cardiolipin into membranes results in a negative
curvature [66]. The killing mechanism mediated by the interaction between sphingosine
and cardiolipin might be the following: when negatively charged cardiolipin binds to
sphingosine, cardiolipin may aggregate and form rigid, gel-like membrane domains. These
domains disturb the original membrane structure and lead to membrane permeabilization
and bacterial death. This theory should be further verified.

2.1.3. Neisseria gonorrhoeae

Neisseria gonorrhoeae (N. gonorrhoeae) is a Gram-negative diplococcus and an obligate
human pathogen. Gonococci are the causative agents of the sexually transmitted disease
gonorrhea and have the potential to enter the bloodstream and cause systemic dissemi-
nated infections with severe consequences, such as endocarditis and arthritis [28,67,68]. An
increasing number of reports are highlighting the threatening development of multidrug-
resistant gonococci; thus, new strategies are required to combat this pathogen. Solger
et al. showed that N. gonorrhoeae was also sensitive to sphingosine treatment [68]. Treat-
ment with 20 µM sphingosine achieved a similar bacterial killing effect to the antibiotic
kanamycin [68]. Mechanistically, it was shown that invasive N. gonorrhoeae strains ingest
sphingosine from the host cell, which is evenly distributed on the surface of intracellular
bacteria, and then incorporates it into the bacterial membrane. This leads to the decreased
survival of N. gonorrhoeae and confirms that sphingosine can directly affect bacteria rather
than activating other cellular bactericidal factors. However, whether sphingosine kills
N. gonorrhoeae by interacting with cardiolipin, as in P. aeruginosa, is unknown and should
be studied accordingly.

2.2. Sphingosine and Viruses

Viruses are obligate intracellular pathogens: they manipulate the host and exploit
membranes and their components, such as sphingolipids, in all steps of their life cy-
cle, including adhesion and membrane fusion, viral replication, and budding from host
cells [69–71]. Human immunodeficiency virus (HIV), measles virus (MV), Ebola virus
(EBOV), Sindbis virus (SINV), and rhinovirus [72–75] all exhibit sphingolipid-dependent
virus entry by activating sphingomyelinases and making use of ceramides as adherence
and signaling platforms.

Sakamoto et al. were the first to show that targeting hepatitis C virus (HCV) sphin-
golipid metabolism could inhibit viral replication and prevent infection [19]. They identified
a new lipophilic long-chain base compound, NA255, which has a sphingolipid-binding
motif that can directly interact with sphingomyelin. Hepatitis C virus substantially affects
lipid metabolism, and the remodeling of sphingolipids appears to be essential for HCV
persistence in vitro. The quantification of serum sphingolipid variations in patients with
acute HCV infection revealed that sphingosine and sphinganine levels were significantly
upregulated in patients who were unable to clear the virus over time compared with
patients who spontaneously cleared the infection [19]. The persistence of HCV after acute
infection induces the downregulation of C24-ceramide and the simultaneous elevation of
serum sphingosine and sphinganine concentrations [76].

Since then, the direct effect of sphingolipids on viruses has been rarely reported,
which has only recently changed [36,37]. Lang et al. first reported that sphingosine
blocked the propagation of herpes simplex virus type 1 (HSV-1) in macrophages [36].
They found that the restriction of HSV-1 reproduction was dependent on cellular acid
ceramidase. HSV-1 is an enveloped DNA virus that replicates in several cell types [77].
After targeting a cell, HSV-1 either fuses with the cell plasma membrane or is taken
up by the cell into endosomes, where fusion with the perimeter of membrane leads to
infection [78–80]. Lang et al. showed that the deficiency of acid ceramidase led to the
uncontrolled replication of HSV-1. In macrophages, acid ceramidase converts ceramide
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into sphingosine, which forms sphingosine-rich intraluminal vesicles that can bind to
HSV-1 particles. This limits the fusion of HSV-1 with the endosomal membrane, prevents
cellular infection, and releases the virus for lysosomal degradation. Correspondingly,
macrophages treated with sphingosine blocked HSV-1 replication. This research was the
first study that showed the direct antiviral effect of endogenous sphingosine [36].

Recently, some reports have been published on the role of lipid raft components in
the infection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of host
cells [81–83]. SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19),
which is associated with a high mortality rate [84]. SARS-CoV-2 infects cells using its viral
spike glycoprotein, which interacts with human epithelial cells via its cellular angiotensin-
converting enzyme-2 (ACE2) receptors [85–88]. Lipid rafts, which are membrane domains
enriched with cholesterol and sphingolipids such as gangliosides, have been described as a
perfect interface for the concentration of the ACE2 receptor on epithelial cell membranes,
thus facilitating the interaction with the viral spike proteins [81–83]. Another exciting study
showed that sphingosine plays a protective role against infection with SARS-CoV-2 [37].
Edwards et al. used pseudo-viral particles expressing SARS-CoV-2 spike (pp-VSV–SARS-
CoV-2 spike), serving as a bona fide system that mimics SARS-CoV-2 infection [37]. The
study utilized Vero-E6 epithelial cells and freshly isolated human nasal epithelial cells
to examine whether exogenous sphingosine prevents pp-VSV–SARS-CoV-2 infection of
epithelial cells. The authors showed that pretreating cells with exogenous sphingosine
blocked the interaction between the viral spike protein and ACE2 (Figure 3). This inhibition
was achieved with a relatively low concentration of sphingosine (only 0.25 µM), and it
could completely block the interaction between the spike protein and ACE2 receptor at
2 µM. At this concentration, sphingosine had no side effects or toxic effects on human nasal
epithelial cells. Therefore, it provides a potential defense strategy against SARS-CoV-2
infection [37]. To date, it is still unknown whether sphingosine has a direct antiviral effect
on SARS-CoV-2 or HSV-1.
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application in human nasal or Vero-E6- epithelial cells results in the binding of sphingosine and
angiotensin-converting enzyme 2 (ACE2) receptor, which is required for severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) infection. Sphingosine thereby prevents the recognition and
interaction between the spike protein of SARS-CoV-2 and the host’s ACE2 receptor and ultimately
protects the cells from infection.
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Recent studies indicate that fingolimod (FTY720), a sphingosine analog, already ap-
proved for the treatment of multiple sclerosis (MS), may help prevent the more serious neu-
rological side-effects of SARS-CoV-2 infection [89–91]. FTY720 requires sphingosine kinase
(Sphk) for activation and phosphorylation and blocks the inflammatory reaction mediated
by sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR)1 [92,93]. Cur-
rently, as one of the most unique sphingolipid-based drugs, fingolimod has good potential
to become an important drug in the treatment of COVID-19.

2.3. Sphingosine and Fungi

Fungal infections are increasingly coming into focus due to the continual rise of
immune-deficient patients, such as those who have HIV/AIDS or take immunosuppressant
medications. Cryptococcosis, candidiasis, and aspergillosis are severe invasive mycoses
with high mortality in immunocompromised patients [94]. The fungal eukaryotic cell
membrane contains sphingolipids, in addition to other components [95]. Because fungal
sphingolipids have different chemical structures from those of mammalian sphingolipids,
they can be exploited as targets for the development of antifungal drugs. Therefore, several
studies have focused on sphingolipid metabolism in fungal cells for the development of
new antifungal agents [20,96]. A variety of compounds have been reported to act against
the fungal sphingolipid biosynthetic pathway. Such compounds include natural and syn-
thetic molecules, such as fumonisin B1 as an inhibitor of ceramide synthase or FTY720
(fingolimod) as a sphingosine-1-phosphate antagonist, as well as antibodies, which can
attenuate fungal sphingolipids [20,96]. In recent years, monoclonal antibodies against
fungal glucosylceramides (GlcCer) have been developed and proven to inhibit crypto-
coccal growth in vitro [97]. Infection with Candida albicans was shown to be sensitive to
inositol phosphorylceramide synthase inhibitors [98], and glucosylceramide and galacto-
sylceramide synthase inhibitor blocked the germination and hyphal growth of Aspergillus
nidulans [99]. An increasing threat is the progressive development of drug resistance to cur-
rently available antifungal drugs. Thus, there is an urgent need for antifungal compounds
with novel mechanisms of action. The direct use of sphingosine as an antifungal agent was
shown in 1992 when Bible et al. proved that sphingosine has antifungal activity against
Candida albicans. Sphingosine was found to be fungistatic and could prevent germination
and delay thalli formation [33]. The application of sphingosine might disrupt the balance
of eukaryotic sphingolipid metabolism and affect the growth of fungi. Further reports on
the utility of sphingosine as an antifungal agent are pending.

3. Conclusions

Sphingosine, as a lipid common to the skin and oral cavity, has remarkable antimicro-
bial activities against a variety of Gram-positive and Gram-negative bacteria, viruses, and
fungi (Table 1). The presented review indicates that sphingosine may be useful as a coating
for plastic surfaces and orthopedic implants, thereby preventing bacteria-induced wound
infections, and as a medicinal treatment inhaled by the host, i.e., as a protective agent
against infections in cystic fibrosis disease. These promising data provide evidence that
sphingosine may be a novel antimicrobial agent that can prevent bacterial adherence and
induce the killing of pathogens. Therefore, it may contribute to defensive barrier functions
and has the potential for use in prophylactic or therapeutic interventions in infection. Sph-
ingosine even seems to positively influence several significant viral infections, such as HCV
and SARS-CoV-2, by interfering with the interaction between the virus and its receptor,
and it might be helpful as an antifungal agent. Further preclinical and, eventually, clinical
examinations of sphingosine are warranted to evaluate its potential use as a prophylactic
or early treatment for microbial diseases.
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