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Abstract

High rates of error-prone replication result in the rapid accumulation of genetic diversity of
RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fit-
ness and that modest variations in replicase fidelity may be associated with viral attenua-
tion. Arthropod-borne viruses (arboviruses) are unique in their requirement for host cycling
and may necessitate substantial genetic and phenotypic plasticity. In order to more thor-
oughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we
selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus) utilizing selection
in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent
RNA polymerase associated with increased fidelity, V793l and G806R, and a single muta-
tion in the WNV methyltransferase, T248l, associated with decreased fidelity. Both deep-
sequencing and in vitro biochemical assays confirmed strain-specific differences in both
fidelity and mutational bias. WNYV fidelity variants demonstrated host-specific alterations to
replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell cul-
ture. Experimental infections of colonized and field populations of Cx. quinquefaciatus dem-
onstrated that WNV fidelity alterations are associated with a significantly impaired capacity
to establish viable infections in mosquitoes. Taken together, these studies (i) demonstrate
the importance of allosteric interactions in regulating mutation rates, (ii) establish that muta-
tional spectra can be both sequence and strain-dependent, and (iii) display the profound
phenotypic consequences associated with altered replication complex function of
flaviviruses.

Author Summary

West Nile virus (WNV) is the most geographically widespread arthropod-borne virus
(arbovirus) in the world. Like most arboviruses, WNV is a RNA virus which is highly
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mutable and exists in nature as genetically diverse mutant swarms. Although many recent
studies have investigated the relationship between virus mutation rate and viral fitness,
this had not previously been determined for WNV or other flaviviruses. We identified
WNYV mutations associated with variation in mutation rate using cell culture passage in
the presence of a mutagen and engineered these mutations into an infectious WNV clone
in order to investigate the causes and consequences of altered fidelity. Our results demon-
strate that interactions among proteins which comprise the WNV replication complex can
significantly alter both the extent and types of mutations that occur. In addition, we show
that both increasing and decreasing WNV fidelity has host-specific effects on replication
in cell culture and is associated with nearly complete ablation of WNV infection in mos-
quito vectors. These results have significant implications for our understanding of arbovi-
rus evolution, replication complex function and arboviral fitness in mosquitoes, and
identify important targets to study the determinants and mechanisms of vector compe-
tence and arbovirus fidelity.

Introduction

Lack of proofreading mechanisms and high replication rates among most RNA viruses make
them inherently error-prone, yet there is also variation in mutation rates among both species
and strains of RNA viruses, making fidelity itself a trait with a genetic basis subject to some
fine-tuning by selection [1-3]. The generally accepted belief is that genetic diversity provides a
benefit for RNA viruses for which success depends on the capacity to effectively proliferate in a
range of internal environments and evade host immunity [4-6]. Such plasticity could be partic-
ularly beneficial for arthropod-borne viruses (arboviruses), which require successful infection,
replication and transmission by taxonomically divergent vertebrate and invertebrate hosts.

On the other hand, some would argue that mutation rate is simply coupled to replication
rate and that the low fidelity of RNA viruses is not a requirement, but rather a consequence of
selection for maximum replicative fitness [7]. There is indeed a clear relationship between rep-
lication fidelity and replication rate [8], but there is also evidence that the two can be uncou-
pled. For example, the high-fidelity variant of poliovirus (PV), G64S, was shown to have
replicative kinetics equivalent to wildtype virus in vitro [9-11]. Pushing mutation rate beyond
maximum replicative fitness creates a scenario in which genetic information is lost and selec-
tion can no longer outpace the accumulation of deleterious mutations, termed lethal mutagene-
sis [12,13]. Selection for mutational robustness could buffer somewhat against the negative
impacts of increased mutational load, yet there is clearly a limit to this, as demonstrated by the
effectiveness of ribavirin and other mutagenic antivirals against a range of RNA viruses
[14,15]. In addition, previous studies demonstrate that mutator variants of chikungunya virus
(CHIKYV), coxsackievirus (CV), SARS-coronavirus and PV are highly attenuated [16-19]. Con-
versely, high-fidelity variants of PV, CV, foot and mouth disease virus and CHIKV have also
been shown to be attenuated in various hosts [10,20-25], suggesting that there is likely a deli-
cate balance between the need for accuracy and diversity among RNA viruses.

With the exception of important studies with CHIKYV, studies directly evaluating the pheno-
typic impact of mutation rates of arboviruses are lacking. Given the species-specific differences
in selective pressure and virus-host interactions, there is clearly a need to individually charac-
terize these relationships for other medically important arboviruses [26]. In addition, direct
evidence linking specific arbovirus mutations to biochemical alterations affecting fidelity have
not been presented, and therefore the mechanism of altered fidelity, including the role of
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specific structural changes in the RNA-dependent RNA polymerase (RdRp) and allosteric
interactions with other proteins in the replication complex, are not well defined. Lastly, there is
intriguing evidence that not just the effect of altered mutation rate, but fidelity itself could be
host or even cell-specific [27], which could be particularly relevant for arboviruses.

West Nile virus (WNV; Flaviviridae, Flavivirus) is the most geographically widespread
arbovirus in the world and there remains no effective therapeutics or prophylactics against
WNV disease in humans. Although WNV is one of the most well characterized arboviruses in
terms of evolution and host-virus interactions, there are gaps in our understanding of host-spe-
cific selective pressures and genetic correlates of viral fitness and pathogenesis. While there is
evidence of superior WNV fitness in mosquitoes with highly homogeneous strains [28], and
the accumulation of diversity in mosquitoes could simply be a product of relaxed purifying
selection as a result of mutational robustness [29], there is also evidence for a correlation
between WNYV fitness and intrahost diversity in mosquito cell culture and Culex mosquitoes
[30-32]. Increased diversity has also been associated with decreased WNV virulence in mice
[31], suggesting that altering the capacity to accumulate mutations could have host-specific
phenotypic consequences.

In order to gain insight into the phenotypic correlates and mechanism of WNV mutation
restriction and expansion, we utilized experimental evolution in the presence of the antiviral
ribavirin to identify mutations in the WNV replication complex important in regulating fidel-
ity and characterized WNV mutants possessing these changes. Our results provide new insight
into the specificity of genome replication and fidelity, the importance of allosteric changes in
the regulation of mutation, and the host-specific consequences of alterations to fidelity.

Materials and Methods
Selection and resistance assays

A WNV infectious clone (WNV-IC), generated from WNYV strain 3356 (NY99; AF404756) as
previously described [33] was serially passaged in HeLa cells (ATCC) in the presence of the
antiviral nucleoside analog ribavirin (Sigma) in duplicate (Lineage I & II). Both lineages were
passaged in the presence of 50, 100 and 250uM ribavirin, and the virus with the highest infec-
tious titer at 5 days post-infection (pi) was used to initiate the subsequent passage at all concen-
trations of ribavirin. Ribavirin-treated HeLa cell monolayers were also infected with fresh stock
of WNV-IC at each passage as a naive control for comparative antiviral resistance of serially
passaged virus. A multiplicity of infection (MOI) of 0.1 was used to initiate all passages and
resistance assays. In addition to ribavirin, susceptibility to 50uM 5-fluorouracil (Sigma) was
also determined for select WNV strains. HeLa cells were grown in EMEM supplemented with
100ug/ml penicillin streptomycin and 2% fetal bovine serum (FBS). For all cells treated with
antiviral compounds growth media was removed and monolayers in 6-well cell culture plates
were overlaid with 1ml media containing the antiviral compound and incubated for 1h at
37°C. Media was then removed and replaced with 100ul of virus diluted in media supple-
mented with antiviral compound and incubated for 1 hour at 37°C. After incubation, 3mls of
media supplemented with desired concentration of antiviral was added to each well. Superna-
tants were harvested at day 5 pi and titrated by plaque assay on African Green Monkey kidney
(Vero) cells (ATCC) according to standard protocol [34]. In order to isolate clonal strains with
decreased antiviral susceptibility, 20 individual plaques were harvested from Vero monolayers
following the completion of passage 6, re-suspended in 100ul of EMEM, inoculated onto fresh
Vero monolayers and grown in liquid culture for 96h. Susceptibility of mutagens was reported
as log; reduction and titer and compared using t-tests following confirmation of normality
(GraphPad Prism, Version 5.0).
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Sequencing

Full-genome consensus sequencing was performed in order to determine changes accrued with
passage and to verify sequences of mutated viruses. RNA was extracted from cell culture super-
natant and subjected to reverse transcription (RT) and polymerase chain reactions (PCR)
using the SuperScript III one-step RT-PCR kit (Life technologies) with 5-10 overlapping frag-
ments (sequences available upon request). RT-PCR products were concentrated using Zymo-5
DNA spin columns (Zymo Research). Sequencing was carried out using the same RT-PCR
primer sets and all sequencing reactions were completed at the Wadsworth Center Applied
Genomics Technology Core (WCAGTC) on an ABI 3100 or 3700 automated sequencer
(Applied Biosystems). WNV amplicons of nucleotides 1311-3248 (envelope/ns1 genes; [29])
were created for deep-sequencing using the same methodology with WNV RNA isolated fol-
lowing 72 h growth on Aedes albopictus cells (C6/36, ATCC). C6/36 cells were used in order to
maximize viral titer for sequencing and were grown in MEM supplemented with 10% FBS, 2
mM L-glutamine, 1.5 g/L sodium bicarbonate, 0.1mM non-essential amino acids, 100 U/ml of
penicillin, and 100 ug/ml of streptomycin and maintained at 28°C in 5% CO,. Deep-sequenc-
ing was performed at the WCAGTC on the Ion Torrent Personal Genome Machine (IT-PGM)
using a 316 semiconductor chip.

Sequences were compiled and edited using the SeqMan module of the DNAStar software
package (DNAStar) and a minimum of two-fold redundancy throughout each clone or consen-
sus fragment was required for sequence data to be considered complete. Ion Torrent generated
sequence data was analyzed by the Wadsworth Center Bioinformatics Core facility using CLC
Genomics Workbench (CLC bio) software. Quality trimming of sequence reads, reference
mapping and SNP (single-nucleotide polymorphism) detection was done in CLC Genomics
Workbench v5.0.1. Quality trimming and reference mapping were done with default parame-
ters. Reference mapping was completed using the WNV-IC sequence (AF404756). SNP detec-
tion was performed with default parameters except minimum coverage was set to 20,
minimum variant frequency was set to 1.0% and ploidy was set to 1.

Site-directed mutagenesis

WNV mutants including C8423T (T248I), G10057A (V793I), and G10096A (G806R) were
generated by site-directed mutagenesis (SDM) of the WNV-IC using mutagenic primer sets
along with the QuikChange XLII SDM kit (Stratagene) as per the manufacturer’s protocol.
Mutant WNV-IC DNA was then amplified in E. coli and plasmid harvested by Highspeed Mid-
iprep (Qiagen). Full-genome sequencing of NS5 mutant WNV-IC plasmids indicated no other
mutations were present except those engineered. Transcription of mutant and control
WNV-IC plasmids was carried out by linearization with Xbal and transcription using the
MEGAscript kit (Ambion) supplemented with Anti-reverse cap analog (Ambion) and assem-
bled as per manufacturer’s protocol. Transcription reactions were incubated at 37°C for 4h.
Resulting RNA was purified with the MEGACclear kit (Ambion) and quantified on a Nanodrop
2000 (Thermo Fisher Scientific). RNA was stored in 10ug aliquots at -80°C. Wild-type
WNV-IC RNA and mutant RNA were electroporated into 0.8 x 10’ C6/36 cells in PBS using a
GenePulser (BioRad). Transfected cells were seeded into T75 flasks and supernatants were col-
lected from day 3 to 7 post-transfection, aliquoted and stored at -80°C. WNYV infectious parti-
cles were quantified by plaque titration on Vero cells.

Construction of WNV NS5 bacterial expression plasmids

The WNV NS5 gene was cloned into the pET26Ub-CHIS bacterial expression plasmid [35].
This system allows for the production of ubiquitin fusion proteins containing a carboxy-
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Table 1. DNA oligonucleotides used for cloning WNV NS5 into bacterial expression plasmid.

DNA Oligonucleotide Sequence
1 Ub-Sacll-INF-WNV-NS5-for 5TG GTC CTG CGT CTC CGC GGT GGA GGT GGG GCA AAA GGA CGC3
2 WNV-NS5-INF-BamHI-CHIS-rev 5’'G GTG ACC AGA GGA TCC CAG TAC TGT GTC CTC AAC-3

doi:10.1371/journal.ppat.1005009.t001

terminal hexahistidine tag that are then co and/or post-translationally processed by the ubiqui-
tin protease, co-expressed from a second plasmid, pUBPS. Briefly, the WNV NS5 coding region
was amplified using the WNV NY99 strain (AF404756) as template, oligonucleotides 1 and 2
(Table 1) and Deep Vent DNA polymerase (NEB). The PCR product of WNV NS5 was gel
purified and cloned into the pET26Ub-CHIS plasmid using SacII and BamHI sites and by
using In-Fusion ligation independent cloning. The final construct (pET26Ub-WNV
NS5-CHIS) was confirmed by sequencing at the Pennsylvania State University’s Nucleic Acid
Facility. Expression plasmids for the WNV NS5 derivatives (T248I and V7931, G806R) were
constructed using the same strategy.

Expression and purification of WNV NS5

E. coli Rosetta(DE3)pUBPS cells were transformed with the pET26Ub-WNV-NS5-CHIS plas-
mid for protein expression. Rosetta(DE3)pUBPS cells containing the pET26Ub-
WNV-NS5-CHIS plasmid were grown in 100 mL of media (NZCYM) supplemented with
kanamycin (25 pg/mL), chloramphenicol (20 ug/mL) and spectinomycin (S50) at 37°C until an
ODyg of 1.0 was reached. This culture was then used to inoculate 1L of K75, C60, S150-
supplemented ZYP-5052 auto-induction media studier [36], to an ODggg = 0.1. The cells were
grown at 37°C to an ODgg of 0.8 to 1.0, cooled to 15°C and then grown for 36-40 h. Typically,
after 36-40 h at 15°C the ODg reached ~7.0-10.0. Cells were harvested by centrifugation
(6000 x g, 10 min) and the cell pellet was washed once in 200 mL of TE (10 mM Tris, 1 mM
EDTA), centrifuged again, and the cell paste weighed. Typically, yields were 20 g of cell paste
per liter of culture. The cells were then frozen and stored at -80°C until used. Frozen cell pellets
were thawed on ice and suspended in lysis buffer (100 mM potassium phosphate, pH 8.0,

500 mM NaCl, 5 mM 2-mercaptoethanol, 20% glycerol, 1.4 ug/mL leupeptin, 1.0 ug/mL pep-
statin A and one Roche EDTA-free protease tablet per 10 g cell pellet), with 5 mL of lysis buffer
per gram of cells. The cell suspension was lysed by passing through a French press (SLM-A-
MINCO) at 15,000 psi. After lysis, phenylmethylsulfonylfluoride (PMSF) and NP-40 were
added to a final concentration of 1 mM and 0.1% (v/v), respectively. While stirring the lysate,
polyethylenimine (PEI) was slowly added to a final concentration of 0.25% (v/v). The lysate
was stirred for an additional 30 min at 4°C after the last addition of PEIL and then centrifuged
at 75,000 x g for 30 min at 4°C. The PEI supernatant was decanted to a fresh beaker, and while
stirring, pulverized ammonium sulfate was slowly added to 60% (w/v) saturation. This super-
natant was stirred for 30 min after the last addition of ammonium sulfate, and centrifuged at
75,000 x g for 30 min at 4°C. The supernatant was decanted, and the pellet was suspended in
buffer A (100 mM potassium phosphate, pH 8.0, 500 mM NaCl, 5 mM 2-mercaptoethanol,
20% glycerol, 1.4 pg/mL leupeptin, 1.0 pg/mL pepstatin A, 5 mM imidazole). The resuspended
ammonium sulfate pellet was loaded onto a Ni-NTA column (Qiagen) at a flow rate of 1 mL/
min (approximately 1 mL bed volume/100 mg total protein) equilibrated with buffer A. After
loading, the column was washed with fifty column volumes of buffer A and five column vol-
umes of buffer A containing 50 mM imidazole. Protein was eluted from the Ni-NTA column
with buffer A containing 500 mM imidazole. Fractions were collected and assayed for purity by
SDS-PAGE. Fractions with the highest purity were pooled and dialyzed against buffer B (50
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mM HEPES pH 7.5, 500 mM NaCl, 5 mM 2-mercaptoethanol and 20% glycerol; MWCO of
24,000 Da). The dialyzed protein was then passed thru a Hi-Load 16/600 Superdex 200 prep
grade gel filtration column (GE Healthcare) equilibrated with buffer B at 1 ml/min using an
AktaPrime system. Fractions (3 mL) were collected, assayed for purity by SDS-PAGE, pooled
and then concentrated to 150 uM (~15 mg/mL) using a Vivaspin concentrator (30,000
MWCO). The protein concentration was determined by measuring the absorbance at 280 nm
by using a Nanodrop spectrophotometer and using a calculated molar extinction coefficient of
221,730 M cm™'. Purified, concentrated protein was aliquoted and frozen at -80°C until use.
Typical WNV NS5 yields were 1 mg/5 g of E. coli cells, which can be produced from 0.25 L of
culture.

WNV NS5 catalyzed nucleotide incorporation assays

To assemble WNV NS5 elongation competent complexes, 1 or 5 uM WNV NS5 was mixed
with 10 pM pGGC RNA primer, 1 pM RNA template (either 5-AAACUGAGAAGGAG
AAAGCC-3 or 5-AAAUCGAGAAGGAGAAAGCC-3), 20 uM CTP, 20 uM UTP and

0.1 uCi/pL [y->*P]-UTP for 30 min in 50 mM HEPES pH 7.5, 5 mM MgCl, and 10 mM 2-mer-
captoethanol. For single nucleotide incorporation assays, the NS5 elongation competent com-
plex was mixed with 25 uM heparin, 50 mM NaCl and 100 uM NTP substrate (either ATP or
GTP) in 50 mM HEPES pH 7.5, 5 mM MgCl, and 10 mM 2-mercaptoethanol at 30°C. After
mixing, reactions were quenched at various times by the addition of 50 mM EDTA. Products
were resolved from substrates by denaturing PAGE. An equal volume of loading buffer, 5 pL,
(70% formamide, 0.025% bromophenol blue and 0.025% xylene cyanol) was added to 5 pL of
quenched reaction mixtures and heated to 70°C for 2-5 min prior to loading 5 pL on a denatur-
ing 20% polyacrylamide gel containing 1X TBE (89 mM Tris base, 89 mM boric acid, 2 mM
EDTA) and 7 M Urea. Electrophoresis was performed in 1X TBE at 90 W. Gels were visualized
by using a PhosphorImager (GE) and quantified by using ImageQuant software (GE).

Data were fit by nonlinear regression using the program KaleidaGraph (Synergy Software).
All experiments shown are representative, single experiments that have been performed after
at least three individual trials to define the concentration or time range shown. In all cases, val-
ues for parameters measured during individual trials were within the limits of the error
reported for the final experiments. Kinetic data were fit by nonlinear regression using the pro-
gram KaleidaGraph (Synergy Software, Reading, PA). Observed rate constants (ko) for nucle-
otide incorporation were obtained by fitting product-versus-time data to an equation defining
a single exponential (Eq 1), where A is the amplitude, ks is the observed rate constant and C
is the endpoint.

Product = A x e (—kobsxt) + C

In vitro growth kinetics

Confluent monolayers of baby hamster kidney cells (BHK; ATCC) and Culex tarsalis mosquito
cells (CxT; kindly provided by A. Brault, CDC Fort Collins) were infected with virus, in tripli-
cate, using 6-well plates, at a MOI of 0.01 pfu/cell (multi-step), 10.0 pfu/cell (BHK one-step),
or 8.0 pfu/cell (CxT one-step). BHK cells were grown in minimal essential medium (MEM,
Gibco) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 1.5g/L sodium bicar-
bonate, 100 U/ml of penicillin, and 100 ug/ml of streptomycin and maintained at 37°C in 5%
CO,. CxT cells were grown in Schneider’s media (GIBCO) supplemented with 10% FBS, 2 mM
L-glutamine, 1.5 g/L sodium bicarbonate and maintained at 28°C in 5% CO,. After a one hour
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absorption period at 37°C (BHK) or 28°C (CxT), the inoculum was removed, cells were gently
washed, overlaid with 2 ml of maintenance media and incubated at appropriate temperatures.
Samples consisting of 50ul supernatant were harvested at 24, 48, 72, 96, and 120 (CxT only)
hpi for multi-step growth kinetics and 3, 6, 9, 12, 24 and 30 (CxT only) hpi for one-step kinet-
ics, diluted 1:10 in media containing 20% FBS, and stored at -80°C. Titrations were performed
in duplicate, by plaque assay on Vero cells and mean titers for each time point were calculated.
WNV RNA genomes were also quantified following extraction with QIAamp viral RNA spin
columns (Qiagen) using a TagMan quantitative real-time RT-PCR assay (Applied Biosystems)
with a primer/probe designed for WNV E gene amplification [37]. Growth kinetics were com-
pared using repeated measured ANOVA and Tukey’s post hoc tests and infectivity was com-
pared by t-test following confirmation of normality (GraphPad Prism, Version 5.0).

Invertebrate infection studies

Mosquito susceptibility was determined as previously described [38] in both highly colonized
Cx. quinquefasciatus originally obtained from Benzon Research Inc. and F4 Cx. quinquefascia-
tus collected as egg rafts from Orange County, CA (kindly provided by Robert Cummings,
Orange County California Vector Control District). Briefly, individual WNV strains were
diluted to equivalent titers (~8.0 log;o pfu/ml), mixed 1:5, virus: defibrinated sheep blood (Col-
orado Serum) + 2.5% sucrose, and offered to ~500 female mosquitoes using a Hemotek mem-
brane feeding system (Discovery Workshops). Following 1 h, mosquitoes were anesthetized
using CO, and fully engorged mosquitoes were saved and housed at 27°C for subsequent test-
ing. Twenty-five to 50 mosquitoes per strain were saved at -80°C in 1 ml mosquito diluent
[MD; 20% heat-inactivated fetal bovine serum (FBS) in Dulbecco’s phosphate-buffered saline
(PBS) plus 50 pg/ml penicillin/streptomycin, 50 pg/ml gentamicin, and 2.5 pg/ml Fungizone]
at days 5, 7, 10, 14 and 21 days post-feeding. Samples were thawed and homogenized for 30
seconds at 24hz in a Mixer Mill MM301 (Retsch). Debris was then pelleted by centrifugation at
6000 rcf for 5 minutes and the supernatant screened by plaque assay on Vero cells to determine
infection status.

Results
WNV strain selection and mutagen resistance

Passaging in the presence of the antiviral ribavirin was used to select for WNV variants with
decreased susceptibility and putative alterations to polymerase fidelity. Ribavirin susceptibility,
as measured by reduction in viral titer following treatment, was monitored throughout the pas-
sage series and again assessed following the completion of passage 6 (Fig 1A). Significantly
lower reductions in viral titer relative to WNV-IC controls were measured in both lineage I
and II following passage 5 and 6 (t-test, df = 5, p<<0.05), such that lineage I viral titer decreased
just 1.4-fold following ribavirin treatment after 6 passages, as compared to a greater than
25-fold titer reduction measured for WNV-IC. In order to select for clonal strains with
decreased mutagen susceptibility, ribavirin sensitivity was assessed for individual biological
clones isolated from the lineage I passed virus and strains with the highest levels of resistance
(WNV pp3, pp9; Fig 1B) were chosen for further characterization.

In order to identify shared WNV amino acid (aa) substitutions associated with mutagen
resistance, full-genome sequencing of clonal strains WNV pp3 and WNV pp9 was completed.
A total of 15 (pp3) and 18 (pp9) nt substitutions were identified, resulting in 9 and 8 aa substi-
tutions, respectively (Table 2). Of these, 10 nt and 7 aa substitutions were shared. Given the
assumption that substitutions outside of the replication complex were more likely to be associ-
ated with adaptation to Hela cell culture or drift, shared aa substitution in the WNV RdRp and
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Fig 1. Selection for West Nile virus populations with decreased susceptibility to ribavirin. A. Ribavirin susceptibility, measured as mean log;o pfu/ml
reduction in viral titer +/- SD resulting from 50uM ribavirin treatment for 72h on Hela cell culture relative to untreated controls, following passage of parallel
series of ribavirin-treated WNV-IC designated as lineage | (black) and lineage Il (grey). B. Ribavirin susceptibility in selected clonal populations. Clonal
populations were created with lineage | from 20 plaques isolations (pp) and strains with the highest levels of resistance (WNV pp3/9) were chosen for further
characterization.

doi:10.1371/journal.ppat.1005009.9001

Table 2. Mutations identified in clonal WNV populations with decreased ribavirin susceptibility. Nucleotide (NT) and amino acid (AA) mutations identi-
fied in biological clones with decreased ribavirin susceptibility. Shared AA substitutions identified in the WNV replication complex, including RNA-dependent-
RNA-polymerase (RdRp) and methyltransferase (Mtase) changes, are highlighted.

WNYV pp3 WNYV pp9

NT change AA change Gene NT change AA change
G1459A G-R ENV G1459A G-R
G1522A ENV G1522A
C1569T ENV
T1724C I-T ENV
G1783A E-K ENV G1783A E-K

ENV C2079T

ENV C2323T
C2370T ENV
G2721A NS1 G2721A
C4388T T-M NS2B C4388T T-M
A4655G K-R NS3 A4655G K-R

NS3 C5798T

NS3 C5823T

NS3 C6120T

NS4A G6721A A-T
C7069T L-F NS4B

NS4B C7275T
C8423T T2481 NS5 (Mtase) C8423T T248I1
G8997T NS5 (RdRp)

NS5 (RdRp) C9660T
G10057A V7931 NS5 (RdRp) G10057A V7931
G10096A G806R NS5 (RdRp) G10096A G806R
C10529T 3'UTR C10529T

doi:10.1371/journal.ppat.1005009.t002
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methyltransferase (Mtase) genes exclusively were chosen for further characterization. These
included C8423T, resulting in a threonine to isoleucine change at position 248 of the Mtase, as
well as G10057A and G10096A, resulting in valine to isoleucine and glycine to arginine
changes at positions 793 and 806 of the RdRp, respectively (Table 2). Mapping of these residues
on the known flavivirus RARp and Mtase structures demonstrates that T2481 is located at the
C-terminal loop (aa 245-267), which is expected to interact with the RdRp domain, and both
V7931 and G806R exist in locations outside of the RdRp active site, although are within the
priming loop (Fig 2; [39-42]). Both T248 and G806 are conserved among lineage I WNV
strains, yet not across lineages or species, while V793 is shared among flaviviruses. No naturally
circulating strains were found to possess the identified mutations at these locations.

To confirm that these amino acid substitutions independently conferred decreased ribavirin
susceptibility, and to assess if this corresponded to generalized mutagen resistance, mutations
were engineered independently and in combination into the WNV-IC and susceptibility to
both ribavirin and 5-fluorouracil was assessed with WNV mutants. Full-genome sequencing
following mutagenesis confirmed the exclusive presence of desired mutations. WNV mutants
created included WNV T248I, V7931, G806R, double mutant V793I/G806R, and triple mutant
(T2481/V7931/G806R). Mutagen resistance assays demonstrated significantly decreased reduc-
tion in titer (susceptibility) relative to untreated controls for all mutant strains as compared to
WNV-IC following treatment with both ribavirin and 5-fluorouracil (t-test, df = 6 p<0.05; Fig
3). The highest level of mutagen resistance was measured with the RdARp double mutant, WNV
V7931/G806R, for which 2.2 and 4.6-fold mean titer reduction were measured following ribavi-
rin and 5-fluorouracil treatments, respectively, as compared to 55 and 37-fold mean titer
reductions measured with WNV-IC (Fig 3).

Mutant swarm characterization

In order to test the hypothesis that mutagen resistance corresponded to alterations in mutation
rate, deep-sequencing was used to quantify accumulation of unique SNPs following a single
passage on mosquito cell culture (Fig 4A). Levels of WNV RNA for both WNV-IC and mutant
strains were statistically similar for all samples chosen for sequencing (~9.0 log;, WNV copies/
ml), suggesting differences in replication were not likely to account for differences in the num-
ber of mutations accumulated. Assays were completed in duplicate for each WNV strain and
sequencing results identified fewer SNPs in all mutant strains relative to WNV-IC, with the
exception of the methyltransferase mutant, WNV T248]I, for which the number of unique
SNPs identified was approximately 2.5 fold higher than WNV-IC. The RdRp double mutant,
WNV V7931/G806R, showed the fewest number of unique SNPs; approximately 2.5 fold lower
than WNV-IC (Fig 4B). Mutations were distributed throughout the sequenced regions for all
WNV strains, yet mutant swarm composition varied significantly among strains (Fig 4C). Spe-
cifically, transition to transversion ratios were ~2:1 for WNV-IC and WNV T248]I, yet <1 for
WNV V7931/G806R. Decreased mutation of WNV V793I/G806R relative to WNV-IC resulted
primarily from lack of U to C and G to A mutations, which accounted for 11/28 mutations for
WNV-IC and 0/12 mutations for WNV V7931/G806R (chi-squared, p = 0.011). Increased
mutation of WNV T248I, on the other hand, resulted primarily from A misincorporations,
which accounted for 33/62 mutations for WNV T248]I, and just 7/28 mutations of WNV-IC
(chi-squared, p = 0.045). Approximately the same number of U to A mutations were identified
for WNV V7931/G806R as WNV T248I (4 vs 3), yet no G to A mutations were identified for
WNV V7931/G806R, in stark contrast to the 20 identified for WNV T248I (Fig 4C). These
results demonstrate strain-specific differences in the misincorporation of different nucleotides
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Fig 2. Location of the mutation sites associated with altered fidelity in WNV NS5. A. Shown are the crystal structures of the N-terminal
methyltransferase domain (MTase, colored pink; PDB 20Y0) and the C-terminal polymerase domain (RdRp, colored red; PDB 2HFZ) of the NS5 protein from
WNV. The relative positioning of the two domains was based on the crystal structure of the full length NS5 protein of DENV (PDB 4VOR). The protein is
represented as ribbon and the identified mutants (T248, V793, and G806) are represented as black spheres. The amino acids V793 and G806 are located in
the priming loop that is part of the thumb subdomain. B. The initiation model of WNV RdRp showing the thumb subdomain of the polymerase, rotated 180°
compared to the view in A, a 4-mer RNA extracted from the ¢6-RdRp (PDB 1HIO, green carbon atoms), rNTP modeled at the priming site (P) and the catalytic
site (C) based on the complex structure of HCV RdRp (PDB G1X5, yellow carbon atoms), and the active-site aspartates D636 and D669 with the bound
catalytic Mg?* ion. The substitutions, V793! and G806R, are expected to impact the interactions of the nearby residues of the priming loop, including W792,
T799, W808, and M809. Disruption of these interactions would affect the dynamics of the priming loop, including the conformational change of W800 that is
suggested to be required for stabilizing the initiation complex. C. the MTase and polymerase domains shown in (A) are rendered as pink and red surfaces,
respectively, to emphasize the expected large interface between the two domains. Residue T248 is colored black; substitution of this residue by an
isoleucine could impact the interface between the two domains of NS5 structure. The figure was prepared using program CHIMERA.

doi:10.1371/journal.ppat.1005009.9002
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reduction in titer +/- standard deviation following mutagen treatment. Significantly higher viral titers (*t-test, df = 5, p<0.05) were measured for WNV-IC
relative to all WNV mutants after 72h treatment with both antivirals.

doi:10.1371/journal.ppat.1005009.9003

and, more specifically, in the propensity for particular mispairs, suggesting mutation frequen-
cies may be dependent on both replication complex and template sequences and/or context.

Biochemical characterization

Purified IC, V7931/G806R, and T2481 WNV NS5 proteins were used to quantify and compare
the kinetics of nucleotide misincorporation of NS5 elongation—competent complexes (Fig 5).
Complexes were assembled using a 5’-phosphorylated trinucleotide primer (pGGC), single
stranded RNA template, UTP and CTP (Fig 5A). The template was designed such that two
nucleotides led to production of a 15-mer RNA. Labeling of the elongation complex was
achieved by using o->*P-labeled nucleotide. Once assembled, the complex was stable and capa-
ble of rapid incorporation of the next correct nucleotide substrate (elongation) to produce a
16-mer RNA product. The elongation competent complex was then used to interrogate the
kinetics of nucleotide misincorporation. The initial substrate, designed to measure G:U mis-
pairs was used to quantify GMP misincorporation for each NS5 protein (Fig 5B and 5C). Com-
paring the percentage of RNA product produced over time, it was demonstrated that
WNV-IC, V7931/G806R and T2481 NS5 proteins displayed similar in vitro kinetics for GMP
misincorporation (Fig 5C). These results were consistent with a lack of biological differences in
fidelity among NS5 variants, but were also in agreement with deep-sequencing data, for which
the number of A to G substitutions were similar among WNV-IC, WNV V793I/G806R, and
WNV T248I (Fig 4C). In order to evaluate fidelity differences implied by deep-sequencing
data, the template for biochemical assays was redesigned to quantify A:C mispairs, equivalent
to G to A substitutions. The number and proportion of G to A substitutions identified follow-
ing growth in mosquito cells differed among strains, with means of 6, 0 and 20 identified in
WNV-IC, WNV V7931/G806R, and WNV T248]I, respectively (Fig 4C). Biochemical assays
were consistent with these results, clearly demonstrating an increasing rate of A
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Fig 4. Strain-specific differences in mutational spectra breadth and composition. WNV mutant swarm characterization by deep-sequencing of
nucleotides 1312-3261 (ENV/NS1) following 72h growth on mosquito cell culture. A. Mean distribution of genomic diversity (single nucleotide
polymorphisms [SNPY]) of 2 replicates of WNV-IC across the sequenced region. The distribution of mutations was similar among strains. B. Mean number of
minority SNPs identified for individual WNV strains at frequencies greater than 0.5%. C. Distribution of substitution types among WNV strains.

doi:10.1371/journal.ppat.1005009.9004

misincorporation for WNV T248I relative to WNV-IC and a decreasing rate of A misincor-
poration for WNV V793I/G806R (Fig 5C). Taken together, these results demonstrate
sequence-specific fidelity differences among WNV mutant strains.

In vitro growth kinetics

Comparison of one-step and multi-step growth kinetics of WNV mutants to WNV-IC in verte-
brate (BHK) and invertebrate (CxT) cell lines demonstrates host-specific effects of replication
complex mutations (Fig 6). No differences in overall kinetics (repeated measures ANOVA,
F=0.14, df = 6, p = 0.98) or viral titers at individual time points (t-test, p>0.05) were measured
when comparing WNV mutants to WNV-IC on vertebrate cell culture, while significant differ-
ences in viral kinetics were measured in mosquito cell culture at both MOIs for all replication
complex mutants relative to WNV-IC (repeated measures ANOVA, F = 12.83, df = 6,
p<0.0001). Specifically, consistently lower viral titers were measured for all RdRp and Mtase
mutants in mosquito cells relative to WNV-IC (Tukey’s multiple comparison test, p<0.05),
and kinetics were similar among mutants with the exception of WNV V7931, which despite
having significantly lower titers than WNV-IC had modestly higher titers relative to other
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Fig 5. Evaluation of WNV NS5 variants with an in vitro primer extension assay reveals differences in polymerase incorporation fidelity. A.
Schematic of primer extension assay for evaluating WNV NS5 polymerase activity. B. Evaluation of elongation reactions using either correct or incorrect
nucleotide substrates. Shown is the experimental design and denaturing PAGE gel of both correct and incorrect nucleotide addition. Experimental design:
WNV NS5 is assembled for 30 min to produce elongation-competent complexes at which point a trap (heparin) for free enzyme is added. The reaction is then
rapidly mixed with NTP substrate and quenched at various times. Denaturing PAGE gel: The 15-mer RNA is rapidly extended to 16-mer RNA product in the
presence of correct nucleotide substrate, ATP. The presence of both ATP and GTP together promote full extension to 20-mer RNA as the terminal templating
bases are competent for correct nucleotide addition. The presence of GTP alone allows for the kinetics of incorrect nucleotide incorporation to be observed
(G:U mispair). C. Comparison of the kinetics of misincorporation between WNV-IC, V7931/G806R and T248| NS5. There is no observable difference in the
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three NS5 proteins.
doi:10.1371/journal.ppat.1005009.9005

mutants (Fig 6). In addition, WNV RNA was quantified with qRT-PCR following one-step
growth and particle/pfu ratios were quantified and compared among WNV-IC, WNV V7931/
G806R and WNV T2481 in order to assess the relationship between fidelity and infectivity. Spe-
cific infectivity was elevated in mosquito cells as compared to vertebrate cells for all WNV

PLOS Pathogens | DOI:10.1371/journal.ppat.1005009 June 26, 2015
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Fig 6. Host-specific effects of WNV replication complex mutations on replicative fitness in vitro. Growth kinetics of WNV strains in vertebrate (BHK)
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equivalent in BHK cells and significantly different in CxT cells (repeated measures ANOVA, p<0.001). Specifically, WNV-IC titers were significantly higherin
CxT cells at both MOls relative to all mutant strains (ANOVA, Tukey post-test, p<0.05).

doi:10.1371/journal.ppat.1005009.9006

strains (Fig 7). Trends measured with infectivity are consistent with identified fidelity differ-
ences in both cell lines, with the highest infectivity measured with the RdRp double mutant
WNV V7931/G806R and the lowest infectivity measured with the Mtase mutant WNV T248],
yet differences were only significant relative to WNV-IC for WNV T248I in BHK cells (t-test,

df = 4, p = 0.0028; Fig 7). These differences do not therefore account for differences in growth
kinetics identified among WNYV strains in CxT cells.

Vector competence

In order to determine if modest attenuation in mosquito cell culture and fidelity differences
corresponded to differences in mosquito competence in vivo, infectivity of WNV-IC was com-
pared to infectivity of WNV T248I and WNV V7931/G806R in colonized Cx. quinquefasciatus
mosquitoes following exposure to infectious bloodmeals. Input titers were comparable to a nat-
ural dose and similar among WNYV strains and experimental replicates (Table 3; [43]). Despite
the fact that levels of infection were somewhat lower than have been measured with other wild-
type WNV strains (35.8%), stark and highly significant differences were measured when com-
pared to WNV mutants (chi-squared, p<0.001 for all mutants relative to WNV-IC).
Specifically, over the course of 3 experimental replicates and multiple time points, a total of just
2 0f 210 (V793I/G806R) and 3 of 203 (T2481) mosquitoes acquired measurable infections. To
confirm that this was generalizable phenotype which was relevant in natural populations,
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doi:10.1371/journal.ppat.1005009.9007

infectivity experiments were repeated in Cx. quinquefasciatus recently acquired from the field.
Although modestly lower input titers were used, infectivity was slightly higher for WNV-IC
relative to colonized mosquitoes (39.2%) and a general lack of infectivity was confirmed for
replication complex mutants (Table 3). Given the inefficient infectivity of mutant strains, dis-
semination and transmission were not evaluated in this study.

Although viral load was not determined for individual mosquitoes, it is notable that the 8
total mosquitoes identified as positive following exposure to WNV mutants all showed rela-
tively low levels (less than 20 plaques) with undiluted plaque screens.

Table 3. WNV infection rates (total WNV positive/total tested) of Cx. quinqufasciatus following exposure to an infectious bloodmeal.

population WNV strain BM titer (log10/ml) Day 4 or 5 (%) Day 7 (%) Day 10 (%) Day 12 or 14 (%) TOTAL (%)

colony WNV-IC 7.8 30/110 (27.3) 30/100 (30) 31/69 (44.9) 37/79 (46.8) 128/358 (35.8)
V7931/G806R 7.7 0/70 (0)* 1/60 (1.7)* 1/40 (2.5)* 0/40 (0)* 2/210 (1.0)*
T248I 7.5 1/40 (2.5)* 0/52 (0)* 1/59 (1.7)* 2/52 (3.9)* 3/2083 (1.5)*

field WNV-IC 74 nc 11/35 (31.4) nc 18/39 (46.2) 29/75 (39.2)
V793I/G806R 74 nc 1/35 (2.9)* nc 0/40 (0)* 1/75 (1.3)*
T248| 7.3 nc 1/36 (2.8)* nc 1/42 (2.4)* 2/78 (2.6)*

nc- not completed
*Chi-squared, p<0.0001

doi:10.1371/journal.ppat.1005009.t003
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Discussion

As has been successfully accomplished with other systems [21,22,24,25,44], we exploited selec-
tion in the presence of a mutagen to identify mutations altering WNV replicase fidelity and uti-
lized WNYV fidelity mutants to interrogate the consequences and mechanisms of altered
mutation rates. Although ribavirin is not considered an efficacious antiviral for the treatment
of active WNV infections, it has been shown to cause both error-prone replication and WNV
attenuation in vitro, particularly in Hela cell culture [45].

The relative decrease in mutation frequency measured for the WNV high fidelity variant
V7931/G806R (~2.5 fold) is similar or modestly higher than has been shown with other systems
[21,22,24,25,44]. With the exception of coronaviruses, which employ a proofreading exoribo-
nuclease system unique among RNA viruses [46], these data together demonstrate that either
the lack of biochemical capacity or the extent of phenotypic consequences by-in-large prevent
highly significant alterations to RdRp fidelity. Despite this, data presented here and in previous
studies clearly demonstrate that subtle alterations to mutation rates can have profound pheno-
typic effects on RNA viruses.

Although fully characterizing the mechanism by which these RdRp residues alter fidelity
would require further biochemical and biophysical investigations, mapping of T248, V793 and
G805 residues on the crystal structures of NS5 [41,42] provides some indication of possible
mechanisms (see Fig 2). Despite the lack of full-length NS5 structure from WNV, the relative
orientation of the Mtase domain with respect to the polymerase domain can be defined using
the recent crystal structure of the full length dengue virus (DENV) NS5 [47] as a guide. The
two NS5 structures are highly similar with an RMSD of 1.18 and 0.65 A for the polymerase and
Mtase domains, respectively. The residues V793 and G805 are located in the priming loop (aa
789-812), which is a long loop that links two a-helices in the thumb subdomain and protrudes
to reach the active site. Conformational dynamics of the priming loop is believed to be neces-
sary to form a stable initiation complex [42]. A model of the initiation complex is shown in
Fig 2B; in this model a 4-mer ssRNA substrate, taken from the complex structure of the related
¢6-RdRp (PDB 1HIO) [48], and rNTP modeled at the priming site (P-site) and catalytic site
(C-site) based on the HCV RdRp complex structure (PDB 1GX5) [40] can be accommodated
in the WNV NS5 RdRp active site with minimal steric clashes with the protein atoms. To form
a stable initiation complex, the active-site residue Trp-800 would alter its sidechain conforma-
tion to be able to stack against the priming nucleotide. The priming loop maintains numerous
interactions with residues from the thumb, fingers and palm subdomains and substitutions
similar to V7931 and G806R could potentially disrupt these interactions, impacting the dynam-
ics of the priming loop and subsequently affecting the initiation process of the RdRp. It is not
difficult to conceive that V7931 and G806R may restrict the dynamics of the priming loop,
leading to a higher fidelity mutant in a scenario similar to what has recently been shown for the
G64S high-fidelity mutant of PV RdRp [49,50]. In these studies of PV RdRp, remote site muta-
tions altered the polymerase fidelity by causing changes to the dynamics of conserved struc-
tural elements and motifs including residues at the active site. Although the interactions of the
flavivirus RdRp and Mtase have now been well-documented [51,52] the finding that modifica-
tions to allosteric interactions resulting from mutation of a single residue of the Mtase can sig-
nificantly alter replication fidelity is novel. The T248I mutation is located at the C-terminal
loop (aa 245-267) of the MTase domain; which is expected to be at the interface between the
two domains of the WNV NS5 (Fig 2C), similar to what is observed in the homologous DENV
NS5 structure. The loop harboring T248 is predicted to interact with the region of the fingers
in the polymerase domain (aa 350-365). It is very likely that amino acid substitution of T248
by an isoleucine could affect the interactions between the two domains and the inter-domain
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dynamics, eventually affecting the polymerase active site and altering fidelity. Findings with
WNYV are therefore consistent with previous data demonstrating that RdRp fidelity is deter-
mined by a complex network of interactions and checkpoints by which remote site mutations
may alter the dynamics of conserved structural elements and motifs including residues at the
active site [9,49,53,54].

Although selection for ribavirin resistance did, as predicted, result in the isolation of high
fidelity WNV variants, the fact that a mutator variant also displayed resistance could be
explained by antiviral mechanisms independent of lethal mutagenesis for WNV in this system.
Similar results were attained with FMDV, for which a low fidelity RdRp was found to have a
decreased capacity for ribavirin incorporation [55]. In addition, previous studies with another
flavivirus, yellow fever virus, demonstrate that the antiviral actions of ribavirin are conferred
primarily by the depletion of intracellular GTP pools [56]. Additional antiviral mechanisms of
ribavirin have also been proposed, including inhibition of virus transcription [57] and inhibi-
tion of both guanyltranferase and Mtase activity [58,59]. The flavivirus Mtase is required for
RNA capping [60], a process partially enabled by GTP binding [61] and competitively inhib-
ited by ribavirin with DENV NS5 [58]. Although T248 is not within the nucleotide binding site
it is possible that this mutation could perturb these interactions and subsequently interfere
with antiviral susceptibility in this manner. On the other hand, given that WNV T248I also dis-
plays resistance to 5-fluorouracil, it is possible that the strain-dependent mutational biases
could result in unique evolutionary trajectories and, subsequently, strain-specific differences in
mutational robustness and susceptibility to lethal mutagenesis.

This sequence-dependent nature of the fidelity alterations also demonstrates that broad
assumptions about fidelity and mutagen susceptibility likely discount the specificity of interac-
tions of individual nucleotides and/or base analogs with the replication complex. Although
others have demonstrated that modifications to fidelity are attainable, the possibility that
unique strains may possess unique mutational biases has novel functional and evolutionary
implications. Specifically, if mutational landscapes are strain-specific, so too are fitness land-
scapes of viral swarms and therefore evolutionary pressures acting on them. Such biases could
be exploited by evolution as a means of increasing the probability of producing favorable
mutant swarms following genetic bottlenecks or could have the opposite effect of constraining
deleterious strains by not permitting adequate exploration of sequence space to escape unfit
landscapes.

Consistent with previous studies with CHIKV [24] in vitro kinetics were generally similar
for the high fidelity WNV V793I/G806R relative to WNV-IC, with modest attenuation mea-
sured in mosquito but not vertebrate cell culture. Although fitness differences were only mea-
surable with direct competition of CHIKV and not individual growth assays, the decreases in
mutation rate measured for WNV V7931/G806R were also more substantial than those mea-
sured for CHIKV, likely due to combining two RdRp mutations which appear to have an addi-
tive effect on fidelity. These host-specific effects are consistent with previous studies
demonstrating increased swarm diversity in the mosquito for both WNV and its close relative
St. Louis encephalitis virus [31,62], but further suggest that the invertebrate environment is not
simply a more robust environment which tolerates diversity, but one in which diversity itself
likely provides a fitness benefit [30]. It is possible that this fitness benefit results from an inher-
ent need to escape RNAI or other innate invertebrate immune responses [63], or that enhance-
ments in fitness could result from cooperative interactions among distinct genotypes and viral
proteins [64]. Despite this, previous passage studies in Cx. pipiens suggest that this need for
diversity may be overcome by individual variants with highly superior fitness [28] and results
presented here demonstrating attenuation of the low fidelity mutant WNV T248I suggest, not
surprisingly, that there is a limit to the benefit of diversity. The association of mutator
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phenotypes with either similar or attenuated viral growth kinetics is consistent with what has
been observed in other systems [17-19], and gives further credence to the idea that replication
and mutation rate are not necessarily inextricably bound phenotypes. Given that vertebrate
environments have been found to be more restrictive both in vitro and in vivo [32,65], it is
somewhat surprising that a virus with a mutator phenotype would not also be attenuated in
vertebrate cell culture, yet even if WNV T248I is more mutationally robust than WNV-IC,
attenuation may be observed if this strain were repeatedly passaged, therefore accumulating
diversity and, presumably, deleterious mutants [17,18]. Consistent with this is the fact that the
Mtase mutant was also found to be less infectious in vertebrate cell culture. In addition, compe-
tition assays with increased sensitivity for detecting more subtle fitness differences [24,66] or
in vivo models that more accurately represent natural infections could reveal important pheno-
typic differences in vertebrate systems [67]. Although in the current studies results confirm
that inherent biochemical differences account for differences in mutation rate independent of
cell type, it is also feasible that fidelity itself could be host-dependent, as a recent study with
vesicular stomatitis virus demonstrates slower mutation rates in insect cells as compared to
mammalian cells [27]. Although few have investigated this concept [68], it is not necessarily
surprising that the biophysical and biochemical properties of the replication complex might
differ significantly in environments with variable temperature, pH, and nucleotide availability.
Future studies exploiting new sequencing technologies to evaluate mutation rates in a range of
systems will help to clarify these differences [17,69,70].

Although the modest attenuation in mosquito cell culture may be explained by the modest
alterations to fidelity, it is much more surprising that an approximately 2.5 fold alteration to
mutation rate could almost entirely eliminate the capacity for infection and/or sustainable
WNV replication in mosquitoes. Although studies with CHIKV also demonstrate that fidelity
variants are associated with decreased infectivity in mosquitoes, differences measured for
WNV here are much more profound. These results suggest either that WNV replication in gut
epithelial cells is uniquely sensitive to alterations in fidelity or that alternative mechanisms of
attenuation related to host interaction with the flavivirus NS5 exist. Regardless, these variants
provide powerful tools to elucidate the determinants of flavivirus mosquito competence and
novel targets for viral attenuation.
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