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Diabetes Mellitus, one of the leading causes of death worldwide, has no cure to date and can lead to severe 
health complications, such as retinopathy, limb amputation, cardiovascular diseases, and neuronal disease, if 
left untreated. Consequently, it becomes crucial to be able to monitor and predict the incidence of diabetes. 
Machine learning approaches have been proposed and evaluated in the literature for diabetes prediction. This 
paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk 
factors. The proposed system is underpinned by blockchain to obtain a cohesive view of the risk factors data from 
patients across different hospitals and ensure security and privacy of the user’s data. We provide a comparative 
analysis of different medical sensors, devices, and methods to measure and collect the risk factors values in the 
system. Numerical experiments and comparative analysis were carried out within our proposed system, using the 
most accurate random forest (RF) model, and the two most used state-of-the-art machine learning approaches, 
Logistic Regression (LR) and Support Vector Machine (SVM), using three real-life diabetes datasets. The results 
show that the proposed system predicts diabetes using RF with 4.57% more accuracy on average in comparison 
with the other models LR and SVM, with 2.87 times more execution time. Data balancing without feature 
selection does not show significant improvement. When using feature selection, the performance is improved by 
1.14% for PIMA Indian and 0.02% for Sylhet datasets, while it is reduced by 0.89% for MIMIC III.
1. Introduction

Diabetes Mellitus, commonly referred to as diabetes, is one of the 
top 10 leading causes of death globally [1]. It is a metabolic disease 
in which the body does not produce enough insulin or body cells do 
not appropriately respond to insulin, leading to increased blood sugar 
levels [2]. There are three main types of diabetes, namely type 1, type 2, 
and gestational diabetes [3]. According to a report by the International 

* Corresponding author at: Intelligent Distributed Computing and Systems Lab, Department of Computer Science and Software Engineering, College of Information 
Technology, United Arab Emirates University, United Arab Emirates.

Diabetes Federation, 537 million adults (i.e., 1 in every 10 people), 
between the ages of 20-79 years, worldwide were having diabetes in 
2021 [4]. Furthermore, this number is predicted to reach 643 million 
by 2030 and 783 million by 2045. In 2021, diabetes was responsible 
for 6.7 million deaths and caused at least USD 966 billion in health 
expenditure [4].

The etiopathology of type 2 diabetes mellitus has been linked to 
dynamic interactions between lifestyle, medical conditions, hereditary, 
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psychosocial, and demographic risk factors [3]. Diabetes if left un-
treated might cause significant issues such as retinopathy, limb am-
putation, cardiovascular diseases, and neuronal disease [5,6]. In 2021, 
over 240 million adults with diabetes were undiagnosed (i.e., almost 
1 in 2 diabetic) [7]. Consequently, machine learning-based diabetes 
prediction has gained increased attention in the literature [8–15] for 
better prognosis/diagnosis support to the medical health professionals 
and public health organizations [16]. Disparate work in literature fo-
cuses on evaluating machine learning algorithms for different diabetes 
datasets under non-unified experimental setups. However, to the best 
of our knowledge, no work proposes an end-to-end IoT-edge-Artificial 
Intelligence (AI)-blockchain integrated computing system for diabetes 
monitoring and prediction. This paper aims to address this void. The 
proposed system examines diabetes risk factors through medical sen-
sors/devices and anticipates the likelihood of diabetes occurrence in an 
individual using the most accurate machine learning model. Further-
more, the proposed system employs edge computing to transform the 
risk factors data collected from IoT devices and send preprocessed data 
to the blockchain. Blockchain [17] stores the medical records of the 
patients as well as the machine learning model parameters and predic-
tion results in a distributed and replicated ledger. This is based on the 
potential of blockchain in the healthcare industry [18–20]. The consen-
sus, replication, traceability, and distributed features of blockchain aid 
in security, privacy, audit trail, transparency, and trust in the proposed 
system. In addition, the efficacy of the most commonly employed ma-
chine learning algorithms for predicting diabetes is assessed using PIMA 
Indian, Sylhet, and MIMIC III datasets.

The main contributions of this paper are as follows.

• We propose an end-to-end automated IoT-edge-AI-blockchain sys-
tem for diabetes prediction based on risk factors.

• We present a comparative analysis of medical sensors, devices, and 
methods used to measure the values of diabetes risk factors; hy-
pertension, obesity, cholesterol level, depression, serum uric acid, 
sleep duration, physical activity, and glucose level.

• We propose an implementation workflow for the proposed system.
• The performance of the proposed system is evaluated and com-

pared with the most used machine learning approaches employing 
publicly available three real-life diabetes datasets, namely PIMA 
Indian, Sylhet, and MIMIC III.

• The machine learning prediction models are evaluated in terms 
of accuracy, precision, recall, F-measure, Area Under the Curve 
(AUC), Receiver Operating Characteristics (ROC), and execution 
time.

The rest of the paper is organized as follows. Section 2 provides an 
overview of the existing literature on machine learning-based diabetes 
prediction. The proposed automated end-to-end IoT-edge-AI-blockchain 
system for diabetes mellitus prediction is explained in Section 3. Sec-
tion 4 discusses the implementation of the proposed system. Numerical 
experiments and comparative performance results are provided in Sec-
tion 5. Finally, Section 6 concludes the paper with future research 
directions.

2. Related work

Several works in the literature have used machine and deep learn-
ing algorithms for diabetes prediction [8–15]. These works have de-
scribed their experimental environment and experiments clearly for 
reproducibility and have compared the performance of different ma-
chine learning algorithms for diabetes prediction. Table 1 summarizes 
these works and presents the datasets, balancing techniques, feature se-
lection approaches, and machine/deep learning algorithms used in each 
work. As stated in the table, [8–10] use private datasets for evaluating 
diabetes prediction models, whereas, [11–15] use publicly available 
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datasets. In particular, [11] uses cross-section survey, NHANES, and 
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PIMA Indian datasets, [12,13] use the PIMA Indian dataset, [14] em-
ploys a dataset from the Henan rural cohort study, and [15] uses a 
dataset from the CBHS health funds company. Furthermore, these stud-
ies exclusively concentrate on isolated diabetes prediction and do not 
propose an end-to-end diabetes prediction system. In contrast, we pro-
pose a secure and privacy-preserving end-to-end integrated IoT-edge-
AI-blockchain monitoring system for diabetes prediction. We evaluate 
the performance of our proposed system and compare it with the most 
employed machine learning models using publicly available three real-
life diabetes datasets, namely PIMA Indian, Sylhet, and MIMIC III.

3. Proposed automated end-to-end integrated IoT-edge-artificial 
intelligence-blockchain monitoring system for diabetes mellitus 
prediction

The overall architecture of our proposed end-to-end system for di-
abetes prediction is presented in Fig. 1. The main components of the 
architecture are explained in the following subsections.

3.1. User’s diabetes risk factors monitoring

Diabetes, i.e., increased glucose levels, is associated with differ-
ent demographic, psychosocial, hereditary, medical conditions, and 
lifestyle-related risk factors [2]. The values of these risk factors can 
be either self-reported by the users (i.e., patients/external participants) 
or measured using biosensors, wearable devices, or medical tests. The 
self-reported risk factors are age, gender, ethnicity, family history of di-
abetes, smoking, and alcohol consumption. Age, gender, and ethnicity 
are reported on the first visit to the hospital. A family history of dia-
betes is reported on every visit to the hospital. Smoking and alcohol 
consumption are reported daily. The measurable risk factors are hy-
pertension, obesity, cholesterol level, depression, serum uric acid, sleep 
duration, physical activity, and glucose levels. Hypertension, obesity, 
serum uric acid, sleep duration, physical activity, and glucose levels 
are acquired daily. Cholesterol levels and depression are measured on 
every visit to the hospital. The measured risk factors data are sent to 
the mobile phone. A user communicates with the mobile application to 
identify the risk of incident diabetes.

Different sensors, devices, and methods can be used to acquire the 
values of measurable risk factors. In the following, we compare them 
based on their performances and costs.

• Hypertension Monitoring: Hypertension is a medical condition where 
the blood pressure in the arteries remains elevated, i.e., a systolic 
blood pressure greater than or equal to 140 mmHg and a diastolic 
blood pressure greater than or equal to 90 mmHg [21]. It increases 
the risk of developing diabetes. Table 2 lists different hypertension 
monitors along with their performances and approximate costs in 
US dollars. As shown in the table, Omron Evolv (HEM-7600T-E) 
[22] has the best performance whereas Omron M3 Comfort (HEM-
7134-E) [23] has the least cost.

• Obesity Monitoring: Obesity is characterized by an excessive amount 
of body fat and is often defined in terms of Body Mass Index (BMI), 
waist circumference, and/or waist-hip ratio [31]. It is strongly as-
sociated with the prevalence of type 2 diabetes. Table 3 shows 
different methods and devices used to measure obesity with their 
strengths and weaknesses.

• Cholesterol Level Monitoring: Abnormal level of cholesterol and 
triglycerides increases the risk of type 2 diabetes prevalence. In par-
ticular, low level of high-density lipoproteins (HDL) and elevated 
level of low-density lipoproteins (LDL) leads to the development 
of diabetes [38]. The standard method to measure the cholesterol 
level is the lipid panel test (also known as lipid profile test) [39]. 
This test determines the levels of triglycerides, total, LDL, and HDL 
cholesterols in an individual. Recently, portable devices, such as 

EasyTouch [40] and BeneCheck Plus [41], have been developed 
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Table 1

Summary of related work on diabetes prediction.

Work Dataset Features§ Observations§ Data balancing Feature selection Algorithms Evaluation metrics

[8] Private: EHRs acquired from 
5 hospitals in Saudi Arabia 
between 2016 – 2018

DOB, gender, height weight, 
hypertension, fasting plasma 
glucose, haemoglobin A1C, HDL, 
LDL, physical activity, diagnosis 
start date, and primary and 
secondary diagnosis codes and full 
names

3000 patients Data is already 
balanced

Permutation 
importance and 
hierarchical 
clustering

LR, SVM, DT, 
RF⧫, EMV∗

Accuracy, 
precision, recall, 
and F-measure

[9] Private: EHRs data collected 
at preventive healthcare 
examinations of healthy 
population in 10 Slovenian 
primary healthcare 
institutions

Related to FINDRISC questionnaire 
and medical history

27050 patients ✗ ✗ Linear 
regression⧫, 
Glmnet, RF, 
XGBoost, and 
lightGBM

AUC and RMSE

[10] Private: EHRs collected 
between 2013 – 2018 from a 
private medical institute, 
Hanaro Medical Foundation, 
in Seoul (South Korea)

Related to blood test, 
anthropometric measurements, 
diagnostics results, and 
questionnaire answers

253359 subjects 
(68.1% normal, 
4.3% diabetics, 
and 27.6% 
prediabetes)

Majority 
under-sampling 
and SMOTE

ANOVA, 
chi-squared test 
and recursive 
feature 
elimination

LR, RF⧫, SVM, 
XGBoost, 
stacking†, soft 
voting†, and 
confusion 
matrix-based 
ensemble†

Accuracy, 
precision, recall, 
F-measure, MCC, 
and KC

[11] D1: Cross-sectional diabetes 
survey in Saudi Arabia

D2: NHANES

D3: PIMA Indian

D1: region, age, gender, BMI, waist 
size, physical activity, diet, blood 
pressure, and family history of 
diabetes

D2: smoking, diet, blood pressure, 
BMI, gender, and region

D3: ‡

D1: 4896 (990 
diabetics and 
3906 
non-diabetics)

D2: 4918 (1709 
prediabetes and 
3209 diabetics)

D3: 768 (268 
diabetics and 500 
non-diabetics)

SMOTE Pearson 
chi-square test

BPM, AP, DF⧫, 
LD-SVM, DJ, 
boosted DT, and 
NN

Accuracy, 
precision, recall, 
F-measure, and 
AUC

[12] PIMA Indian ‡ 768 (268 
diabetics and 500 
non-diabetics)

✗ Different 
combinations 
based on manual 
inspection

LR⧫ and DT Accuracy, error 
rate, AIC, BIC, R2, 
and log likelihood

[13] PIMA Indian ‡ 768 (268 
diabetics and 500 
non-diabetics)

✗ PCA, k-means 
clustering, and 
importance 
ranking

NB, RF⧫, and DT Accuracy, 
precision, 
sensitivity, 
specificity, 
F-measure, and 
AUC

[14] Henan rural cohort study: 
participants aged between 18 
– 79 years were recruited 
from five rural areas in 
Henan province of China 
between July 2015 and 
September 2017

Related to socio-demographic 
characteristics, information on 
physical examination, and 
laboratory tests

39259 
participants

SMOTE Iterative 
approach

LR, CART, ANN, 
SVM, RF⧫, and 
GBM

AUC, sensitivity, 
specificity, positive 
prediction value, 
negative prediction 
value, and area 
under 
precision-recall 
curve

[15] CBHS health funds company 
in Australia: hospital 
admissions data between 
1995 – 2018

Age, gender, and smoking status 2056 (1028 
diabetics and 
1028 
non-diabetics)

Data is already 
balanced

✗ LR, kNN, SVM, 
NB, DT, RF⧫, 
XGBoost, and 
ANN

Accuracy, 
precision, recall, 
F-measure, and 
AUC

EHRs – Electronic Health Records; ⧫ - outperforming model; LR – Logistic Regression; SVM – Support Vector Machine; DT – Decision Tree; RF – Random Forest; 
EMV – Ensemble Majority Voting; ∗ - EMV consists of LR, SVM, and DT; Glmnet – Regularized Generalized Linear Model; XGBoost – Extreme Gradient Boosting; 
lightGBM – light Gradient Boosting Machine; † - ensemble algorithms use LR, RF, SVM, and XGBoost; BPM – Bayes Point Machine; AP – Average Perceptron; 
DF – Decision Forest; LD-SVM – Locally Deep SVM; DJ – Decision Jungle; NN – Neural Network; NB – Naïve Bayes; CART – Classification and Regression Tree; 
GBM – Gradient Boosting Machine; kNN – k Nearest Neighbor; AUC – Area Under the ROC Curve; RMSE – Root Mean Squared Error; MCC – Mathews Correlation 
Coefficient; KC – Kappa’s Coefficient; AIC – Akaike’s Information Criteria; BIC – Bayesian Information Criteria; PCA – Principal Component Analysis; SMOTE – 
Synthetic Minority Oversampling Technique; NHANES – National Health and Nutrition Examination Survey; HDL – High Density Lipoprotein; LDL – Low Density 
Lipoprotein; ‡ - Number of times pregnant, plasma glucose concentration at 2 h oral glucose tolerance test, diastolic pressure, triceps skin fold thickness, 2-h serum 
insulin, BMI, diabetes pedigree function, and age; BMI – Body Mass Index; DOB – Date of Birth; D – Dataset; § - Before data preprocessing; ✗- Not performed.
to measure cholesterol levels. The approximate costs of EasyTouch 
and BeneCheck Plus are 60USD and 136USD respectively.

• Depression Monitoring: Depression is a medical condition that neg-

atively affects the feelings, thoughts, and actions of an individual. 
It has a strong association with the prevalence of type 2 diabetes 
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[42]. Depression is generally measured using clinical rating scales 
such as Beck’s Depression Inventory (BDI), Center for Epidemio-

logical Studies – Depression scale (CES-D), and Zung Self-Rating 
Depression Scale (SDS) [43]. A BDI score ≥ 11, CES-D score ≥ 8, or 
SDS score > 39 increases the risk of developing diabetes.

• Serum Uric Acid Monitoring: Serum uric acid is a waste product gen-
erated by the body during the purines breakdown process. A serum 
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Fig. 1. Architecture overview of proposed automated end-to-end integrated IoT-edge-artificial intelligence-blockchain monitoring system for diabetes mellitus 
prediction.

Table 2

Comparison between different hypertension monitoring devices.

Device Performance Approximate cost (in US Dollars)

Omron Evolv 
(HEM-7600T-E) [22]

Mean difference compared to standard mercury sphygmomanometer test [24]:

-0.1 ± 5.0 mmHg (for systolic blood pressure)

-0.2 ± 4.1 mmHg (for diastolic blood pressure)

136 [25]

Omron M3 Comfort 
(HEM-7134-E) [23]

Mean difference compared to standard mercury sphygmomanometer test [24]:

-0.9 ± 5.4 mmHg (for systolic blood pressure)

-0.6 ± 4.7 mmHg (for diastolic blood pressure)

63.16 [26]

Omron (HEM-9210T) 
[27]

Mean difference compared to standard mercury sphygmomanometer test [24]:

-2.1 ± 4.7 mmHg (for systolic blood pressure)

-1.2 ± 4.1 mmHg (for diastolic blood pressure)

Not available

Mobil-O-Graph [28]

Mean difference compared to standard mercury sphygmomanometer test [29]:

-2.2 ± 7.3 mmHg (for systolic blood pressure)

-0.4 ± 6.1 mmHg (for diastolic blood pressure)

1365.86 [30]

Table 3

Comparison between different obesity monitoring methods and devices.

Method/device Strengths Weaknesses

Statistical BMI calculation 
[32]

Quick, cost-effective, and easy Not accurate for elderly, muscular, and pregnant individuals

Skinfold calipers [33] Easy to use, portable, and cost-effective Accuracy depends on the skill of the person using the caliper

Smart weighing scales [34] Quick and easy Reliability of the result depends on the condition of the individual whose 
measurement is taken (for instance, hydrated or dehydrated), some accurate 
scales are costly

Hydrodensitometry [35] Accurate and reliable Costly and not suitable for children and elderly people as it requires the 
individual to be submerged in water for 5-7 seconds repeatedly 2-3 times

Air displacement 
plethysmography [36]

Quick, accurate, reliable, and suitable 
for any age

Costly

Dual energy x-ray 
absorptiometry [37]

Quick, precise, and reliable Costly
215
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Table 4

Comparison between different serum uric acid monitoring methods and devices.

Method/device Performance (Coefficient of 
variation)

Approximate cost (in US Dollars)

Smartphone as electro-chemical 
analyzer [47]

Low concentration: 4.1%∗

Mid concentration: 2.47%∗

High concentration: 1.87%∗ [47]

Not available

EasyTouch [40] 27.2% [48] (Not acceptable)† 60 [49]

UAsure [50] 25.9% [48] (Not acceptable)† 64 [51]

BeneCheck Plus [41] 9.5% [48] (Acceptable)† 136 [52]

HumaSens𝑝𝑙𝑢𝑠 [46] 11.5% [48] (Acceptable)† 52 [53]

Liquid chromatography mass 
spectrometry [54]

0.01 – 3.37%∗ [54] Not available

∗Average; †According to College of American Pathologists

Table 5

Comparison between different sleep duration monitoring tests and devices.

Type Test/device Performance Approximate cost 
(in US Dollars)

Non-invasive Polysomnography test [57] Sensitivity: 0.957∗

Specificity: 0.532∗

Accuracy: 0.904∗

Cohen’s kappa: 0.495∗ [57]

943 – 2,798 [58]

Wearable ŌURA ring [59] Sensitivity (to detect sleep): 96%∗

Specificity (to detect wake): 48%∗ [60]

299-399 [59]

Wearable Fitbit Flex [61] 97.46% accuracy [62] 100 [62]

Wearable Fitbit Charge HR [55] Overestimates the sleep duration [63] 65.39 [64]

Wearable Polar A370 fitness tracker [65] Age group (mean ± SD): 11 ± 0.8

Sensitivity∗: 0.93

Specificity∗: 0.77

Accuracy∗: 0.91

Age group (mean ± SD): 17.8 ± 1.8

Sensitivity∗: 0.91

Specificity∗: 0.83

Accuracy∗: 0.90 [66]

163 [65]

Wearable Actiwatch 2 [67] Age group (mean ± SD): 11 ± 0.8

Sensitivity∗: 0.93

Specificity∗: 0.68

Accuracy∗: 0.90

Age group (mean ± SD): 17.8 ± 1.8

Sensitivity∗: 0.93

Specificity∗: 0.58

Accuracy∗: 0.89 [66]

Not available

Wearable Fitbit Alta HR [68] All sleep

Sensitivity: 0.96 ± 0.02

Specificity: 0.58 ± 0.16

Accuracy: 0.90 ± 0.04 [69]

270 [70]

Wearable Withings Pulse [71] 98.1% accuracy [62] 100 [71]

Wearable Misfit Shine [62]] 96% accuracy [62] 100 [62]

Wearable Jawbone Up24 [72] 97.23% accuracy [62] 100 [62]

Non-wearable EMFIT Quantified Sleep [73] Overestimates total sleep time and 
underestimates wake after sleep [74]

Not available

∗Average
uric acid level >370 μmol/l is associated with a risk of developing 
type 2 diabetes [44]. A uric acid test is commonly used to mea-

sure the amount of uric acid either using blood or urine samples 
[45]. Recently, several devices have been introduced to measure 
serum uric acid levels. Table 4 shows a comparison between dif-

ferent methods and devices. As shown in the table, HumaSens𝑝𝑙𝑢𝑠

[46] is the most economical compared to other methods/devices 
for serum uric acid monitoring.

• Sleep Duration Monitoring: The quantity of sleep during night time 
is highly associated with the prevalence of type 2 diabetes [2]. 
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Compared to 6-8 hours of nighttime sleep, a shorter sleep duration 
(<6 hours/night) and a longer sleep duration (>8 hours/night) are 
associated with diabetes. In addition, daytime napping can lead 
to the prevalence of diabetes. Table 5 summarizes different tests, 
devices, and applications used for tracking sleep. It shows the per-

formance of each test/device/application along with its cost in 
USD. As shown in the table, Fitbit Charge HR [55] costs the least 
compared to other tests/devices for monitoring sleep duration. In 
addition to these tests and devices, Sleep Cycle [56] is a free mobile 
application that is used to monitor sleep duration.

• Physical Activity Monitoring: Physical inactivity can lead to obe-
sity and depression, resulting in the prevalence of type 2 diabetes 
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Table 6

Comparison between different physical activity monitoring devices.

Type Device Performance (Accuracy) Approximate cost (in US Dollars)

Waist-based Fitbit One [76] >90% [77] 70 [78]

Waist-based Omron HJ-321 [79] >90% [77] 67.25 [80]

Waist-based Sportline 340 Strider [75] >90% [77] 22 [81]

Wrist-based Fitbit Force [82] <90% [77] Not available

Ankle-based StepWatch activity monitor [83] Non-running activities: >95%

Running activities: 74.4% [77]

Not available

Mobile phone Apple iPhone 5 [84] <90% [77] Obsolete

Mobile phone Samsung Galaxy S4 [85] <90% [77] 405 [86]

Table 7

Comparison between different glucose level monitoring devices.

Type Device Performance Approximate cost 
(in US Dollars)

Non-invasive Wearable-band type visible-near 
infrared optical [88]

Average correlation coefficient between actual 
and measured glucose: 0.86 [88]

Not available

Non-invasive Triple-pole complementary split ring 
resonator-based microwave bio-sensor 
[89]

Sensitivity: 6.2 dB/(mg/ml) [89] Not available

Invasive EasyTouch [40] Not reported 60 [49]

Invasive BeneCheck Plus [41] Not reported 136 [52]

Fig. 2. Stages of artificial intelligence-based diabetes mellitus prediction system.
[2]. An individual performing 30-60 minutes of exercise 3 – 4 
times/week can be considered physically active. Table 6 summa-
rizes different devices for tracking physical activity. As shown in 
the table, Sportline 340 Strider [75] outperforms other physical ac-
tivity monitors in terms of performance and cost.

• Glucose Level Monitoring: Diabetes is characterized by elevated glu-
cose levels. For instance, an individual having a fasting plasma 
glucose level of less than 100 mg/dl is non-diabetic, whereas one 
having a level between 100-125 mg/dl is considered pre-diabetic 
and an individual having a fasting plasma glucose level greater 
than 125 mg/dl is diabetic [87]. Table 7 compares different inva-
sive and non-invasive glucose monitoring devices.

3.2. Artificial intelligence diabetes prediction application

As shown in Fig. 1, the mobile application plays the role of a gate-
217

way between the sensors connected to the users and the edge computing 
devices for uploading risk factors data. A user can also communicate 
with the mobile application to identify the risk of diabetes based on 
risk factors data. In that case, the mobile application will communicate 
with the edge server to retrieve the prediction results.

3.3. Edge and cloud computing

The risk factors data, collected using different medical sensors and 
devices, is sent to edge servers to transform it into a format that can 
be used by a machine learning algorithm. Edge servers in proximity 
to the users, compared to the cloud, aid in real-time data acquisition. 
The gathered data is subsequently preprocessed by the edge servers. 
However, edge servers are not capable of training compute-intensive 
machine learning models due to low processing and storage capacity. 
Consequently, the preprocessed data is transmitted to the cloud for stor-
age and the development and validation of machine learning model(s). 

The developed model is then sent back to the edge for predicting the risk 
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Table 8

Security and privacy analysis using blockchain.

Issue Blockchain solution

Data confidentiality The private and sensitive health data records can only be accessed by authorized network participants based on access 
control rights defined in the blockchain. A transaction for unauthorized access will not be validated by the network 
participants.

Data integrity Health data records are stored in blocks and each block is linked to the previous one using a cryptography mechanism. 
Modifying existing data in a block is computationally very expensive as the attacker has to change all the subsequent 
blocks in each copy of the ledger. Furthermore, any modification if performed will be logged in the ledger and can be 
easily traced.

Data repudiation Data update and query events are recorded in an immutable ledger after validation ensuring fraud denials.

Data audit The replicated, time-stamped and immutable ledger ensures efficient, trusted, and integral auditing.

Data access control Access control rights for health data records in the blockchain can be defined using smart contracts for secure access by 
authorized participants.
of developing diabetes based on risk factors data. Fig. 2 shows the ma-
chine learning operations pipeline used in our framework for diabetes 
prediction. The following explains the different operations involved in 
the machine learning pipeline for AI-based diabetes mellitus prediction.

• Data collection for model creation: In this stage, medical records, 
laboratory results, and contextual and social data are collected. The 
inclusion of the risk factors in the dataset should be verified. The 
collected data is then required to be aggregated. The diabetes class 
labels should be defined. For instance, all the observations in the 
dataset having fasting plasma glucose levels less than 100 mg/dl 
can be labeled as a non-diabetic class, whereas all those having 
levels between 100-125 mg/dl can be labeled as a pre-diabetic class 
and all those having fasting plasma glucose level greater than or 
equal to 125 mg/dl can be labeled as a diabetic class. This can be 
done with the help of an expert’s advice.

• Data preprocessing: This stage involves handling missing values, 
removal of outliers, data scaling, and feature selection. The miss-
ing values can be treated by either removing the corresponding 
observations or adding synthetic values. Synthetic values can be 
generated using statistical (mean/mode/median) or machine learn-
ing (kNN imputation and rpart) approaches [90]. Data scaling is 
achieved through normalization and/or standardization. The nu-
merical features having varying ranges should be normalized. This 
is because the model could be biased towards the feature with a 
bigger range [91]. For example, the range for BMI is 18.2-67.1, 
whereas that for plasma glucose is 44-199. In feature selection, the 
features that do not contribute to diabetes are excluded to avoid 
overfitting the model at its development stage. For instance, fea-
tures, such as data sequence number, hospital ID, time, and date 
should be removed. All the features (diabetes risk factors) available 
in the dataset can be used or a subset of features can be selected 
by applying feature selection algorithms [92] or taking an expert’s 
advice or using a hybrid approach. In our proposed system we use 
Recursive Feature Elimination [93] which selects the set of features 
that are more relevant to the incidence of diabetes.

• Data splitting: In this stage, data is split for training (model devel-
opment) and testing. This is done by dividing the dataset into 70% 
and 30% for training and validation respectively.

• Model Development: In this stage, k-fold cross-validation technique 
[94] is used to develop the model with the preprocessed training 
data. In the proposed system, we use decision-tree random forest 
(RF) classification model [95] as it is the most frequently used al-
gorithm in the diabetes literature [8–15].

• Model Evaluation: In this stage, the developed model is evaluated 
using validation data in terms of accuracy, precision, recall, F-
measure, ROC, AUC, and execution time. F-measure is an impor-
tant metric to evaluate the performance of a machine learning 
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model when trained using an imbalanced dataset. This is because 
F-measure can reveal the ability of the model to detect both major-
ity and minority classes [96].

• Diabetes Prediction: In this stage, the evaluated machine learning al-
gorithm is used to predict the incidence or diagnose the prevalence 
of diabetes based on the risk factors data.

3.4. Blockchain

Security and privacy of healthcare data are the main requirements 
for a trustworthy and patient-centric system [16]. The cloud provides 
scalable computing and storage facilities for healthcare data. How-
ever, the involvement of third-party cloud service providers leads to 
increased security and privacy threats due to a lack of transparency and 
data integrity. Blockchain eliminates a centralized authority and en-
sures trust and transparency among the network participants [97]. The 
blockchain component in our proposed framework connects all the net-
work participants in a peer-to-peer manner. The network participants 
involve allied health professionals, patients, pharmacies, medical ex-
perts, and hospitals. Each participant is authenticated by a certificate 
authority. Table 8 shows how blockchain addresses different security 
and privacy issues that prevail in an only cloud-based system.

We use a non-encapsulated integrated blockchain-cloud architecture 
[17], in which the diabetes risk factors data are stored in the cloud 
database and the associated meta-data is recorded in the blockchain, 
such as the hash of the risk factors data, update and query events, ac-
cess control policy, and diabetes prediction results. Storing data in the 
cloud aids in system scalability, whereas recording meta-data in the 
blockchain ledger enables security and privacy. The hash of risk fac-
tors data and prediction results in the ledger ensures data integrity. In 
addition, recording data update and query events in the ledger discour-
ages unauthorized access, leading to enhanced privacy. Furthermore, 
we employ a multi-ledger-based permissioned blockchain architecture 
that provides configurable access control rights and facilitates the devel-
opment of a separate ledger for collaborating allied health professionals 
[98]. The selection of permissioned blockchain over permissionless [99]
is due to the following disadvantages of the latter: 1) unauthorized par-
ticipation in the network leading to impersonate account holders, 2) 
clear transaction data in the ledger accessible to each network partic-
ipant revealing sensitive patients’ data, 3) slow network throughput 
hindering real-time patient’s treatment, and 4) the need to pay trans-
action execution fees and mining rewards limiting the usability of the 
network.

The blockchain component consists of participants, assets, transac-
tions, and events. Table 9 shows the different types of participants, 
assets, transactions, and events that will be used in our system along 
with their descriptions.

Fig. 3 shows the blockchain usage in our end-to-end AI-based prog-
nosis/diagnosis support system for healthcare management. In addition 
to the network participants described in Table 9, the system consists of 

a certificate authority (CA) and a medical expert. The CA works as both
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Table 9

Description of participants, assets, transactions, and events for the proposed blockchain network.

Name Description

Participants Hospitals Responsible for uploading medical records to the cloud, validating healthcare 
transactions, and responding to the data retrieval query. They store a copy of the ledger.

Participants Allied health professionals They are the doctors and nurses registered with the hospitals. They are responsible for 
updating patients’ medical records based on symptoms, diagnoses, treatments, and 
medications. They can also update the laboratory and pathological results. In addition, 
they can query the medical records from the cloud by performing query transactions.

Participants Pharmacists They are responsible for updating the information related to medications, bills, and 
insurance claims to the cloud. This is by performing update transactions. In addition, they 
can query a patient’s records.

Participants Patients They are the diabetic and pre-diabetic patients registered with the hospitals. They can 
query their medical data and update contextual and lifestyle data to the cloud by 
performing update transactions. The patients can enter the data into the network using 
mobile phones.

Participants External users They are the participants not necessarily registered with the hospitals. They can insert 
their lifestyle, medical conditions, hereditary, psychosocial, and demographic data to 
predict the development of diabetes.

Assets Laboratory and pathological data 
(by hospitals)

This asset includes laboratory and pathological test data such as blood and urine reports, 
x-rays, MRIs, ultrasound, endoscopy, fasting plasma glucose, uric acid level, etc. These 
data are updated by the hospitals to the cloud with the hash of the data being recorded in 
the blockchain. The data is made available to the corresponding patient upon a data 
retrieval query.

Assets Medical condition data (by 
hospitals)

This asset includes the medical condition data such as symptoms, diagnosis, medications, 
treatments, and vitals, i.e., heart rate, blood pressure, oxygen level, cholesterol level, and 
BMI. These data are sent to the cloud for storage with meta-data recorded in the 
blockchain.

Assets Social and contextual data (by 
patients)

This asset includes the social and contextual data such as age, gender, family history of 
diabetes, history of heart disease, depression, ethnicity, geographical location, smoking 
habits, alcohol consumption, diet, sleep duration, physical activity, educational level, and 
socioeconomic status. These data are sent as transactions by the patients for ledger 
updates.

Assets Risk factors data (by external 
users)

This asset includes the diabetes risk factors data such as lifestyle, medical condition, 
hereditary, psychosocial, and demographic. These data are sent by external users as 
transactions for the prediction of diabetes incidence.

Transactions Medical records update (by 
hospitals)

This transaction involves the update of the patient’s medical records by the hospitals to 
the cloud. The meta-data is recorded in the ledger.

Transactions Laboratory and pathological 
results update (by hospitals)

This transaction involves the update of the patient’s laboratory and pathological results by 
the hospitals to the cloud. The meta-data is recorded in the ledger.

Transactions Social and contextual data update 
(by patients)

This transaction involves the update of the social and contextual data by the patients to 
the cloud. The meta-data is recorded in the ledger.

Transactions Query (from patients to hospitals) This transaction involves the data retrieval request by the patient to the registered 
hospital for his/her medical data.

Transactions Response to a query (from 
hospitals to the patients

This transaction involves the response from the hospital to the data retrieval query made 
by the patient.

Transactions Risk factors data (from external 
users to AI-based prediction 
system)

This transaction involves the risk factors data sent by the external user as transactions for 
the prediction of diabetes incidence. The prediction request to the AI-based system will be 
recorded as a transaction in the ledger.

Transactions Risk of diabetes incidence (from 
AI-based prediction system to the 
external users)

This transaction involves the prediction result regarding the development of diabetes. This 
data is used by the hospitals to develop a prevention plan.

Events Patient’s medical records update 
(to patients)

The patient is notified about his/her records being added to the cloud by the 
corresponding hospital. This notification helps the patient to be up-to-date with his/her 
records.

Events Patient’s laboratory and 
pathological results up-date (to 
patients)

The patient is notified about his/her laboratory and pathological results being added to 
the cloud by the corresponding hospital. This notification helps the patient to be 
up-to-date with his/her results.

Events Patient’s social and con-textual 
data update (to hospitals)

The hospital receives the social and contextual data transaction from the patient 
requesting to be added to the cloud. Upon validation, the data is added to the ledger.

Events External user’s risk factors data 
update (to hospitals)

The hospital receives the risk factors data transactions by the external to update the 
ledger.

Events External user’s prediction update 
(to hospitals)

The hospital updates the prediction results of the AI-based prognosis/diagnosis system in 
the blockchain ledger. This will aid in the development of a nationwide prevention plan.
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Fig. 3. Proposed blockchain and artificial intelligence integrated monitoring system for prediction of diabetes mellitus.

Table 10

Health data and corresponding attributes used in the proposed system.

Data Attributes

Laboratory and pathological results X-rays, MRIs, CT scans, blood report, and urine report

Medical records File number, patient ID, patient name, age, gender, nationality, national identity number, medical insurance number, 
contact details, patient name, height, weight, waist circumference, body temperature, blood pressure, the reason for 
attendance, patient medical history, family medical history, allergies, symptoms, diagnosis, point of care testing 
(random blood sugar, urine dip, pregnancy test), medications

Social and contextual data Age, diet, sleeping pattern, heart rate, physical activity, smoking habits, alcohol consumption

Risk factors data High-level serum uric acid, sleep quality/quantity, smoking, depression, cardiovascular disease, dyslipidemia, 
hypertension, aging, ethnicity, family history of diabetes, physical inactivity, and obesity
a system administrator by removing malicious nodes from the network 
and an authority management entity by generating and distributing dig-

ital certificates. A participant’s public-private key pair is also generated 
by the CA. The public-private key pair for each participant is linked to 
the participant ID, a secret PIN code set by the participant, and the par-

ticipant identity proof. In a situation where the participant loses his/her 
public-private key pair, a new pair is generated by the CA after authen-

ticating the participant ID, secret PIN code, and identity proof. Each 
network participant, i.e., patient, allied health professionals, pharma-

cists, and external users, is identified using an identity number. For 
instance, a patient is identified by the patient ID whereas a doctor is 
identified by the doctor ID. A medical expert is responsible for anno-

tating the diabetes risk factors and class labels to the medical records 
data present in the cloud. The hash of annotated data is stored in the 
blockchain ledger. In addition, the medical expert will give feedback on 
the performance of the AI system when asked for an opinion. The ex-

pert’s feedback is recorded as a transaction in the cloud with its hash 
in the blockchain. The AI-based prognosis/diagnosis support system 
consists of classification learning models for diabetes prediction. The 
prediction query and results are stored as transactions in the blockchain. 
Table 10 shows the data and the corresponding attributes used in the 
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proposed system.
4. Implementation of proposed automated end-to-end blockchain 
artificial intelligence-system for diabetes mellitus prediction

In this section, the implementation of the system is discussed. The 
system operates through two main functions: 1) DP(user_risk) which al-
lows end-users to get diabetes prediction from the system through a 
front-end device (e.g. smartphone), and 2) DPMT(𝑑𝑓𝑟𝑖𝑠𝑘), the diabetes 
prediction model trainer, which trains or updates the system’s AI model 
by using new labeled data.

For the first operative function, DP(user_risk), the implementation 
diagram is shown in Fig. 4(a). The risk factor data (which is unlabeled) 
is collected from a data source 𝐷𝑠𝑟𝑐 . The users’ health records includ-
ing diabetes risk factors data are stored in the cloud with meta-data 
recorded in the blockchain. The raw risk factor data 𝑑𝑓𝑟𝑖𝑠𝑘 is fed as 
an input to the data transformation component for preprocessing. Data 
transformation is performed by edge servers. The preprocessed data 
frame 𝑑𝑓 ′

𝑟𝑖𝑠𝑘
is then passed as input to the current Machine Learning 

model for diabetes prediction. The result of the prediction is sent back 
to the end-user device and the Blockchain ledger.

For the second operative function, DPMT(𝑑𝑓𝑟𝑖𝑠𝑘), the system is up-
graded using previous modeling data and the new data generated by 
users and/or health professionals, which is already labeled by the health 

professionals and stored in the cloud, as shown in Fig. 4(b). This new 
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Fig. 4. Implementation of the proposed end-to-end automated artificial intelligence (AI)-blockchain systems for diabetes monitoring.
training data, 𝐷𝑠𝑟𝑐2, is extracted from the cloud data source to be 
fed as input to the data transformation component for preprocessing. 
The data extraction and preprocessing operations along with the meta-

data are recorded in the blockchain ledger. The preprocessed data is 
then divided into training 𝑑𝑓 𝑡𝑟

𝑟𝑖𝑠𝑘
and validation 𝑑𝑓𝑣𝑑

𝑟𝑖𝑠𝑘
datasets. The se-

lected Random Forest model f(risk) is trained again using 𝑑𝑓 𝑡𝑟
𝑟𝑖𝑠𝑘

. The 
performance of the model is evaluated using 𝑑𝑓𝑣𝑑

𝑟𝑖𝑠𝑘
. The model devel-

opment is a feedback control process where the model is tuned using 
hyperparameter tuning unless the desired performance is obtained. The 
diabetes prediction error 𝑒𝑟𝑖𝑠𝑘 obtained from the evaluation of the pre-

diction model is fed back to tune the hyperparameters. The tuned model 
𝑓 ∗(𝑟𝑖𝑠𝑘) is deployed in the system for predicting accurately the risk 
of diabetes occurrence in users. Consequently, the diabetes prediction 
function, DP(user_risk), uses the deployed model to predict the risk of 
diabetes.

5. Method

The proposed system consists of four components: 1) data collection 
and storage, 2) data preprocessing, 3) machine learning model devel-

opment and validation, and 4) machine learning model deployment. 
In this paper, we evaluate the data preprocessing, machine learning, 
model development, and validation components. The measurable risk 
factors data can be collected using the medical tests and devices that 
are mentioned in Section 3.1. However, in this paper, we utilize pub-

licly available diabetes datasets, such as the PIMA Indian dataset [100]

and MIMIC III [101] which include diabetes risk factors data, and Syl-

het [102] dataset which consists of diabetes-related symptoms. These 
datasets contain observations for patients who are admitted to a criti-

cal care unit, with a number of patients having diabetes. Each dataset 
contains two class labels, i.e., diabetic or non-diabetic. Consequently, 
these labeled datasets are used to train supervised classification algo-

rithms for diabetes prediction. The datasets are selected in a way that 
they include as many diabetes risk factors as possible. The experiments 
are performed on separate datasets with no integration among them. 
This is because these datasets have different sets of features associated 
with patients. We assess the performance of the most utilized machine 
learning models in the literature for diabetes prediction, specifically 
Random Forest (RF), Logistic Regression (LR) [103], and Support Vec-
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tor Machine (SVM) [104], with and without feature selection, before 
and after data balancing. The models are evaluated using different met-
rics such as Accuracy, F-measure, precision, recall, and AUC.

5.1. Datasets

The three datasets used in this paper are: 1) PIMA India, made avail-

able by the National Institute of Diabetes and Digestive and Kidney 
Diseases, 2) Sylhet, collected using direct questionnaires from the pa-
tients of Sylhet Diabetes Hospital in Sylhet, Bangladesh, and 3) MIMIC 
III, a large dataset which contains information of over 40,000 patients 
who stayed in critical care units of the Berth Israel Deaconess Medi-

cal Center between 2001 and 2012. Table 11 shows the characteristics 
of the datasets used to evaluate our proposed system. The information 
about the prevalence of diabetes for patients in MIMIC III datasets is not 
explicitly mentioned. Consequently, we presented the Diabeteic/Non-
Diabetic class as ‘Not Explicitly Mentioned’ in Table 11. However, we 
extracted the class for each patient during the pre-processing stage (Sec-
tion 5.3, Table 13) by using the ICD9 coding scheme of the dataset.

5.2. Data exploration

For each dataset, we investigate the correlations between features 
and the diabetic/non-diabetic class. We choose the Phik (Φk) corre-

lation coefficient because that works consistently between categorical, 
ordinal, and interval variables. It captures non-linear dependency and 
reverts to the Pearson correlation coefficient in the case of bi-variate 
normal input distribution [105]. So, it encompasses multiple types of 
correlations. As shown in Fig. 5a, PIMA India presents a logical correla-

tion between Age and Number of Pregnancies. Regarding diabetes de-
tection, the features that are correlated with the diabetic/non-diabetic 
outcome of the patient are Glucose, Age, BMI, Insulin, and Skin Thick-
ness. In addition, BMI is correlated with Blood Pressure. Correlations 
for Sylhet are displayed in Fig. 5b. In this dataset, the diabetic/non-

diabetic outcome is highly correlated with Polydipsia and Polyuria and 
in a lower manner with partial paresis, gender, and sudden weight loss. 
Furthermore, Polydipsia and Polyuria are highly correlated with each 
other. Similar to PIMA India, MIMIC III dataset shows high correlations 
between the class (diabetic/non-diabetic) outcome and the Age feature 
(Fig. 5c). However, Fig. 5c shows a correlation between Age and Eth-
nicity that may indicate the randomness in the MIMIC III dataset under 

study.
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Table 11

Original datasets characteristics.

Dataset Features Positive Classes Negative Classes Total Records

PIMA Indian Pregnancies, Glucose, Blood pressure, Skin 
thickness, Insulin, BMI, Diabetes pedigree1, 
and Age

268 (34.9%) 500 (65.1%) 768

Sylhet Age, Gender, Polyuria2, Polydipsia3, sudden 
weight loss, weakness, Polyphagia4, Genital 
thrush5, visual blurring, Itching, Irritability, 
delayed healing, partial paresis6, muscle 
stiffness, Alopecia7, and Obesity

320 (61.5%) 200 (38.5%) 520

MIMIC III Ethnicity, Gender, Age, and Family history 
of diabetes

Not Explicitly Mentioned Not Explicitly Mentioned 46,520

1Diabetes pedigree provides a synthesis of diabetes history in relatives and the genetic relationship of those relatives to the 
subject [100].
2Polyuria is a condition where the body urinates more than usual and passes excessive or abnormally large amounts of urine 
each time you urinate [102].
3Polydipsia is the feeling of extreme thirstiness [102].
4Polyphagia, also known as hyperphagia, is the medical term for excessive or extreme hunger [102].
5Genital thrush is a common infection caused by an overgrowth of yeast [102].
6Paresis involves the weakening of a muscle or group of muscles. It may also be referred to as partial or mild paralysis. Unlike 
paralysis, people with paresis can still move their muscles. These movements are just weaker than normal [102].
7Alopecia areata is an autoimmune disorder that causes your hair to come out, often in clumps the size and shape of a quarter 
[102].

Fig. 5. Correlation between features and diabetic/non-diabetic class for PIMA Indian, Sylhet, and MIMIC III datasets.
5.3. Data preprocessing

PIMA Indian dataset shows a number of missing values in some nu-

merical features. As shown in Fig. 6, blood pressure, skin thickness, and 
BMI features contains observations having zero value. Consequently, we 
remove these observations. The Sylhet dataset does not have any miss-

ing values. Regarding the MIMIC III dataset, there is a need to extract 
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the available risk factor features from the raw data. MIMIC III raw data 
are split into different tables. The data of interest in MIMIC III for bring-

ing out risk factors and diabetic/non-diabetic class is shown in Table 12. 
We build the preprocessed MIMIC III dataset by joining information of 
the patients from the different data tables (Table 12). For each patient, 
we retrieved age and ethnicity data from PATIENTS and ADMISSIONS 
tables respectively. Similarly, for the family history of diabetes, we de-

termined if a patient has ICD9 diagnostic code V180 (Family history of 

diabetes mellitus). The categorical values of ‘UNKNOWN/NOT SPECI-
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Fig. 6. Data exploration histograms for PIMA Indian dataset numerical features.

Table 12

Data tables used from MIMIC III dataset.

Table Name Available data and purpose

PATIENTS Subject ID, Gender, Date of Birth

ADMISSIONS Subject ID, visits of a patient, start and end of the patient visit, other 
demographic data (Ethnicity)

DIAGNOSES_ICD Subject ID, Association of ICD9 diagnostics with patients

D_ICD_DIAGNOSES Dictionary of ICD9 codes associated with their description

Table 13

Dataset characteristics after preprocessing.

Dataset # of Features Positive Classes Negative Classes Total Records

PIMA Indian 8 177 (33.3%) 355 (66.7%) 532

Sylhet 16 320 (61.5%) 200 (38.5%) 520

MIMIC III 4 8,820 (22.5%) 30,469 (77.5%) 39,289
FIED’, ‘PATIENT DECLINED TO ANSWER’, and ‘UNABLE TO OBTAIN’ 
for Ethnicity in the MIMIC III dataset are interpreted as missing values. 
Consequently, patients with such values for Ethnicity are removed from 
the dataset. The information about diabetic/non-diabetic outcomes is 
retrieved from the ICD9 diagnostics associated with the patient in table 
DIAGNOSES_ICD. If one of the diagnostics is for diabetes mellitus, then 
the patient is set to have diabetes. Table 13 shows the characteristics of 
the resulting datasets after preprocessing.

5.4. Feature selection

We use Recursive Feature Elimination, Cross-Validated (RFECV) 
[93] feature selection algorithm with RF [95] as a cross-validation eval-
uator. The selection of the RFECV algorithm is based on its performance 
in the literature [93]. The RF model is a type of bagging algorithm that 
combines a specific number of decision trees and is used to detect fea-
ture importance in learning. The tree-based random forest ranks the 
features according to how well the purity of the feature is improved, 
that is, a decrease in the impurity (Gini impurity) over all the trees. 
Features with the greatest decrease in impurity happen at the start of 
the trees, while features with the least decrease in impurity occur at 
the end of the trees. Therefore, by pruning trees below a particular fea-
ture, one can create a subset of the most important features. Recursive 
Feature Elimination works by searching for a subset of features by start-
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ing with all features in the training dataset and successfully removing 
features until the desired number remains. This is achieved by fitting 
random forest, ranking features by importance, discarding the least im-
portant features, and re-fitting the model. This process is repeated until 
a specified number of features remains.

5.5. Balancing data augmentation

The datasets under study are imbalanced towards the negative class. 
The number of diabetes class observations is roughly 30% for PIMA 
Indian and Sylhet datasets and 22% for MIMIC. To reduce the biases 
in the created models, the synthetic minority oversampling technique 
(SMOTE) is used as a data balancing technique based on its performance 
in literature [106]. SMOTE is an oversampling technique that increases 
the number of minority class samples in the dataset, by generating new 
samples from existing minority class samples. The application of SMOTE 
to clinical datasets can improve model performance by reducing the 
negative effects of imbalanced data as observed in recent literature. 
SMOTE is only applied on the training/validation split (70%) of the 
data samples so that the model sees equal numbers of both class types, 
and the test split (30%) is not modified.

5.6. Machine learning models for diabetes prediction

We implement our proposed automated end-to-end blockchain AI-

system for diabetes prediction using the most popular and accurate RF 
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Fig. 7. Frequency of classification algorithms used in literature for diabetes prediction.
model. Fig. 7 shows the relative usage frequency of different Machine 
Learning algorithms in current research papers on Diabetes prediction 
[8–15]. Furthermore, we compare the performance of RF with LR and 
SVM algorithms for diabetes prediction. The selection of LR and SVM is 
based on their popularity as shown in Fig. 7.

5.6.1. Random forest (RF)

This algorithm is based on Decision Tree (DT), which constructs a 
tree structure to define the sequences of decisions and outcomes, and to 
use it for prediction. At each node of the tree, the algorithm selects the 
branch having the maximum information gain.

Random Forest is a set of decision trees constructed using randomly 
selected samples of the dataset [95]. It performs voting on the output 
of each decision tree and classifies an observation into diabetes or non-
diabetes depending on the majority of the decision trees’ output.

5.6.2. Logistic regression (LR)

This algorithm predicts the probability that a given observation be-
longs to the diabetes or non-diabetes class using a sigmoid function 
[103] as stated in Equation (1).

𝑃 (𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) =
𝑒𝛽0 +

∑𝑛

𝑖=1 𝛽𝑖𝑅𝑖

1 + 𝑒𝛽0+
∑𝑛
𝑖=1 𝛽𝑖𝑅𝑖

(1)

where p(diabetes) represents the probability of having diabetes, R is the 
set of risk factors, and 𝛽0 and 𝛽𝑖 are the regression coefficients repre-
senting the intercept and the slope respectively. The values of regression 
coefficients are calculated using maximum likelihood estimation such 
that the value of Equation (2) is the maximum.

𝑙(𝛽0, ..., 𝛽1) =
∏
𝑖,𝑦𝑖=1

𝑃 (𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠)
∏
𝑖,𝑦𝑖=0

(1 − 𝑃 (𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠)) (2)

5.6.3. Support vector machine (SVM)

This algorithm aims to create a decision boundary known as a hy-
perplane that can separate n-dimensional instance space into diabetes 
and non-diabetes classes. The hyperplane is created using the extreme 
points (support vectors) of the dataset. The generation of a hyperplane 
is an iterative process to find the maximum possible margin between 
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the support vectors of the opposite classes. Let 𝑟(𝑖) and 𝑦(𝑖) represent the 
risk factors and classes in the dataset and there exists a hyperplane that 
separates diabetes and non-diabetes classes as stated in Equation (3).

𝑤𝑇 𝑟+ 𝑏 = 0

𝑤𝑇 𝑟(𝑖) + 𝑏 > 0, 𝑖𝑓𝑦(𝑖) = +1 𝑎𝑛𝑑 𝑤𝑇 𝑟(𝑖) + 𝑏 < 0, 𝑖𝑓𝑦(𝑖) = −1
(3)

where w is the normal of the hyperplane and b is the bias. The mini-
mization problem to obtain the optimal hyperplane that maximizes the 
margin can be formulated using.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒Φ(𝑊 ) = 1
2
||𝑊 ||2, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑖(𝑊 .𝑟𝑖 + 𝑏) ≥ 1 (4)

6. Performance evaluation

We evaluate the models under study with and without feature se-
lection, before and after balancing, using the tenfold cross-validation 
method where the dataset is divided into k (k=10) partitions. One par-
tition is for validation data and k-1 partitions are for training with 
replacement. This is repeated until each partition is used for training 
and validation. The resultant model is then obtained by averaging the 
result of each iteration. For SVM, we use the polynomial kernels. Each 
model is executed 10 times on each dataset and the average for accu-
racy, F-measure, precision, recall, AUC, and execution time (for training 
and validation) is calculated. The use of Accuracy as a comparative met-
ric between the models is justified because the datasets are not heavily 
imbalanced. AUC is the measure of the ability of a classifier to dis-
tinguish between classes and is used as a summary of the ROC curve. 
The higher the AUC, the better the performance of the model at dis-
tinguishing between the positive and negative classes. The accuracy, 
F-measure, recall, and precision are calculated using Equations (5) and 
(6) respectively. Recall and precision for the positive (negative) class 
are calculated using Equations (7) and (8) respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(5)

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2(𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(6)

𝑇𝑃 (𝑇𝑁)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃 (𝑇𝑁) + 𝐹𝑁(𝐹𝑃 )
(7)
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Table 14

Value(s) of hyperparameters used and optimal values for hyperparameters obtained in our experiments.

Algorithm Hyperparameter
Values used in 
our experiments

Optimal values

1 2 3 4 5 6 7 8 9 10 11 12

Random 
Forest

Number of 
estimators/trees

100 [7,13], (300, 500,

1000) [13], 20, 40, 60,

80, 100, 200, 300, 400,

500, 600, 700, 800,

900, 1000

50 40 50 50 20 100 50 50 20 100 50 50

Splitting 
criteria

entropy and Gini entropy Gini entropy Gini entropy

Maximum 
features

Nmax∗, sqrt, and

log2

None sqrt log2 sqrt

Max depth None, 2, 5, 8 5 None 8 None

Support 
Vector 
Machine

Regularization 
parameter

(0.001, 0.01, 0.1,

1, 2, 3, 5, 7, 10) [13],

4, 6, 8, 9, 10

1 7 1

Logistic 
Regression

Regularization 
parameter

2−6, 2−4, 2−2, 20,

22, 24, 26
16 0.25 4 16 4 16 4

Solver Newton-cg, lbfgs,

liblinear, sag, and

saga

lbfgs liblinear lbfgs

Nmax∗: Number of features in the dataset, Newton-cg: Newton Conjugate Gradient,
1 - PIMA Indian: no feature selection and no balancing, 2 - PIMA Indian: feature selection and no balancing,
3 - PIMA Indian: feature selection and balancing, 4 - PIMA India: no feature selection and balancing,
5 - Sylhet: no feature selection and no balancing, 6 - Sylhet: feature selection and no balancing,
7 - Sylhet: feature selection and balancing, 8 - Sylhet: no feature selection and balancing,
9 - MIMIC IIII: no feature selection and no balancing, 10 - MIMIC III: feature selection and no balancing,
11 - MIMIC III: feature selection and balancing, 12: MIMIC III - no feature selection and balancing.

Fig. 8. Performance of feature selection algorithms for PIMA Indian dataset.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑁)
𝑇𝑃 (𝑇𝑁) + 𝐹𝑃 (𝐹𝑁)

(8)

where TP is True Positive, TN is True Negative, FP is False Positive, and 
FN is False Negative. TP (TN) represents the number of observations 
in the positive (negative) class that are classified as positive (negative), 
and FP (FN) represents the number of observations in the negative (pos-

itive) class that are classified as positive (negative).

6.1. Hyperparameter tuning

To achieve the best performance possible with the end-to-end sys-

tem for diabetes prediction, we perform hyperparameter tuning, that 
determines the optimal values for machine learning models’ parameters. 
Evaluating each model only on the training set can lead to overfitting. 
Consequently, to reduce the effect of overfitting we perform again strat-

ified k-fold cross validation with k =10. The parameters we study for 
each algorithm, their ranges, and their optimal values are described in 
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Table 14. The ranges are selected in a way that they include the values 
considered in literature. To perform the search for the best parameters, 
we use GridSearchCV from the Python library sklearn.model_selection 
module.

6.2. Feature selection

Following the feature selection method described in 5.4, we give the 
results for the three datasets.

For the PIMA Indian dataset, Fig. 8a shows the importance of each 
feature to prediction. It shows that glucose is the most important fea-
ture for the prevalence/incidence of diabetes in users, followed by BMI, 
insulin, age, and diabetes pedigree function. This is confirmed by stud-

ies in literature [107,108] and type 2 diabetes risk assessment form by 
the Finnish Diabetes Association [109]. There are 5 selected features: 
glucose, BMI, insulin, age, and diabetes pedigree function (Fig. 8b).

For the Sylhet dataset, Fig. 9a shows the importance of each feature 
to prediction. It shows that Polyuria and Polydipsia are the most im-
portant features in the prevalence/incidence of diabetes in users. This 
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Fig. 9. Performance of feature selection algorithms for Sylhet dataset.

Fig. 10. Performance of feature selection algorithms for MIMIC III dataset.
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Fig. 11. Execution time for logistic regression, support vector machine, and random forest algorithms for the datasets under study.
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is in alignment with the result obtained in the literature [110]. In the 
context of gender, Fig. 9a reveals that men are more correlated with 
the prevalence/incidence of diabetes. This is confirmed by the Ameri-
can Diabetes Association’s type 2 diabetes risk test [111]. There are 10 
selected features: Polyuria, Polydipsia, Age, Gender, partial paresis, ir-
ritability, sudden weight loss, Alopecia, visual blurring, and Polyphagia 
(Fig. 9b).

In the MIMIC III dataset, there are 4 attributes which all related to 
diabetes risk factors: gender, age, ethnicity, and family history of dia-
betes. The feature importance graph, Fig. 10a, shows that age has the 
highest importance for the prevalence/incidence of type 2 diabetes in 
the population. This is in alignment with the American Diabetes Associ-
ation’s type 2 diabetes risk test [111]. The second important feature is 
the Black/African American ethnicity. This is also confirmed by studies 
in literature [112–115]. Furthermore, the gender feature has low im-
portance and consequently, it was not selected. Fig. 10b shows that two 
features are selected as significant.

6.3. Hardware and execution time

The Hardware used for the performance analysis is Intel(R) Core 
(TM) i7-9700, with 32 Kilobytes of L1 data-cache, 32 Kilobytes of 
L1 instruction-cache, 256 Kilobytes of L2 Cache, 12 Megabytes of L3 
Cache. The total execution times of each machine learning model un-
der study for PIMA Indian, Sylhet, and MIMIC III datasets are shown 
in Figs. 11a, 11b, and 11c respectively. The measurements have been 
done using the tuned parameters for each model. They consist of the 
total time for training and validating the model. The time to make a 
prediction using a trained model is insignificant. The model needs to 
be re-trained only when there is a change in the previously used train-
ing dataset. For scalable training and re-training, a cloud server with 
higher computing capabilities can be used. We can observe that RF has 
the highest execution time. The main reason is that the number of esti-
mators (n_estimator) is the principal parameter driving computational 
usage.

6.4. Experimental results analysis

In this section, our experimental results are analyzed and we provide 
insights into the reasons for the performance exhibited by the system. 
To compare the different metrics for the models under study Figs. 12, 
13, and 14 display the Recall, Precision, Accuracy, and F-measure that 
was obtained when applying the models to the different datasets. The 
results are available in different settings: with feature selection or with-
out and before data balancing or after. When focusing on accuracy, the 
results show that feature selection always improves this metric. The im-
pact of balancing data is not always positive. The impact on accuracy 
depends on how imbalanced were the initial data. For the RF algorithm, 
there is an improvement in accuracy when balancing the data, the in-
crease is 0.97 to 0.98 for the Sylhet dataset and 0.77 to 0.81 for the 
PIMA dataset. For the MIMIC III dataset, accuracy decreases from 0.77 
to 0.66 with data balancing, but the F-measure increases from 0.51 to 
0.66. This conclusion can be drawn for all datasets and algorithms, anal-
ysis of confusion matrices can give an insight on this. As shown by the 
confusion matrices (Figs. 15, 16, and 17) before and after feature selec-
tion and balancing, there is a better detection of the minority class after 
balancing. For the RF algorithm, the increase in detection of the minor-
ity class is 70% less false negative for PIMA Indian and 80% less false 
negative for the MIMIC III dataset. For the Sylhet dataset, there is no 
significant improvement because it is already balanced and there was 
no false negative before balancing.

For PIMA India and Sylhet, execution times are very low. However, 
the execution time is much longer with the MIMIC III dataset. It can 
be explained because execution time increases with the number of fea-
tures and observations. The datasets utilized in this study exhibit no 
227

significant imbalance, as a result, balancing the data does not improve 
Computational and Structural Biotechnology Journal 23 (2024) 212–233

Fig. 12. Comparison of accuracy, F-measure, recall, precision, and AUC for the 
algorithms under study on PIMA Indian dataset (FS: Feature Selection, BL: Data 
Balancing).

accuracy (except for the Sylhet dataset where a slight increase in accu-
racy is noted). This is particularly true for the MIMIC III dataset because 
it does not present enough risk factor features and it is also the most 
unbalanced. In this context, there is no proof of a better performance 

using balancing with the SMOTE algorithm. A root cause is that the 
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Fig. 13. Comparison of accuracy, F-measure, recall, precision, and AUC for 
the algorithms under study on Sylhet dataset (FS: Feature Selection, BL: Data 
Balancing).

SMOTE algorithm augments the dataset with non-informative observa-

tions. A common observation is that the feature selection chosen in our 
system always improves the accuracy and also reduces the execution 
time. The most effective model with Feature Selection for the PIMA 
Indian dataset is RF demonstrating an accuracy score of 0.7827. The 
most effective model for Sylhet is RF with an accuracy score of 0.9723, 
adding Feature Selection results in a modest reduction in processing 
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time, and there is no adverse impact on accuracy. The best model for 
Computational and Structural Biotechnology Journal 23 (2024) 212–233

Fig. 14. Comparison of accuracy, F-measure, recall, precision, and AUC for the 
algorithms under study on MIMIC III dataset (FS: Feature Selection, BL: Data 
Balancing).

the MIMIC III dataset is Logistic Regression, but Random Forest is very 
near. The best accuracy for LR is 0.7734 and the best for RF is 0.7703 
and a difference of only 0.4%. ROC curve analysis shows that for the 
Sylhet dataset, the Random Forest classifier is very good. The perfor-

mance outcomes for the Sylhet dataset significantly surpass those for 
the PIMA and MIMIC III datasets. The primary distinction among these 

datasets lies in the number of features available, which can be consid-
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Fig. 15. Confusion matrices for PIMA Indian dataset.
ered as potential risk factors for diabetes. In conclusion, it is advisable 
to seek datasets with a comprehensive range of risk factors, as exempli-

fied by the Sylhet dataset. The datasets utilized in our analysis lacked 
sufficient diversity to evaluate the necessity for data balancing. Using 
RF with feature selection adds value to the system because it can reduce 
training time.

7. Conclusions

In this paper, we propose a novel end-to-end IoT-edge-AI-blockchain 
system for diabetes prediction. The proposed system consists of medical 
devices and sensors to obtain the value of different diabetes risk factors. 
A comparative analysis, in terms of performance and cost, of these de-

vices and sensors is presented to aid readers in the selection of the most 
optimal test/device/sensor for measuring each risk factor. The proposed 
system employs edge computing to preprocess the diabetes risk factors 
data in terms of feature selection and data balancing. The preprocessed 
data is employed to train and validate machine learning model(s) in 
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the cloud. Subsequently, the trained model is utilized at the edge to 
predict the risk of diabetes for users, based on the risk factors data. Fur-

thermore, to ensure the privacy and security of the data, the proposed 
system is underpinned by the blockchain. The hash of medical records, 
risk factors data, machine learning model parameters, and diabetes pre-

diction results are stored in a blockchain ledger. In addition, we identify 
the most significant risk factors for diabetes prediction and compare the 
performance of the most commonly employed machine learning algo-

rithms in the literature, using three real-world diabetes datasets, in a 
unified setup. Our experimental results show that the RF is the most ac-

curate compared to LR and SVM. The following requirements should be 
considered at the time of choosing a classification model in the context 
of type 2 diabetes prediction.

1. Accuracy and F-measure: High accuracy can be achieved by a large 
number of algorithms. However, if we evaluate the performance of 
a classification algorithm only using the accuracy, then misinter-

pretations of the results can occur. Because even if the algorithm 
achieves high accuracy, it might not be able to classify correctly 

observations that belong to the minority classes, as the F-measure 
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Fig. 16. Confusion matrices for Sylhet dataset.
would reveal, This is particularly true with imbalanced datasets, 
which are very frequent in the health domain. In such a context, 
there might be a risk of predicting a wrong result with serious 
medical consequences, because a patient who is diabetic could be 
classified as non-diabetic. As a result, we highly recommend select-

ing F-measure as one of the evaluation metrics.

2. Feature selection: Feature selection algorithms should be used on 
the dataset before training the classification model. This can avoid 
overfitting and reduce execution time. The experiments we con-

ducted show that feature selection does not incur accuracy degra-

dation.

3. Significant features: As a recommendation, we propose to use age, 
ethnicity, glucose, family history of diabetes, and obesity for the 
prediction of type 2 diabetes. This is based on our experimental 
results obtained by implementing the RFECV feature selection algo-

rithm. As revealed by our experimental results, using these selected 
features for machine learning model development, the performance 
of learning models remains the same or improves compared to 
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using all the features. The selection of significant features in our 
results is in alignment with the Finnish Diabetes Association’s type 
2 diabetes risk assessment form [109] and the American Diabetes 
Association’s type 2 diabetes risk test [111].
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Fig. 17. Confusion matrices for MIMIC III dataset.
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