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Humans possess a remarkable ability to discriminate structure from randomness in the environment.
However, this ability appears to be systematically biased. This is nowhere more evident than in the
Gambler’s Fallacy (GF)—the mistaken belief that observing an increasingly long sequence of “heads”
from an unbiased coin makes the occurrence of “tails” on the next trial ever more likely. Although the
GF appears to provide evidence of “cognitive bias,” a recent theoretical account (Hahn & Warren, 2009)
has suggested the GF might be understandable if constraints on actual experience of random sources
(such as attention and short term memory) are taken into account. Here we test this experiential account
by exposing participants to 200 outcomes from a genuinely random (p � .5) Bernoulli process. All
participants saw the same overall sequence; however, we manipulated experience across groups such that
the sequence was divided into chunks of length 100, 10, or 5. Both before and after the exposure,
participants (a) generated random sequences and (b) judged the randomness of presented sequences. In
contrast to other accounts in the literature, the experiential account suggests that this manipulation will
lead to systematic differences in postexposure behavior. Our data were strongly in line with this
prediction and provide support for a general account of randomness perception in which biases are
actually apt reflections of environmental statistics under experiential constraints. This suggests that
deeper insight into human cognition may be gained if, instead of dismissing apparent biases as failings,
we assume humans are rational under constraints.
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Fundamental to the success of the human species is its ability to
discern regularities and structure in the world. This allows humans to
successfully predict, explain, and manipulate their environment. At
the same time, human beings seem to exhibit limitations in discerning
patterns that, on occasion systematically lead them astray. Chief
among these are misperceptions of randomness such as the Gambler’s
Fallacy (GF): the mistaken belief that observing an increasingly long
sequence of “heads” from an unbiased coin makes the occurrence of

“tails” on the next trial ever more likely. Misperceptions like the GF
are of interest because they are consequential, whether in casinos
(Croson & Sundali, 2005), racetracks (Terrell, 1998), lottery play
(Clotfelter & Cook, 1993), or, possibly most worryingly, in financial
markets (Johnson, Tellis, & MacInnis, 2005); see also Rabin (2002).
However, the GF also holds theoretical interest far beyond these
practical concerns. The mistaken beliefs about randomness embodied
in the GF sit somewhat paradoxically with the general success of
humans at discriminating (unrewarding) randomness from (poten-
tially valuable) structure in their everyday environment. Conse-
quently, as an error, the GF offers the potential for deep insight into
the criteria and cognitive processes by which human beings make
judgments about statistical structure—in the same way that visual
illusions are informative for understanding perception (see Kahneman
& Tversky, 1972). Accordingly, the GF has attracted a long history of
research in psychology (for reviews see Bar-Hillel & Wagenaar,
1991; Hahn, 2011; Oskarsson, Van Boven, McClelland, & Hastie,
2009).

There is evidence that problem gamblers believe in the GF, for
example from “thinking aloud studies” during gambling, and that this
mistaken belief plays a causal role in their gambling behavior (see,
e.g., Ladouceur et al., 2001; Toneatto, Blitz-Miller, Calderwood,
Dragonetti, & Tsanos, 1997; Toneatto & Ladouceur, 2003). Outside
this group, however, the degree to which people endorse the GF is
somewhat less clear. This is because—in experimental laboratory
studies—participants’ endorsement of the GF has typically only been
inferred. Evidence for belief in the GF is indirect: it has been inferred
from participants’ behavior in random sequence generation tasks. The
standard measure on which attribution of the GF has rested is the
alternation rate (AR): the probability with which a person alternates
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between the two outcomes of a “fair” coin toss when generating a
“random” sequence has been taken to reflect belief in the GF. While
the (long-run) alternation rate of a fair coin is 0.5, many empirical
studies have observed that participants tend to “over-alternate,” gen-
erating binary sequences with higher ARs (Wagenaar, 1972). This
finding is reflected also in sequence judgment tasks: here participants
typically perceive sequences with higher ARs to be “more random”
Falk and Konold (1997) (though the exact AR regarded as random is
affected by context, Matthews, 2013). Overalternation may be taken
as evidence of an erroneous belief in the GF (or the “self-correcting”
nature of random processes more generally) because it reflects a bias
against “runs” or “streaks” of one outcome (e.g., a succession of
heads).

This dependence on indirect measures has consequences not only
for ascertaining belief in the GF but also for explanation of that belief.
It is difficult to distinguish whether overalternations are “accurate
reflections of biased notions of randomness, or biased reflections of
accurate notions of randomness, or both” (Bar-Hillel & Wagenaar,
1991). This problem is made more acute by the fact that randomness
itself is a theoretically vexed notion that holds many counterintuitive
surprises (on the many consequences of this for psychological re-
search see, e.g., Ayton, Hunt, & Wright, 1989; Nickerson, 2002).

As testament to the counterintuitive nature of randomness con-
sider the following example. The GF is the clearly erroneous belief
that a sequence of heads (H) such as HHH is more likely to be
followed by tails (T), than by another H, given an unbiased coin.
However, as Hahn and Warren (2009) point out, if we start
flipping an unbiased coin, we will (on average) have to wait less
long to encounter HHHT than HHHH (Gardner, 1988; Guibas &
Odlyzko, 1981; Figure 1A).

More generally the so-called wait times for all 16 binary sequences
of length 4 are presented in Figure 1A. Note that there are significant
differences between wait times across sequences. These differences in
wait time may seem surprising to those encountering the concept for
the first time. However, they are a mathematical fact and they have the
immediate consequence that the respective probabilities of encoun-
tering the sequences HHHT and HHHH are equal only if flipping an
unbiased coin exactly four times or infinitely many times. For values
in between these two extremes, probabilities will not be the same.
Imagine flipping a coin, say, 20 times and checking whether either
HHHH or HHHT arise at least once in that series. Given that the wait
time for HHHH is longer than that for HHHT, HHHH will also be less
likely to occur at all. The probability of not encountering the string
HHHH within those 20 tosses of the coin is directly determined by the
wait time (Figure 1B). This means that a person who bets $1 on the
sequence HHHT occurring at least once in a sequence of 20 coin
tosses will, on average, earn more than a person who makes the same
bet for HHHH (see Hahn & Warren, 2009, 2010). This bet sounds
incredibly similar to erroneous belief in the GF, yet it is mathemati-
cally sound, and it provides the basis for a possible explanation of
seeming GF-like beliefs.

Inspired by these counterintuitive mathematical results, Hahn
and Warren (2009) suggested that constraints on attention and/or
short-term memory (STM) may dictate that human experience of
random events is actually akin to viewing “local” subsequences in
a longer finite “global” stream of events (see Figure 2). Specifi-
cally, people will necessarily only ever see finite sequences of
outputs from random sources such as unbiased coins, and they will
experience that sequence unfolding in time with a limited short

term memory that can monitor only a fixed length sequence.
Human experience of random events can therefore be thought of as
a sliding window containing a local sequence of length k moving
through a finite global sequence of length n � k.

The simple experiential model of Figure 2 necessarily results in
differences between the number of occurrences of different local
subsequences in a longer global sequence (as illustrated in Figure
1). Consequently it may explain seeming “bias”: what appears
biased if one is thinking simply about subsequences in isolation,
can be seen as reflecting genuine environmental experience once
the fact that subsequences arise within longer global streams is
taken into account.1

Focusing more specifically on the distribution of subsequences
HHHH and HHHT, Figure 3 shows that these are very different in
global sequences of moderate length. A person will most likely

1 Note that it is crucial to the model that the sliding window moves
incrementally through the sequence (as is implied, e.g., in tests of short
term memory such as the N-back test, see, e.g., Kane, Conway, Miura, &
Colflesh, 2007). If the attentional/STM window were to “jump” through
the global sequences in nonoverlapping, sequential chunks (e.g.,
HHTHTHTT would be broken up into just HHTH and THTT) then
successive local sequences would be entirely independent and the expected
values of their occurrence would be equal across all possible sequences just
as they are when k � n.

Figure 1. (A) Expected wait time for subsequences of length 4 and (B).
the associated probability of not encountering each sequence in a longer
“global” sequence of length 20. The wait time statistic directly determines
the nonoccurrence probability—the longer the wait time, the higher the
probability of nonoccurrence in a longer, finite string. Reproduced from
Hahn and Warren (2009) p. 456.
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encounter zero occurrences of HHHH in a sequence of length 20.
It is only for longer global sequences (Figure 3, Panels e and f) that
the frequency of HHHH will tend toward that of HHHT, that is, the
two sequences will become alike only with greater experience of
the generating source. At the root of all this is the difference in the
shape of the underlying distributions for probability of occurrence.
While the mean (i.e., the expected frequency) of each distribution
is the same for all subsequences, the distributions vary hugely in
their skew for global sequences of moderate length. This differ-
ence is attenuated only as the global sequence becomes longer (see
Figure 3g). In addition the probabilities of nonoccurrence for
HHHH versus HHHT become much closer to each other (and to
zero) as the length of the global sequence increases. These factors,
in turn, suggest that the way people experience sequences of
outputs from random sources in everyday life, might explain
seeming misperceptions of randomness.2

The simple experiential model in Figure 2 and the associated
mathematical consequences render the GF comprehensible in that
it seems a rather subtle error once placed in the context of the very
similar beliefs one could have that, in fact, are accurate, such as the
winning bet on HHHT in global sequences of length 20 given
above. In addition it is also worth pointing out that the GF is, of
course, not a fallacy when sampling without replacement (i.e.,
repeatedly drawing a ball from an urn with equal numbers of red
and blue balls and not replacing the ball after each draw). One
explanation for belief in the GF that has been put forward in the
literature is that the GF may be based on confusion between
sampling with and without replacement (e.g., Ayton et al., 1989).
On Hahn and Warren’s simple model of experience, however,
sampling with and without replacement are surprisingly similar in
experiential terms as shown in Figure 4. Comparing nonoccurrence
probabilities of sequences RRRR and RRRB (now representing
red and blue balls randomly drawn from an urn in which they are
present in equal proportion) shows that the sequence probabilities
are virtually unaffected by whether or not sampling is with or
without replacement, or the number of balls in the urn initially. In
other words, just from limited sequential experience it is almost
impossible to distinguish between the two kinds of source. If such
a confusion between sampling with and without replacement does
indeed exist, the experiential model provides a straightforward
explanation why: just from observing random sequences, the dif-
ference between the two seems extremely hard to learn.

The Hahn and Warren (2009) account, then, shifts the dominant
perspective in randomness perception away from cognitive bias
and instead recasts phenomena like GF as unavoidable mathemat-
ical consequences of sensitivity to environmental statistics with a
constrained window of experience. In this respect it differs funda-
mentally from previous accounts of the GF and, or, overalternation
(Baddeley, 1966; Kahneman & Tversky, 1972; Kareev, 1992;
Rapoport & Budescu, 1997, see discussion below). These have

attributed the fallacy to biased beliefs that are at odds with statis-
tics such as the “representativeness heuristic” that mistakenly
attributes to short sequences the properties of long sequences
(Kahneman & Tversky, 1972; Rapoport & Budescu, 1997). Or
they have attributed overalternations in sequence generation to
resource constraints distorting an underlying, unbiased conception
of randomness itself (e.g., Kareev, 1992). The present account
takes up the idea of resource constraints, but asks how these
constraints shape people’s actual experience of random sequences.
In so doing, it identifies ways in which seemingly biased beliefs
about randomness are, in fact, correct and represent reflections of
(experienced) environmental statistics.

This, finally, also has implications for the assessment of explicit
belief in the GF. Shorter sequences have ARs that lie above the
long run average (see also Kareev, 1992). Consequently overalter-
nation may simply be a reflection of the statistics of random
sequences as experienced. However, there is no reason why this
should necessarily be coupled with explicit belief in the GF.
Therefore, it is essential to probe whether or not people endorse the
GF with other measures than just AR; in particular it would seem
appropriate to supplement indirect, implicit measures such as AR,
with direct, explicit probes concerning people’s beliefs.

Taken together these considerations suggest that if the preva-
lence and causes of the GF are to be understood then there is a
clear need for experimental studies that: (a) probe the role of
experience in the GF; (b) test the experiential model of Hahn and
Warren (2009); and (c) consider the extent to which direct and
indirect measures of belief in the GF are in agreement. We next
outline an experimental paradigm to address these questions.

An Experimental Test

Crucially under the Hahn and Warren (2009) account, not only
should experience of the output of random sources be expected to
modify perception of randomness but also global sequence length
(parameter n in Figure 2) should matter. This critical role of global
sequence length provides a basis for an empirical test of a general
role for experience in the GF and of the specific experiential model
of Hahn and Warren (2009), thereby addressing points (a) and (b)
above.

To see the effect of global sequence length consider Figures 3a
to f, showing distributions of occurrence frequencies of both
HHHH and HHHT for three values of n (20, 50, and 200). Note
that for each global sequence length the mean number of occur-
rences of the two subsequences is the same, however, the fre-
quency distributions are markedly different. It is precisely this
difference in distributions that drives the difference in wait times
and nonoccurrence probabilities seen in Figure 1. The primary
difference between HHHH and HHHT occurrence distributions is

2 This discussion of differences in wait time and nonoccurrence proba-
bility generalizes to other values of k and n for k � n � � (see Hahn &
Warren, 2009). However, the choice of length 4 subsequences in Figures 1
and 2 is not accidental. It has been suggested that the effective storage
capacity limit for short term memory is 4 � 1 item (when performance
strategies such as rehearsal that might differ between participants are
prevented; Cowan, 2001, 2010).

Figure 2. The sliding window account from Hahn and Warren (2009) p.
455. People’s experience of random sequences is theorized to be a local,
sliding window through a global finite sequence. See the online article for
the color version of this figure.
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Figure 3. (a–f) The number of occurrences of a local subsequence within a global sequence of length n � 20
(Panels a and b), n � 50 (Panels c and d), and n � 200 (Panels e and f) for subsequences HHHH and HHHT.
H � heads; T � tails. Vertical dashed lines indicate the mean number of occurrences. (Panel g) Skew of the
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(2014) p. 234.
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in the skew. Both distributions show positive skew at each global
sequence length; however, this is more pronounced in the case of
HHHH. The increased skew for HHHH reflects that fact that
although frequency is bounded below by 0 for both subsequences
the spread in the HHHH distribution is greater. Consequently, for
a global sequence of any given length it is more likely that there
will be very few occurrences of HHHH than very few occurrences
of HHHT. Figure 3g summarizes the relationship between skew
and global sequence length and suggests that this tendency for
differences between HHHH and HHHT distributions decreases
with global sequence length. In summary, Figure 3 suggests that
exposure to longer global sequences should diminish discrepancies
in the frequencies with which HHHH and HHHT are encountered.

A manipulation of global sequence length could thus be at the
heart of an experimental test of the experiential model: experience
of longer global sequences should reduce differences in perceived
randomness of HHHH and HHHT. Global sequence length, how-
ever, is also naturally correlated with the overall amount of expe-
rience: presenting one participant with a global sequence of length
20 and another participant with a sequence of length 200 also
means the latter receives 10 times as much experience of a random
source. A better experimental manipulation would thus seek to
manipulate global sequence length while keeping constant the
overall amount of exposure to a random generating source.

This can be achieved by providing several shorter global se-
quences so as to match the total amount of experience: a partici-
pant who sees 10 global sequences of length 20 will see the same
number of coin tosses as one who sees 1 global sequence of length
200. Yet, as Figure 3 shows, the distribution of HHHH and HHHT
will be different under these two presentation conditions (e.g.,
compare Figures 3a and 3b to Figures 3e and 3f).

For even greater experimental control, one can literally take the
same total exposure as represented by a particular finite sequence
of coin tosses and divide it up into global sequences of different
length to generate differences across sequences for the experiential
model: Specifically, in a sequence of length 200 a person with a
sliding window of length 4 could observe a maximum of 197 runs
of HHHH. However, when that same sequence is divided into 20
global sequences of length 10, the maximum number of HHHH
runs that can be observed is only 140. Figure 5 shows this rela-

tionship for the same total experience of 200 coin tosses dis-
cretized into “global sequence” chunks of varying size. The way
the same overall experience is divided up into global sequences
determines an upper bound on the number of runs a person could
ever observe as the attentional window moves through these global
sequences.

These considerations provide a simple test whereby the same
total exposure is presented to participants in subtly different ways:
Specifically, the same 200 coin tosses might be presented as 2
global sequences of length 100 or, alternatively, as 10 smaller
global sequences of length 20. The difference in experience for the
observer is rather subtle—exactly the same set of outcomes is
observed but in blocks of different lengths with gaps in between.
However, under the Hahn and Warren (2009) account this should
lead to different behavior in a randomness perception task. Spe-
cifically, increasing the length of global sequences should lead to
increased tendency to produce runs of identical outcomes (leading
to reduced AR) in a generation task or to judge a run of identical
outcomes as random in a judgment task.

Our study tests whether the subtle manipulation of global se-
quence length suggested above leads to changes in both the judg-
ment and generation of random sequences. We presented the same
length-200 sequence to all participants but manipulated whether
they saw it in 40 chunks of length 5, 20 chunks of length 10 or 2
chunks of length 100. Chunk size is therefore analogous to the
global sequence length n in Figure 2, and we expect that exposure
to different n will be reflected in the extent to which people produce
data consistent with GF measures. In a random sequence generation
task we measured the AR and the GF ratio (i.e., the ratio of HHHH to
HHHT) for occurrences of subsequences of length 4.

Based on Figure 3 we expect that the commonly observed under-
emphasis of runs (H . . . H) will diminish as chunk size increases and
behavior will become more in line with normative properties of
binomial sequences. Accordingly, as chunk size increases, AR should
decrease, moving closer to the normative value of 0.5, and the GF
ratio should increase moving toward the normative value of 1.
Furthermore, in a randomness judgment task we used Falk and
Konold’s (1997) method to assess which AR was perceived as
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most random. We predict that as chunk size increases the AR
judged as most random will again decrease and move closer to 0.5.

In addition to focusing on the sequences HHHH and HHHT,
which are particularly relevant for the GF, we also consider the
other 14 local subsequences of length 4, assessing whether Hahn
and Warren (2009) predicts their prevalence in the generation task.
Finally, to address point (c) above we assessed the relationship
between explicit beliefs in the GF and the indirect measures (such
as AR) commonly assumed to be equivalent to belief in the GF. To
do this we developed a short questionnaire that probed participants
directly on their explicit beliefs in GF.

Method

Participants

One-hundred and eighteen people volunteered to take part from
the University of Manchester student and staff population. Partic-
ipants gave informed consent, and received course credit or £7.50
as reimbursement for their time. Participants’ mean age was 21,
SD � 4.8, 77% of participants were female. There were no
exclusion criteria.

Materials

Participants were seated in front of a 19” monitor at a 1,280 �
1,024 resolution. Participants made responses using a standard
Windows keyboard.

Design

Within subjects, participants generated and judged a sequence
both before and after being exposed to sequences generated by a .5
Bernoulli process. Between subjects we manipulated the nature of
the exposure by chunking it into different sized blocks. There were
three levels of this chunk size IV (100, 10, and 5). Overall this
resulted in a two within (exposure: pre, post) � three between
(chunk size: 100, 10, and 5) design. Forty participants were in the
20 � 10 condition, 39 in the 2 � 100 and 39 in the 40 � 5
condition. All participants were presented with the same 200 coin
tosses in succession. This series was generated by a Bernoulli
process, but was checked to ensure that it had a representative AR
of approximately .5. The nature of the exposure differed only in
terms of the size of chunk the series was divided into, 2 � 100,
20 � 10 or 40 � 5. The gap between chunks was very short,
typically around 1 s. Chunking in this manner gave rise to global
sequences (see Figure 5) of varying length while still controlling
for the overall amount and content of experience.

Procedure

The experiment consisted of both generation and judgment of
random sequences. These were repeated before and after an observa-
tion phase in which participants saw output from a genuine random
source. At the end of the experiment participants completed a ques-
tionnaire designed to elicit their beliefs about the gambler’s fallacy.
This included asking people how they would bet after a sequence of
five heads in a row, and whether after five heads: heads was most
likely, tails was most likely, or both were equally likely.

Generation task. Participants were asked to generate a series of
coin tosses by pressing 1 for heads and 0 for tails on the computer
keyboard. They were instructed to produce a sequence that they
thought would be representative of flipping a fair coin. Participants
were encouraged to type at a speed of roughly 1 press per second, and
they could see an ‘H’ or ‘T’ appear on the screen. Each display of H
or T replaced the previous display so participants could not see the
history of their sequence. Participants were instructed to generate a
sequence of length 200 in 2 blocks of 100. In between each block the
screen would display the message “sequence 2 of 2:” and required the
participant to acknowledge it by pressing ‘c’ to continue.

Judgment. The judgment task was adapted from Falk and
Konold (1997). Ten sequences of heads and tails were used. Each
sequence was of length 21 but varied in AR from 0.1 to 1. The
participants’ task was to rate each sequence according to how likely
it was to have been produced by a fair coin. Participants were required
to start by giving scores of 0 and 10 to the least and most likely
sequences, respectively. They were then free to score the other se-
quences relative to these and they could use the same score more than
once. The pre- and postobservation judgment tasks used the same
ARs but different sequences.

Observation. Participants were told: “Some people find it dif-
ficult to generate random sequences. You are now going to see a
genuine random sequence that would be produced by a fair coin. You
should pay attention to the sequence, and then you will be asked to
generate a new sequence” An ‘H’ or ‘T’ was presented with a SOA
of 700 ms. Each presentation replaced the previous one so that the
history of the sequence was not visible. All participants experienced
the same sequence except that in different conditions the number of
breaks changed (1, 19, or 39). A break consisted simply of the
participant pressing the letter ‘c’ on the keyboard to continue, this
typically took around 1 s.

Analyses

For all analyses we compare the sequences that participants gen-
erated before and after they were exposed to the genuine random
sequence. In this way we can test the impact of the exposure on the
different metrics associated with generation and judgment of random
sequences.

We also gave participants a questionnaire designed to probe their
beliefs around the GF. We classify participants who stated that a tails
is more likely after a run of heads as “believers” in the GF. We
compare the metrics or AR and the ratio HHHH:HHHT between the
believers and nonbelievers. For these analyses we use the pre-
exposure data of our participants.

Results

Generation

Participants’ raw data consisted of the self-generated sequences of
length 200, produced in two blocks of 100. For each participant, we
measured their AR over the entire 200 bit sequence, that is, we
calculated the number of switches between H and T as a proportion of
a maximum 198. Analysis of the AR in generated sequences before
exposure showed that participants typically overalternated at around
0.6, consistent with the literature (reviewed in Falk & Konold, 1997).
Figure 6a shows the change in AR from the pre-exposure to postex-
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posure generation. In line with our predictions, the AR decreased
most in the 2 � 100 condition and least in the 40 � 5 condition. A
mixed analysis of variance (ANOVA)3 revealed a significant effect of
exposure (pre, post) F(1, 115) � 18.51, p � .001, �G

2 � .06, and a
significant interaction (exposure � chunk size) F(2, 115) � 3.72, p �
.027, �G

2 � .03. There was a nonsignificant main effect of chunk size
F(2, 115) � .59, p � .56. Bonferroni corrected t tests (	 � .016) for
each of the three conditions revealed that the effect of exposure was
significant in the 2 � 100 (p � .01) and 20 � 10 (p � .01) conditions,
but not in the 40 � 5 condition (p � .63).

Using the same data we also checked for a different measure
indicative of the GF: we measured the ratio of sequences contain-
ing a run of length 4 to those containing a run of length 3 with an
alternation that is, HHHH:HHHT and TTTT:TTTH. This analysis
revealed that pre-exposure participants typically produced twice as
many HHHT sequences. Figure 6b shows the ratios pre-exposure
and postexposure (three participants were excluded from this anal-
ysis as a ratio could not be calculated because of never generating
long-enough runs). In line with our predictions, in the 2 � 100
condition the ratio increased by 0.35 to 0.77, while in the 40 � 5
condition the ratio increased by just .05 to 0.45. A mixed ANOVA
revealed a significant effect of exposure (pre, post) F(1, 112) �
20.27, p � .001 �G

2 � .07, and a significant interaction (expo-
sure � chunk size) F(2, 112) � 3.78, p � .026, �G

2 � .03. There
was a nonsignificant main effect of chunk size F(2, 112) � 2.91,
p � .058. Bonferroni corrected t tests (	 � .016) for each of the
three conditions revealed that the effect of exposure was signifi-
cant in the 2 � 100 (p � .01) and 20 � 10 (p � .01) conditions,
but not in the 40 � 5 condition (p � .51).

Figure 7 shows the effect of exposure on participants’ produc-
tion of runs of length three and five. In both cases the pattern is the
same as for runs of length four. For the analysis at length five there
is a loss of power because participants rarely produced runs of this
length. Figure 8 shows that the maximum number of occurrences
of runs decreases as a sequence of length 200 is discretized into
smaller chunks. The same pattern is observed for different lengths
of run, but is more pronounced for longer runs.

Judgment

Participants’ raw data were relative rankings of how likely they
perceived each of the 10 test sequences to have been produced by
a fair coin. When AR is plotted against the judged randomness the
data follows an inverted ‘U’ shape Falk and Konold (1997) be-
cause sequences with either high or low ARs look nonrandom. For
each participant we fit a quadratic function to their judgment data
and recovered the peak of the fitted curve for their pre-exposure
and postexposure data. Thus, for each participant we obtained
the AR they judged most random before and after exposure (i.e.,
the peak of the fitted quadratic). For the purpose of illustration,
Figure 9 shows the aggregate level fits (i.e., over data from all
observers) for randomness judgments in the 20 � 10 condition.

Before any exposure people typically rated the 0.6 alternation
sequence as the most likely to have been produced by a fair coin.
This is consistent with other results in the literature (e.g., Falk &
Konold, 1997; Zhao, Hahn, & Osherson, 2014). Figure 6c shows
how the fitted peak position changed from pre-exposure to post-
exposure in each condition (averaged over observers). The 2 �
100 and 20 � 10 conditions exhibited similar shifts in judgment
toward 0.5 as the AR most likely to have been produced by a fair coin.
The 40 � 5 condition revealed a smaller shift. A mixed ANOVA
revealed a significant effect of exposure (pre, post) F(1, 115) � 32.38,
p � .001, �G

2 � .08, and a significant interaction (exposure �
chunk size) F(2, 115) � 4.17, p � .018, �G

2 � .02. There was a
nonsignificant main effect of chunk size F(2, 115) � .56, p � .57.
Bonferroni corrected t tests (	 � .016) for each of the three
conditions revealed that the effect of exposure was significant in
the 2 � 100 (p � .01) and 20 � 10 (p � .01) conditions, but not
in the 40 � 5 condition (p � .21.). This matches the findings of the
generation task.

3 We report generalized �2 as the measure of effect size (Bakeman,
2005; Olejnik & Algina, 2003).
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Explicit GF Beliefs and Indirect Measures

Participants were asked how they would bet on a fair coin after
a sequence of five heads. Eighty per cent responded that they
would bet tails. Participants were also asked which outcome was
most likely following five heads. Of those that bet tails to the
initial question, 75% answered that both outcomes were equally
likely, while the remainder responded that tails was more likely.
All participants were asked whether they found it counterintuitive
that a run of heads did not mean an increased probability of a tails
on the next flip. Eighty-seven per cent of participants indicated that
they did find it counterintuitive.

We label the participants that stated a tails outcome was more
likely after a run of heads as believers in the GF. We then probed

potential differences between believers and “nonbelievers,” see
Figure 10. First, we sought to examine the link between partici-
pants’ explicitly stated beliefs and the implicit measures of AR and
the ratio HHHH:HHHT. An examination of the AR among believ-
ers and nonbelievers in their pre-exposure sequences shows that
there was no significant difference between the two groups. Like-
wise, an examination of the ratio HHHH:HHHT showed no dif-
ference between believers and nonbelievers. To support the con-
clusion that there was no difference between the groups on these
measures we conducted a Bayes Factor t test (Rouder, Speckman,
Sun, Morey, & Iverson, 2009). For the AR test of believers versus
nonbelievers: Bayes factor � 3.38, t � 0.77, p � .444 indicating
that the null hypothesis (no difference) was around three and a half
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times more likely than the alternative hypothesis given the data.
For the ratio HHHH:HHHT test of believers versus nonbelievers:
Bayes factor � 4.15, t � 
0.35, p � .729 again supporting the
conclusion that there was no difference between the groups. In
short, individual differences with respect to AR (see also Budescu,
1987) were unrelated to explicit beliefs about the GF.

The Experiential Account and Rival Theories of
Randomness Perception

The results thus far indicate clearly that AR is unrelated to
explicit GF belief. Furthermore, it is modified by experience, and
global sequence length moderates the impact of experience. The
decoupling between explicit belief and AR suggests that AR is not
a suitable measure for belief in the GF. Nevertheless, overalterna-
tion remains a feature of human randomness perception that needs
to be explained. The moderating influence of global sequence
length is a unique prediction of the Hahn and Warren (2009)
experiential model. Consequently, that result boosts the experien-

tial model over other, rival accounts. However, there are also other
facets of the data that are relevant to adjudicating between rival
theories, not just of the GF but of randomness perception more
generally. We next highlight these aspects.

The majority of past studies of human randomness perception
have involved sequence generation tasks (e.g., Kareev, 1992;
Nickerson & Butler, 2009; Rapoport & Budescu, 1997; Wagenaar,
1972). A smaller number of studies has used sequence judgment
tasks (e.g., Kahneman & Tversky, 1972). Even fewer are studies
such as ours that have examined sequence generation and judg-
ment together. This matters because empirically adequate accounts
of randomness perception have to be able to explain both gener-
ation and judgment. Yet, many theoretical treatments have focused
exclusively on one or the other.

As outlined in the introduction, the key theoretical tensions
between different accounts have centered on the contrast between
“accurate reflections of biased notions of randomness, or biased
reflections of accurate notions of randomness” (Bar-Hillel & Wa-
genaar, 1991). An example of the latter is Kareev’s (1992) account
that attributes overalternation in sequence generation tasks to STM
limitations.4 In effect, participants have an adequate notion of
randomness, but overalternations arise because they can plan only
in relatively short sequences, and short sequences necessarily have
ARs that lie above the long run average. As evidence for this,
Kareev (1992) shows correlations between AR and measures of
STM. Kareev’s insight on the link between sequence length and
AR is profound and, as seen above, figures also in the experiential
model. However, Kareev’s use of the concept does not go far
enough. There is nothing on Kareev’s account that would predict
matching findings regarding AR for both generation and judgment,
given that a sequence presented for judgment can be scanned and
rescanned at will, and does not require planning in the way that
sequence generation does. Yet, the data on AR match closely
across judgment and generation.

To illustrate this point, we divided the generation data from our
participants into sequences of length 20, so as to match the
sequences seen in the judgment task. We then plotted the resultant
data in histograms representing the number of length 20 sequences
generated with each AR, shown in Figure 11 below. The shape and
moments of the resultant distributions can be compared with the
judgment data shown in Figure 9 above, and reveal a close corre-
spondence across judgment and generation.

This correspondence argues against the notion that overalterna-
tions simply reflect information processing limitations that are
preventing people from expressing their true, underlying concep-
tion of randomness (cf. also Baddeley, 1966). Instead, it suggests
that the underlying conception of randomness itself is influenced
by STM in the way the experiential model assumes.

It is only on the experiential account, furthermore, that the effect
of exposure can be explained. There is no reason to assume that
participants’ STM capacity is affected by the 200 bit total exposure
to a random source which they receive in our experiments. There-
fore, an STM-based planning limitation necessarily leaves the shift

4 Rapoport and Budescu (1997) provide an implementation of Kareev’s
(1992) account with the difference that whereas Kareev assumes an unbi-
ased underlying conception of randomness, Rapoport and Budescu’s model
implements “representativeness” by modeling STM based output selection
through sampling without replacement.
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in AR from pre- to postexposure seen in our participants in both
generation and judgment (Figures 9 and 11) data entirely unex-
plained.

Finally, Figures 9 and 11 are also informative with respect to
another account of human randomness perception. Whereas most
psychological theories have focused on “randomness” as defined
by the nature of the underlying generating source, Falk and
Konold’s (1997) account views randomness as a property of se-
quences themselves, in line with theoretical accounts of random-
ness based on algorithmic complexity (see Beltrami, 1999 for an
introduction to the latter). From the perspective of algorithmic
complexity, sequences are random to the extent that they are
incompressible, that is, they cannot be given descriptions that are
shorter than simply listing the sequence itself. Short descriptions
can capitalize on inherent structure; randomness—as the opposite
of structure- does not admit of short descriptions because there are
no regularities to summarize. Falk and Konold (1997) draw on
such notions to suggest a psychological notion of randomness
based on the notion that the more “regular” a sequence, the easier
it is to encode either in verbal description or memory. Specifically,
people use memorability of sequences as a proxy for randomness
in their judgments of randomness. Following Falk and Konold
(1997) Figure 9 above plots AR against approximate entropy, a
sequence based measure of randomness. Falk and Konold (1997)

concluded that the second-order approximate entropy (a measure
of minimum description length, see Beltrami, 1999) provided a
reasonably good (although biased) description of their randomness
judgment data. This entropy metric quantifies the average infor-
mation contained in a bit, given knowledge of the preceding bit.
Low and high entropy then reflect either compressible or incom-
pressible sequences, respectively. Visual inspection suggests a
reasonable enough fit between the sequences and their approxi-
mate entropy in our data also (see solid gray line in Figure 9).
Furthermore, the role of exposure would seem to be to bring
judgments into greater alignment with approximate entropy, at
least at first glance (although the effects of our global sequence
length manipulation are, of course, left unexplained).

To compare further the comparison between entropy and the
experiential model, we examined the entropy of the length 4
sequences that make up the sliding window on the experiential
account. The entropy measure is, to some extent, correlated with
the predictions of the Hahn and Warren experiential model, but
there are noticeable differences. These are illustrated in Figure 12
that plots the differences between all possible sequences of length
4 in terms of their wait time based differences (blue dashed line,
representing theoretical occurrence rate for k � 4, n � 20; see also
Figure 1 a above) and their respective differences in terms of
approximate entropy (black line). In particular, entropy makes
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fewer distinctions between the sequences than does wait time/
occurrence rate. This suggests the possibility of a comparison
between entropy (and thus Falk and Konold’s algorithmic com-
plexity based account) and the experiential model.

We used the 20-bit sequences of Figure 11 and counted, across
the set of sequences, the occurrence of each of the 16 possible
subsequences of length 4 within a sliding window moving through
the global length 20 sequence. Figure 13 shows the correlations
obtained (both pre- and postexposure) between the observed oc-
currence rates and the theoretical predictions of the experiential
model alongside the corresponding correlations between observed
occurrence rates and entropy. The pre occurrence rate correla-
tion with entropy (r � .52) was lower than the postexposure
correlation (r � .67). However, in both pre- and postexposure the
correlation with Hahn and Warren (HW) was higher (pre r � .82,
post r � .92). We compared the postexposure correlations using
Lee and Preacher’s (2013) method. The HW postexperience cor-
relation was significantly greater than the entropy postexperience
correlation (z � 3.30, p � .01). The experiential model clearly
provides a better fit.

Discussion

A very limited amount of experience (exposure to 200 out-
comes) materially changed perception of random sequences. Both
the sequences generated and those judged to be most random were
significantly different from those obtained pre-exposure. Further-
more, participants’ generation and judgment tendencies typically
taken as indicative of the GF were significantly reduced postex-
posure. This is notable, first of all, because all participants did was
passively observe 200 flips of a coin; there have been some
demonstrations of learning with respect to randomness perception,
but these have all involved response specific feedback (e.g., Ed-
wards, 1961; Neuringer, 1986; Rapoport & Budescu, 1992), not
mere observation of a very limited sequence of outputs. Moreover,
a subtle change in the way the experience was delivered was
consequential. Differences in learning rates across the sequence
chunking conditions indicate that it is necessary to take the actual

nature of experience into account in understanding human random-
ness perception, as assumed by the account.

For the conditions in which people experienced chunks of length
10 or 100, both sequence generation and sequence judgment-based
metrics became more closely aligned with the normative properties
of binomial sequences, while there was no significant change for
sequences of length five. This was the case even though all
participants saw exactly the same series of coin tosses overall. This
lends support to the notion that memory capacity and, or, attention
gives rise to a sliding window moving through a global, temporally
unfolding sequence experience and that this plays a causal role in
people’s perceptions of randomness.

Why then was there no change in the 40 � 5 condition? The
fact that there was change in the 20 � 10 condition indicates
clearly that the lack of change cannot simply be based on the
fact that the test generation conditions (produce 2 � 100) fail to
match the training environment (40 � 5). This is further con-
firmed by the parallel results across generation and judgment,
because the judgment task involves sequences of yet another
length (not experienced in training in any of the conditions).
This suggests as an explanation that the lack of change in the
40 � 5 condition stems from the fact that this condition might
be close to their day-to-day experience of binomial sequences
such as coin flips. As a consequence, participants in this con-
dition effectively experience little that is “new.”

Finally, not only was GF-like behavior readily modified by partic-
ipants’ limited exposure to a random sequence, but the questionnaire
data revealed that most participants did not explicitly endorse the
gambler’s fallacy. While a large majority stated they would bet on
tails following a run of heads, the majority of those also report that
there is no difference in likelihood between heads and tails. The fact
that people further admit to finding this counterintuitive can be ex-
plained as a contrast between what they know to be a declarative fact,
and knowledge they have gained from experience. This sits well with
notion that seeming biases in randomness perception such as the GF
reflect perceived environmental statistics, and makes clear that the
inferential leap from seeming bias on implicit measures to supposedly

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subsequence

E
nt

ro
py

 / 
O

cc
ur

en
ce

 p
ro

ba
bi

lit
y

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Entropy

O
cc

ur
en

ce
 p

ro
ba

bi
lit

y
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mistaken conceptions of randomness are deeply problematic. Our data
suggest that the ARs of generated sequences do not allow us to
distinguish between people who do and do not explicitly believe in the
GF. This, in turn, suggests that claims of human “irrationality” in this
context may have been considerably overstated. It also suggests that
very specific explanations will be required to understand the minority
who do explicitly endorse the fallacy (a group likely to include
problem gamblers, see Källmén, Andersson, & Andren, 2008; Ladou-
ceur et al., 2001; Toneatto, Blitz-Miller, Calderwood, Dragonetti, &
Tsanos, 1997; Toneatto & Ladouceur, 2003).

Taken together, our results also pose problems for other accounts of
the GF in the literature. Possibly the most well-known of these is
Kahneman and Tversky’s (1972) explanation in terms of the so-called
“representativeness heuristic.” It assumes that people fail to appreciate
how much the properties of short sequences differ from the statistical
properties of very long sequences of outputs from a random source.

As a result, they wrongly attribute long-run properties (as captured
by the Law of Large Numbers), such as likely equal numbers of heads
and tails, to short sequences and perceive as “random” those se-
quences that seem most “representative.” Though the representative-
ness heuristic has been criticized as vague in other judgment contexts
(see, e.g., Gigerenzer, 2009) it has been formalized in the context of
randomness perception (e.g., Rabin, 2002; Rapoport & Budescu,
1997). Somewhat ironically, Hahn and Warren’s (2009) experiential
account and the present data suggest that the differences between
properties of short sequences and the long run are indeed key to

understanding human perceptions of randomness, but not because
people’s beliefs about shorter sequences are mistaken, but rather
because the properties of shorter sequences determine people’s actual
experience. It is compatible with this latter perspective that partici-
pants’ sequence judgment and generation was modified by experi-
ence, and modified only by presentation in the form of longer global
sequences. Under the representativeness heuristic one would expect
the long global sequences to be most similar to the participants’
expectations of random sequences. However it was experience with
the long global sequences that produced the biggest change in behav-
ior.

Relatedly, the present data also rule out accounts of overalternation
based on the idea that these are generated by short-term limitations
constraining sequence generation (e.g., Baddeley, 1966; Kareev,
1992).5 Precisely because the AR of short sequences lies above the
long run average, overalternations would be expected from an
unbiased agent who was limited by STM to effectively generate a
long sequence of “random outputs” by stringing together shorter
sequences that can be held in working memory (for one way of
modeling such a process see Rapoport & Budescu, 1997). The fact
that participants in the 2 � 100 experience condition subsequently
dropped their AR to the long run average of .5 suggests that it is

5 The same is true of other performance limitation based accounts such
as, for example, Treisman and Faulkner (1987).
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Figure 13. Each data point is 1 of 16 possible subsequences of length 4. The rate with which participants
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not a performance limitation that is responsible for overalterna-
tions in generation tasks. And it is only the experiential account
that explains the fact that exactly the same thing happens in those
participants’ judgments of random sequences.

An alternative approach to understanding human randomness
perception stems from theoretical accounts of randomness based
on compression and algorithmic complexity (see, e.g., Beltrami,
1999 for an introduction). These seek to characterize randomness
not in terms of the sequence generating source, but in terms of the
resultant sequences themselves. Specifically, sequences are ran-
dom to the extent that they are incompressible, that is, they cannot
be given shorter descriptions than enumerating the sequence itself
by exploiting sequence structure. Falk and Konold (1997) suggest
that people judge a sequence to be less random the more regular
and hence easier it is to encode either in verbal description or
memory. In other words, memorability of sequences provides a
proxy for randomness. This means that long streaks or runs, like
other regularities, are viewed as indicative of nonrandomness,
which in turn provides an (indirect) explanation of overalterna-
tions. While our participants’ initial judgment data matches Falk
and Konold’s (1997) data for those same sequences, the postex-
perience shift is left entirely unexplained.

Finally, the present data also caution against the view that
overalternations arise because people erroneously believe random
processes to be “self-correcting” so as to sustain (accurately per-
ceived) global properties of long-run random sequences, such as
equal numbers of heads and tails. One source for such a miscon-
ception would be a failure to distinguish between sequences gen-
erated with and without replacement (e.g., Ayton et al., 1989;
Bar-Hillel & Wagenaar, 1991; Rabin, 2002). In their explicit
judgments, the majority of our participants were aware of the fact
that heads or tails were equally likely on the next trial. Again,
overalternations by those participants, at least, require some other
explanation.

In summary, the present data seem difficult to explain on other
accounts of the GF and overalternations, though some of them (in
particular an erroneous belief in self-correction in random pro-
cesses) may well play a role in the minority who did endorse the
GF, in the same way that they may play a role in understanding the
behavior of problem gamblers (e.g., Ladouceur et al., 2001). Even
in this case, however, we maintain that a full appreciation of
randomness perception will require further study of the links
between actual experience and conceptual knowledge of the ab-
stract properties of random processes.

We contend also that such links (and the possible tensions
between implicit and explicit measures that it can give rise to) will
be important for other human cognitive biases. Rather than inter-
pret such behaviors as fallacies, we suggest that a deeper insight
into human cognition can be obtained through the assumption that
cognition is rational under constraints, and that people are seeking
to make sensible inferences from their experience (Hahn, 2014;
Howes, Lewis, & Vera, 2009; Howes, Warren, Farmer, El-Deredy,
& Lewis, 2016; Lewis, Howes, & Singh, 2014). The present
example of (mis)perceiving randomness in the form of the GF
suggests perhaps that there is limited insight to be gained from
cold, hard evaluation of human rationality (or lack thereof) against
unattainable performance goals. Instead the project of trying to
understand human behavior will likely benefit greatly from trying

to establish causal links between cognitive constraints and behav-
ior.

Conclusion

To address the question posed in the title: explicit belief in the
GF may be far less widespread than typically assumed. Simple
behavioral measures such as ARs are not sufficient to establish
bias, and what bias they show seems to be based on people’s
actual, limited, experience of random outputs. Rather than inter-
preting behaviors like the GF as biased or irrational, it may be
more productive to explore what they reveal about the constraints
that limit otherwise adaptive processes.
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