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Abstract: Mitochondria-targeting drugs and diagnostics are used in the monitoring and treatment of
mitochondrial pathologies. In this respect, a great number of functional compounds have been made
mitotropic by covalently attaching the active moiety onto a triphenylphosphonium (TPP) cation.
Among these compounds, a number of molecular detectors for reactive oxygen species (ROS) are
based on fluorescent and chemiluminescent probes. In this regard, luminol (probably the most widely
known chemiluminescent molecule) has been employed for a number of biological applications,
including ROS detection. Its oxidation under specific conditions triggers a cascade of reactions,
ultimately leading to the excited 3-aminophthalate (3AP *), which emits light upon deactivation.
Hence, the photophysical interaction between the light-emitting species 3AP * and TPP cations needs
to be evaluated, as it can add valuable information on the design of novel emission-based mitotropic
systems. We herein investigate the quenching effect of ethyltriphenylphosphonium cation onto
substituted 3-aminophthalates. These were prepared in situ upon hydrolysis of the corresponding
anhydrides, which were synthesized from 3-aminophthalimides. Steady-state fluorescence and time-
resolved experiments were employed for the evaluation of a possible electron transfer quenching
by phosphonium ions. Our experimental results confirmed such quenching, suggesting it is mainly
dynamic in nature. A minor contribution of static quenching that was also detected is attributed
to complex formation in the ground state. Accordingly, the chemiluminescence of luminol was
indeed strongly reduced in the presence of phosphonium ions. Our results have to be taken into
account during the design of new chemiluminescent mitotropic drugs or diagnostic agents of the
luminol family.

Keywords: luminols; chemiluminescence; 3-aminophthalates; fluorescence; electron transfer

1. Introduction

Mitochondria are acknowledged as the subcellular organelles directly affecting both
life, as cell’s energy powerhouses, and death, as apoptosis regulators [1–3]. Up to 90% of
cells’ energy unit ATP [4] and cytotoxic ROS [5] are generated in mitochondria. As a result,
mitochondrial malfunction, causing ROS overproduction, is connected to pathogenesis,
such as neurodegenerative diseases, cancer, and diabetes [6–8].

Rendering drugs and diagnostics mitotropic (or mitochondriotropic), that is, achiev-
ing organelle-specific accumulation, is a way for monitoring and treating mitochondrial
pathologies. The large potential difference between the intermembrane space and the
mitochondrial matrix (negative in the matrix) makes delocalized lipophilic cations ideal
mitotropic carriers [9]. Among these, triphenylphosphonium cations (TPPCs) stand out,
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both due to their exceptional mitotropic activity and ease of synthesis. In this respect, a
great number of active compounds, either drugs or diagnostics, have been made mitotropic
by covalently attaching the active compound onto a TPPC moiety [10–13].

The importance of ROS imbalance in oxidative stress-caused pathology has triggered
research in sensors for intracellular ROS levels detection. As a result, a number of ROS
molecular detectors based on fluorescent and chemiluminescent (CL) probes have been
prepared and evaluated [14–17]. Although both are based on light emission, CL probes
exhibit advantages, such as a high signal-to-noise ratio and no need for external irradia-
tion [18]. In this regard, luminol, probably the best known CL molecule [19], has also been
widely studied in vivo, both as ROS detector, and excitation light source, due to its strong
CL, stability, and ease of synthesis [20–23]. Its reaction with ROS (especially superoxide
anion) in the presence of a catalyst triggers a chain reaction, ultimately leading to excited
3-aminophthalate (3AP *, Figure 1), which emits light upon deactivation.
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In the framework of our research towards mitotropic, highly efficient, luminol-based,
CL ROS detectors, consisting of covalently attached TPPCs onto luminol via a linker [24],
the photophysical interaction between the light-emitting species 3AP * and TPPC needs
to be evaluated as it can add valuable information on the design of novel emission-based
mitotropic systems. To the best of our knowledge, the photophysical evaluation of TPPCs
as aminophthalate quenchers is presented here for the first time.

2. Results and Discussion

We have chosen to investigate the quenching effect of the ethyltriphenylphosphonium
(ETPP) cation onto phthalates 1a–c and 3AP (Figure 2). ETPP is a representative mitotropic,
delocalized, lipophilic cation, whereas tetramethylphosphonium (TMP) is used here as
a reference, non-delocalized cation. Phthalate structures 1a–c were chosen in order to
evaluate the results pertaining to 3AP core substitution, which have been shown to greatly
affect the corresponding luminol CL efficiency [25–27]. The preparation of phthalates 1a–c
was accomplished as follows: 3-aminophthalimide 2 was brominated using excess bromine
in acetic acid towards phthalimide 3 (Figure 3). This was then functionalized via a Suzuki–
Miyaura coupling with trimethylboroxine to give the respective dimethyl phthalimide 4. N-
Alkylation of 2 and 4 with 1-iodohexane afforded the N-hexyl derivatives 5a,b. Hydrolysis
of the phthalimides 4 and 5a,b turned out to be challenging, requiring prolonged reaction
times under strongly alkaline conditions. Interestingly, acidic work-up of the crude mixture
resulted in the formation of the respective anhydrides 6a–c, instead of the corresponding
phthalic acids, indicating an in situ intramolecular condensation. These anhydrides were
found to hydrolyze in basic aqueous media towards the corresponding phthalates 1a–c, so
they were used as their in situ precursors (see Figure S1 in the Supplementary Materials).
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Figure 3. Synthesis of phthalic acid anhydride derivatives 6a–c. Reagents and conditions: (i) Br2,
HOAc, NaOAc, r.t., 18 h, (ii) trimethylboroxine, Pd(PPh3)4, K2CO3, H2O, 1,4-dioxane 105oC, 18 h,
(iii) 1-iodohexane, NMP, 110 ◦C, 2d, (iv) 15N aq. KOH, EtOH, reflux, 3 d.

Steady-state fluorescence and time-resolved experiments were performed for com-
pounds 1a–c and 3AP in phosphate-buffered saline (PBS) at pH 8 to evaluate the possibility
of an electron transfer quenching process from the phthalates to the phosphonium cation,
using ETPP as the source of phosphonium. The obtained results are shown in Figure 4,
Figure S2 in the Supplementary Material, and Table 1. The TMP salt was used as a reference
to analyze the effect of the triphenyl-substituent in the quenching process (see Table 1 and
Figure S3 in the Supplementary Materials).

Table 1. Quenching rate constants obtained by: a steady state fluorescence (kq), b time resolved
fluorescence (k′q).

pH 8 ETPP pH 8 TMP

Phthalate ΦF pH 10 τo (ns) kq (M−1s−1) a k′q (M−1s−1) b kq (M−1s−1) a k′q (M−1s−1) b

3AP 0.30 6.1 3.7 × 109 2.5 × 109 2.7 × 108 9.0 × 107

1a 0.34 5.7 5.8 × 109 3.4 × 109 - -
1b 0.07 6.2 6.0 × 109 5.4 × 109 - -
1c 0.08 2.5 9.0 × 109 8.4 × 109 - -
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Figure 4. Emission spectra (left) and fluorescence decays (right) for compounds 1a–c and 3AP
obtained in PBS (0.1 mM) in the presence of increasing amounts of ETPP (0–42.1 mM; colour codes:
0 mM black line, 4.6 mM red line, 11.4 mM blue line, 22.2 mM pink line, 32.4 mM green line, 42.1 mM
navy blue line).
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The marked weakening of phthalate fluorescence upon 3-amino alkylation (1b,c vs.
3AP and 1a) is an interesting observation. Regarding phosphonium-induced quenching, the
values shown in the table indicate that the quenching is mainly dynamic. The contribution
of static quenching (difference between the kq and k′q series) can, in principle, be attributed
to complex formation in the ground state. This effect is less pronounced when there are
methyl groups on the aromatic ring and/or an alkyl chain on the amino group, probably
due to steric hindrance. The possibility of an apparent static quenching associated with
a filter effect can be safely ruled out based on the lack of absorbance variation at the
excitation wavelength (300 nm) upon addition of the phosphonium salt (see Figure S1 in
the Supplementary Materials). The fact that electron-donating alkyl substituents, both
on the aromatic ring and the amino group, increase the dynamic quenching rate constant
is consistent with an electron transfer mechanism. The TMP reference phosphonium
salt also quenched the fluorescence of 3AP, but the rate constant was ca. one order of
magnitude lower.

The generation of short-lived intermediates from 3AP in the presence of ETPP was in-
vestigated by laser flash photolysis (LFP). The transient absorption spectra were monitored
upon laser excitation (λ = 355 nm) in deaerated PBS at pH 8. They revealed the formation
of a broad shapeless band with a maximum in the 700 nm region (Figure 5A). This species
was ascribed to the solvated electron, based on its disappearance upon bubbling with N2O
(Figure 5A inset). This observation is proof for photoionization, which was found to be
monophotonic by plotting the signal intensity immediately after the laser pulse versus the
pulse energy (see Figure S4 in the Supplementary Materials). As expected, the solvated
electron was quenched by oxygen with a kq = 5.8 × 109 M−1s−1 (see Figure S5 in the
Supplementary Materials).
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Figure 5. (A) Transient absorption spectra of a N2-bubbled PBS solution of 3AP at pH 8 at different
times after the 355 nm laser pulse. (B) Stern–Volmer plot for quenching of the solvated electron by
ETPP (from 0 to 0.8 mM) under N2.

To evaluate the reactivity of the solvated electron with ETPP, the quenching rate
constant was determined. Hence, the decay was monitored at 700 nm upon the addition of
increasing amounts of ETPP (Figure 5B inset). The corresponding rate constant value was
obtained from the slope of the linear plot by representing reciprocal lifetime versus ETPP
concentrations (Figure 5B). The quenching rate constant obtained for the reaction of the
solvated electron with ETPP was kq = 2.2 × 108 M−1s−1.

The above results demonstrate that photoionization of 3AP produces solvated elec-
trons which react readily with ETPP, hence leading to a reduction of the latter. In order to
evaluate the feasibility of a direct electron transfer process in the excited state, we made
an estimation of the ∆G associated to the process by means of the Rehm–Weller equation
(Equation (3)).

13AP *→ 3AP+ + 1e− (1)
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ETPP+ + 1e− → ETPP (2)

∆Get(kcal mol−1) = −23.06 × [Ered(ETPP+/ETPP) − Ered(3AP+/3AP)] − ES(3AP) (3)

The singlet excited state energy (ES) was determined ca. 72.4 kcal mol−1 from the
intersection between the normalized emission and excitation spectra. (see Figure S6 in the
Supplementary Materials).

The reduction potentials were experimentally determined by cyclic voltammetry
(see Figure S7 in Supplementary Materials), namely: Ered(ETPP+/ETPP) = −0.86 V and
Ered(3AP+/3AP)] = 0.68 V.

Using the obtained values for ES and Ered, the resulting ∆G for the electron transfer
process from the singlet excited state was −37.0 kcal mol−1 indicating that the process is
indeed thermodynamically favorable.

To assess the impact of phosphonium quenching on the CL of the commercially avail-
able luminol, this was dissolved in aqueous solutions at pH 10, giving a final concentration
of 7.5 µM. Two milliliters were placed in a quartz cuvette, and the CL was manually
triggered by the subsequent addition of H2O2 and K3[Fe(CN)6] while vigorously stirring
(Figure 6; black trace). Monitoring of the process was performed using a fluorometer
running in the time-based mode (own lamp switched off, 425 nm as monitoring wave-
length). Parallel experiments were carried out where the CL of luminol was measured
in the presence of increasing amounts of ETPP (0–7.8 mM, concentration in the cuvette,
colored traces). As a matter of fact, a consistent reduction of luminol´s CL in the presence
of the phosphonium cation was observed. This is in agreement with the results discussed
above on fluorescence quenching of the phthalate emitters by ETPP.
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Figure 6. Reduction of luminol’s chemiluminescence (7.5 µM) in the presence of increasing amounts
of ETPP (0–7.8 mM) in aqueous solutions at pH 10.

In summary, phosphonium cations interact with the singlet excited state of phthalates,
leading to a partial quenching of their fluorescence. The mechanism is attributed to
an excited state electron transfer based on the substituent effects and on the favorable
thermodynamics of the process, according to the Rehm-Weller equation. The observed
quenching has an impact on the chemiluminescence of the precursor luminols, reducing
their efficiency.

The question of whether this intermolecular effect at high phosphonium concentra-
tions can be extrapolated to a possible intramolecular effect in diluted phosphonium-
functionalized luminols remains to be investigated. It can be envisaged that, when linked
together with the cation, luminol might be more efficiently quenched. However, obvious
ways to circumvent (or at least mitigate) this possible drawback would be to play with the
nature of the phosphonium cation (e.g., alkyl-substituted instead of aryl) or with the length
of the linking bridge between the luminol core and the phosphonium moiety (the longer,
the better).

In addition, these results emphasize the importance of finding improved luminol
derivatives with higher chemiluminescence quantum yields so that the remaining emission
after a possible partial quenching is still sufficient for the intended purpose.
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3. Materials and Methods
3.1. General Remarks

All chemicals were obtained from commercial sources and were used without further
purification. Solvents were dried according to published procedures [28]. The course
of the reactions was monitored with thin-layer chromatography (TLC), using aluminum
sheets (0.2 mm) coated with silica gel 60 with fluorescence indicator (silica gel 60 F254).
Purification of the products was carried out by flash column chromatography, using silica
gel 60 (230−400 mesh). Nuclear magnetic resonance (NMR) spectra were obtained with
a Bruker Avance 400 MHz (Bruker BioSpin MRI GmbH, Ettlingen, Germany) or a Varian
Mercury 200 MHz spectrometer (Varian Inc., Yarnton, UK). Chemical shifts are reported
in ppm. High-resolution mass spectral (HRMS) spectra were recorded in a QTOF maXis
impact (Bruker) spectrometer under electron spray ionization conditions (the 1H and 13C
NMR data and spectra, as well as HRMS data, are reported in Supplementary Materials,
Figure S8).

3.2. Photophysical Studies

Steady-state and time-resolved fluorescence measurements were performed with a
FLS1000 spectrofluorometer (Edinburgh Instruments, Livingston, UK), equipped with an
N-DMM double-emission monochromator, an N-G11 PMT-980 detector, and equipped
with a pulsed LED (λexc 300 nm) as an excitation source. The kinetic traces were fitted
by one monoexponential decay function, using a deconvolution procedure to separate
them from the lamp pulse profile. All experiments were performed in a quartz cuvette
of 1 cm of optical path. These experiments were performed in a PBS solution at pH 8.
The phthalate solutions were prepared with a concentration of 10−4 M, while a stock
solution of ETPP (0.4 M) was prepared, so it was only necessary to add microliter volumes
(250 µL) to the sample cell to obtain the appropriate concentration of the quencher. The rate
constants (kq and k′q) for the reaction were obtained from the Stern–Volmer plots following
Equations (4) and (5), respectively:

I0/I = 1 + kq × τ0 × [ETPP] (4)

τ0/τ = 1 + k′q × τ0 × [ETPP] (5)

where I0 and I are the intensities at the emission maxima in the absence of, and after addition
of, a quencher concentration [ETPP], τ0 is the fluorescence lifetime of the phthalate in the
absence of ETPP and τ is the lifetime after addition of a quencher concentration [ETPP].

Monitoring the CL of luminol at pH 10, in the absence and presence of ETPP was
performed using the same spectrofluorometer with its own lamp switched off. The set
was run in the time-based mode with the detection dialed at 425 nm. Each experiment
was performed at least 10 times. For triggering the chemiluminescence, luminols were
dissolved in aqueous basic solutions giving a final concentration of 7.5 µM. Then, 2 mL
of luminol or luminol plus ETPP were introduced in a quartz cuvette and the CL was
manually triggered by the addition of 2.5 µL of H2O2 (50% w/w) and 8 µL of K3[Fe(CN)6]
75 mM while vigorously stirring.

3.3. Laser Flash Photolysis Studies

For the detection of transient species, time-resolved kinetic analyses were performed
using a laser flash photolysis (LFP) system equipped with a Nd: YAG SL404G-10 Spectron
Laser (Lotis Tii, Minsk, Belarus) at the excitation wavelength of 355 nm. The single pulses
were of ca. 10 ns duration, and the energy was lower than 30 mJ per pulse. The detecting
light source was a pulsed Lo255 Oriel Xenon lamp. In addition to the pulsed laser, the
LFP included the pulsed Lo255 Oriel Xe lamp (Newport, Irvine, CA, USA), a 77,200 Oriel
monochromator, a photomultiplier (Oriel, model 70705PMT) system, and a TDS-640A
Tektronix oscilloscope (Betashire, UK). A customized Luzchem Research LFP-111 system
was employed to collect and transfer the output signal from the oscilloscope to a personal
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computer to process the data. A quartz cell of 1 cm optical path length was employed for
all kinetic measurements. These experiments were performed in a PBS solution at pH 8,
under N2 air (0.0019 M O2 concentration in solution) and oxygen (0.0091 M O2 effective
concentration in solution). The phthalate solutions were prepared with a concentration of
0.0016 M (absorbance at λexc = 355 nm was 0.25), while a stock solution of ETPP (0.04 M)
was prepared.

3.4. Electrochemical Studies

Cyclic voltammetry measurements were performed with a VersaSTAT 3 potentiostat
(Princeton Applied Research, Algete, Madrid, Spain) and using a three-electrode standard
configuration with a carbon sheet as working electrode, a platinum wire as a counter
electrode, and Ag/AgCl in saturated KCl as the reference electrode. Measurements were
carried out on DMF or PBS at pH 8 solutions with 0.1 M Bu4NI or LiClO4 as the electrolyte
of ETPP or 3AP (1 mM) respectively at a scan rate of 0.05 V·s−1. All the solutions were
previously purged with N2 for at least 15 min before the measurements.

3.5. Synthesis Procedures

4-Amino-2-(sec-butyl)isoindoline-1,3-dione 2 was synthesized as previously pub-
lished [24]. All derivatives were characterized by 1H and 13C-NMR and ESI-HRMS.

3.5.1. 4-Amino-5,7-dibromo-2-(sec-butyl)isoindoline-1,3-dione (3)

A round-bottom flask was charged with aminophthalimide 2 (1 g, 4.6 mmol) and
sodium acetate (762 mg, 9.3 mmol) in acetic acid (11 mL), and the resulting solution was
stirred at r.t. for 30 min. Then, a solution of bromine (0.5 mL, 9.4 mmol) in acetic acid
(4 mL) was added dropwise, and the reaction mixture was stirred at r.t. for 18 h. After that,
the mixture was poured into ice-cold water (100 mL), forming a yellow precipitate. This
was collected by filtration, washed with water and dried under reduced pressure, yielding
compound 3 as a yellow powder (1.6 g, 92%). 1H NMR (200 MHz, CDCl3) δ 7.79 (s, 1H,
ArH), 5.77 (bs, 2H, NH2), 4.34–4.05 (m, 1H, NCH), 2.19–1.89 (m, 1H, CHCH2CH3), 1.89–1.63
(m, 2H, CHCH2CH3), 1.44 (d, J = 6.9 Hz, 4H, CH3CH), 0.87 (t, J = 7.4 Hz, 4H, CH2CH3).
13C NMR (50 MHz, CDCl3) δ 168.38, 165.97, 142.23, 141.02, 128.38, 115.62, 113.53, 103.86,
49.17, 26.71, 18.34, 11.32. Molecular ion could not be detected on ESI-MS or ESI-HRMS.

3.5.2. 4-Amino-5,7-dimethyl-2-(sec-butyl)isoindoline-1,3-dione (4)

A round-bottom flask under an inert atmosphere was charged with brominated phthal-
imide 3 (1.5 g, 4 mmol), trimethylboroxine (2.5 M in THF, 2.5 mL, 8.8 mmol), and potassium
carbonate (3.3 g, 24.2 mmol) in a mixture of water (22 mL) and 1,4-dioxane (22 mL). The solution
was purged with argon for approximately 30 min. Tetrakis(triphenylphosphine)palladium(0)
(92 mg, 0.08 mmol) was then added and the mixture was purged once again for 15 min.
Subsequently, the reaction mixture was stirred under an inert atmosphere at 105 ◦C for
18 h. After cooling to ambient temperature, the solvent was partially evaporated and water
(80 mL) was added to the flask. The aqueous phase was extracted with EtOAc (150 mL).
The organic phase was then washed with 1N HCl (50 mL) and brine (50 mL), dried over
anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was
subjected to column chromatography (P.E./EtOAc 9:1 to 7:3) and, after evaporation of the
solvent, 4 was acquired as a yellow solid (552 mg, 56%). 1H NMR (200 MHz, CDCl3) δ 6.98
(s, 1H, ArH), 5.17 (bs, 2H, NH2), 4.13 (q, J = 6.7 Hz, 1H, NCH), 2.44 (s, 3H, CH3), 2.15 (s, 3H,
CH3), 1.99 (m, 1H, NCHCH2), 1.70 (m, 1H, NCHCH2), 1.39 (d, J = 6.9 Hz, 3H, CH3CH), 0.82
(t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (50 MHz, CDCl3) δ 170.86, 169.46, 142.26, 138.04,
129.54, 126.37, 111.02, 48.32, 29.72, 26.96, 18.57, 16.80, 16.42, 11.38. ESI-HRMS m/z for
C14H19N2O2 [M+H]+ calcd. 247.1447, found 247.1429.
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3.5.3. General Procedure for the N-alkylation of 4-aminophthalimides (5a–5b)

Aminophthalimide 2 or 4 (2.72 mmol) was dissolved in N-methyl-pyrrolidone (0.6 mL).
1-Iodohexane (0.5 mL, 3.3 mmol) was added and the reaction mixture was stirred at 110 ◦C
for two days. After cooling down to ambient temperature, the mixture was quenched
with water and was extracted with EtOAc. The organic phase was separated, dried over
anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was subjected to
column chromatography (P.E./EtOAc 9:1) and the product (eluted first) was acquired after
evaporation of the solvent.

2-(sec-Butyl)-4-(hexylamino)isoindoline-1,3-dione (5a): From aminophthalimide 2
(594 mg). Yellow oil (659 mg, 80%). 1H NMR (200 MHz, CDCl3) δ 7.60 (t, J = 7.3 Hz, 1H,
H-6), 7.15 (d, J = 7.2 Hz, 1H, H-5), 6.94 (d, J = 8.8 Hz, 2H, H-7), 6.12 (bs, 1H, NH), 3.29 (t,
J = 5.7 Hz, 2H, NHCH2), 1.81–1.57 (m, 2H, NHCH2CH2), 1.55–1.17 (m, 8H, CH2), 0.90 (t,
J = 6.1 Hz, 3H, CH3). 13C NMR (50, CDCl3) δ 171.22, 168.45, 146.53, 135.39, 132.87, 115.91,
110.47, 110.36, 48.51, 42.68, 31.57, 29.31, 26.98, 26.71, 22.60, 18.54, 14.05, 11.34. ESI-HRMS
m/z for C18 H27N2O2 [M+H]+ calcd. 303.2073, found 303.2078.

2-(sec-Butyl)-4-(hexylamino-5,7-dimehtylisoindoline-1,3-dione (5b): From aminoph-
thalimide 4 (670 mg). Yellow oil (450 mg, 50%). 1H NMR (200 MHz, CDCl3) δ 7.03 (s, 1H,
ArH), 6.09 (bs, 1H, NH), 4.28–4.03 (m, 1H, NCH), 3.29 (t, J = 6.7 Hz, 2H, NHCH2), 2.48
(s, 3H, CH3), 2.36 (s, 3H, CH3), 2.13–1.90 (m, 1H, CHCH2), 1.86–1.68 (m, 1H, CHCH2),
1.68–1.49 (m, 2H, NHCH2CH2), 1.42 (d, J = 6.9 Hz, 3H, CH3CH), 13.5–1.21 (m, 6H, -CH2-),
0.96–0.77 (m, 6H, hexyl-CH3 and -CH2CH3). 13C NMR (50 MHz, CDCl3) δ 171.21, 169.01,
146.34, 140.25, 133.38, 127.34, 125.66, 114.93, 48.47, 47.14, 31.66, 31.09, 27.03, 26.59, 22.68,
20.59, 18.61, 16.55, 14.96, 12.04. ESI-HRMS m/z for C20 H31N2O2 [M+H]+ calcd. 330.2307,
found 303.2302.

3.5.4. General Procedure for the Synthesis of 3-Aminophthalic Anhydrides (6a–6c)

To a solution of aminophthalimide (0.3 mmol) in ethanol (3mL) was added an aqueous
solution of potassium hydroxide (15 N, 3 mL) and the resulting solution was heated at
reflux for 3 days. After cooling to ambient temperature, ethanol was evaporated, water
(10 mL) was added to the flask and the solution was washed with DCM (3 × 15 mL).
The aqueous phase was collected and acidified with an aqueous solution of 1N HCl until
pH 2. Upon acidification, the aqueous solution slowly turned from colourless to fluorescent
green, indicative of the condensation of the phthalic acid to the corresponding anhydride.
The solution was then extracted with EtOAc (3 × 20 mL). The combined organic phase
was dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was
subjected to column chromatography (P.E./EtOAc 9.5:0.5), the solvent was evaporated and
the residue was washed with hexane to yield the desired anhydride.

4-Amino-5,7-dimethylisobenzofuran-1,3-dione (6a): From aminophthalimide 4 (80 mg).
Yellow solid (47 mg, 82%). 1H NMR (200 MHz, DMSO-d6) δ 7.34 (s, 1H, ArH), 6.38 (bs, 2H,
NH2), 2.39 (s, 3H, CH3), 2.21 (s, 3H, CH3). 13C NMR (50 MHz, DMSO-d6) δ 164.41, 163.52,
145.21, 139.79, 131.94, 126.37, 124.46, 107.69, 17.30, 15.91. ESI-HRMS m/z for C10H8NO3
[M-H]− calcd. 190.0509, found 190.0487.

4-(Hexylamino)isobenzofuran-1,3-dione (6b): From aminophthalimide 5a (91 mg).
Yellow solid (13 mg, 17%). 1H NMR (400 MHz, CDCl3) δ 7.59 (t, J = 7.5 Hz, 1H, H-6), 7.15
(d, J = 7.1 Hz, 1H, H-7), 6.94 (d, J = 8.5 Hz, 1H, H-5), 6.12 (bs, 1H, NH), 3.29 (t, J = 7.1 Hz, 2H,
NHCH2), 1.69 (p, J = 7.3 Hz, 2H, NHCH2CH2), 1.47–1.19 (m, 8H, -CH2-), 0.90 (t, J = 7.0 Hz,
3H, CH3). 13C NMR (101 MHz, CDCl3) δ 165.26, 163.59, 148.06, 137.87, 132.06, 117.06,
112.77, 109.82, 42.93, 31.59, 29.16, 26.71, 22.68, 14.13. ESI-HRMS m/z for C15H20NO4

−

[M+MeO]− 278.1398, found 278.1368.
4-(Hexylamino)-5,7-dimethylisobenzofuran-1,3-dione (6c): From aminophthalimide

5b (99 mg). Yellow solid (61 mg, 74%). 1H NMR (200 MHz, CDCl3) δ 7.19 (s, 1H, ArH),
5.57 (bs, 1H, NH), 3.46 (t, J = 7.0 Hz, 2H, NHCH2), 2.49 (s, 3H, CH3), 2.40 (s, 3H, CH3),
1.69–1.50 (m, 2H, NHCH2CH2), 1.48–1.09 (m, 8H -CH2-), 0.88 (t, J = 6.2 Hz, 3H, CH2CH3).
13C NMR (50 MHz, CDCl3) δ 165.10, 163.02, 147.49, 142.05, 133.92, 129.25, 126.20, 112.65,
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47.06, 31.60, 31.10, 26.47, 22.66, 20.01, 17.09, 12.85. ESI-HRMS m/z for C16H20NO3 [M-H]-

calcd 274.1448, found 274.1440.

4. Conclusions

A series of 3-aminophthalates (1a–c) have been prepared in situ via alkaline hydrolysis
of the corresponding 3-aminophthalic acid anhydrides. The latter are the hydrolysis prod-
ucts of the analogous substituted 3-aminophthalimides, which derive from N-alkylation
and/or Suzuki methylation of the (brominated) parent phthalimide. 3-Aminophthalates’
fluorescence is strongly quenched by ethyltriphenylphosphonium cation, with dynamic
rate constants in the order of 109 M−1s−1, close to the diffusion limit. The substituent
effects on the quenching efficiency are consistent with a mechanism involving electron
transfer from the electron-rich aminophthalic unit to the electron-deficient phosphonium
moiety. Accordingly, the chemiluminescence of luminol is indeed significantly reduced
in the presence of phosphonium ions. The possible occurrence of this effect has to be
taken into consideration when designing mitotropic drugs or diagnostic agents based on
fluorescent or chemiluminescent emitters.

Supplementary Materials: The following are available online, Figure S1: Absorption spectra for
compound 1a–c and 3AP upon increasing amounts of ETPP; Figure S2: Emission of 3AP and 1a–c at
pH 10; Figure S3: Emission and fluorescence decays of 3AP upon increasing amounts of TMP; Figure
S4: 3AP signal intensity versus laser energy; Figure S5: 3AP decays monitored at 700 nm under N2,
air, and O2; Figure S6: Absorption and emission spectra of 3AP; Figure S7: Cyclic voltammograms of
3AP and ETPP; Figure S8: 1H, 13C NMR spectra.
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