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Symbolic Modeling of Asynchronous
Neural Dynamics Reveals Potential
Synchronous Roots for the
Emergence of Awareness
Pierre Bonzon*

Department of Information Systems, Faculty of HEC, University of Lausanne, Lausanne, Switzerland

A new computational framework implementing asynchronous neural dynamics is used

to address the duality between synchronous vs. asynchronous processes, and their

possible relation to conscious vs. unconscious behaviors. Extending previous results

on modeling the first three levels of animal awareness, this formalism is used here to

produce the execution traces of parallel threads that implement these models. Running

simulations demonstrate how sensory stimuli associated with a population of excitatory

neurons inhibit in turn other neural assemblies i.e., a kind of neuronal asynchronous

wiring/unwiring process that is reflected in the progressive trimming of execution traces.

Whereas, reactive behaviors relying on configural learning produce vanishing traces, the

learning of a rule and its later application produce persistent traces revealing potential

synchronous roots of animal awareness. In contrast, to previous formalisms that use

analytical and/or statistical methods to search for patterns existing in a brain, this new

framework proposes a tool for studying the emergence of brain structures that might be

associated with higher level cognitive capabilities.

Keywords: symbolic modeling, neural dynamics, asynchronous process, synchronous process, emergence of

awareness

INTRODUCTION

A recurring debate about the functioning of the brain concerns the characteristics and the roles
played both at the neurological and cognitive levels by synchronous vs. asynchronous processes,
their relation to conscious vs. unconscious behaviors, and a possible fundamental duality in neural
dynamics. While the synchronous activation of brain processes is widely used for describing the
functioning of the cortex (Singer, 1993), diverging views apply to the specialized tasks supported
by these synchronized processes. Experimental results have revealed in particular the existence
of transient long-range phase synchronization leading to the hypothesis that synchronization vs.
desynchronization is a candidate mechanism for controlling visual attention (Gross et al., 2004).
Other studies related to the integration of attributes in a visual scene suggest that there is no central
neural clock involved in this mechanism, thus making the brain a massively asynchronous organ
(Zeki, 2015). In support of this diversity, results from a large scale simulation (Markram et al., 2015)
report “a spectrum of network states with a sharp transition from synchronous to asynchronous
activity.” While no definite link between neural activity and conscious behavior (which would
constitute neural correlates of consciousness) have been identified yet, it is common to postulate
the existence of a dynamical stream of consciousness mediated by a global workspace (Baars, 1988)
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defined as a distributed brain state connected to various brain
areas, thus making perceptual information available to different
tasks. In one of these theories (Dehaene and Naccache, 2001)
pertaining to the particular case of conscious perception (referred
to also as access consciousness), sensory stimuli are associated with
a population of excitatory neurons that in turn inhibits other
neural assemblies, thus preventing the conscious processing of
other stimuli.

More generally, an emergent picture of the brain shows
opposing spiking patterns in populations of neurons engaged
in a competition (Zagha et al., 2015). The demonstration
of temporal competition in eligibility traces for long term
potentiation and depreciation (LTP/LTD) designates these traces
as plausible synaptic substrate for reward-based learning (He
et al., 2015). Together, these findings enforce a fundamental
principle in circuit neuroscience according to which inhibition
in neuronal networks allows in turn for disinhibition and stands
as a key mechanism for circuit plasticity, learning, and memory
retrieval (Letzkus et al., 2015). Ideally, brain simulations should
trace cognition down to these neurological. The usual way to
simulate a brain today however still basically follows one of
two bottom up approaches using either finite-state automata
or differential equations. The first approach, which relies
on weighted connections between neural cells to implement
threshold logic without regard to the actual internal functioning
of these cells, has led to the development of artificial neural
networks (Hopfield, 1982; Hinton et al., 2006). These networks
represent the most powerful tools available today in the field
of machine learning and have been used to model circuits that
reproduce human capabilities in pattern recognition. Their
biological plausibility however is a subject of controversy, and
their relevance to the study of the brain is thus questionable. The
second approach simulates the electrical processes surrounding
neurons, and thus details the functioning of the ground level
constituents of real brains. So far these neural networks simulators
(Hines and Carnevale, 1997; Markram et al., 2015) have not been
applied to drive significant cognitive processes, but seem rather
to expect and rely for that on the spontaneous emergence of
higher level functions.

The “what” and “how” of computational cognitive neuroscience
(Ashby and Helie, 2011) i.e., where computer and cognitive
sciences meet in order to propose biologically plausible models
supporting cognitive tasks, are traditionally described using the
historical “tri-level” hypothesis (Marr, 1982) that distinguishes
computational, algorithmic, and implementation levels. A fourth
behavioral learning dimension in brain and cognition studies
has been advocated (van der Velde and de Kamps, 2015) for
by arguing that cognitive processes are executed in connection
structures that link sensory circuits (i.e., perception) with motor
(i.e., action). Bottom-up analytical tools such as differential
equations, artificial neural networks as well as methods related
to dynamical systems theory (Wright and Bourke, 2013), and
more recently top-down approaches using abstract mathematical
tools such Bayesian inference rules (Ma and Pouget, 2008), are
well-suited for describing computations in Marr’s sense, but
“fail to identify algorithms and underlying circuits” (Frégnac
and Bathellier, 2015), a task that calls for a “middle-out”

approach that can identify plausible structures linking biology
and cognition.

An assessment of the present situation in this field can be
found in the special issue (Stern, 2017) of the Science journal
entitled “Neuroscience: In search for new concepts,” which
contains insightful reviews questioning present approaches,
proposing conceptual challenges and asking neuroscientists
to think about new ways to investigate them. Firstly, in order
to identify the mechanisms which support the human brain,
both Yarstev (2017) and Frégnac (2017) call for a comparative
approach refining similar functions in specific behavior of
relevant species where dynamic entities of simulated brains
grow and interact with their environment. Next, as argued by
Frégnac, “big data is not knowledge” i.e., the roadmap from data
to knowledge should be mapped out across successive levels of
integration distinguishing micro-scale and meso-scale functions.
The causal link between sub-cellular/cellular mechanisms
and behavior should be achieved through successive levels of
analysis, as exemplified by Marr’s tri-level hypothesis, which
means that mappings need to be expressed in algorithmic terms
and not just in a correlative way. In order to take into account
intermediate levels of circuit integration, canonical operations
should be defined as invariant computations. Furthermore,
simulations elaborated from static atlases, or connectomes, are
not sufficient to model brain functions where neurons participate
in multiple functional sub-networks. Toward this end, Frégnac
eventually suggests that a formalism based on virtual free
“quasi-particles” may simplify the analytical treatment. Finally,
Buzsaki and Llinas (2017) note that the neuronal mechanisms
associated with navigation and memory are similar, meaning
they process messages regardless of their origin. Toward this
goal, a new approach (Bonzon, 2017) to modeling neural
dynamics that enforces the tri-level framework based on synaptic
plasticity illustrated in Frégnac (2017) has been proposed.
In order to handle messages, synaptic plasticity is abstracted
through asynchronous communication protocols and used to
link perception and action. This formalism is used here to
address the duality between synchronous vs. asynchronous
processes, and their possible relation to conscious vs.
unconscious behaviors.

MATERIALS AND METHODS

A New Approach to Modeling Abstract
Brain Functionalities
A new approach to modeling neural dynamics (Bonzon,
2017) that enforces the tri-level framework based on synaptic
plasticity illustrated in Frégnac (2017) has been proposed.
In order to handle messages, synaptic plasticity is abstracted
through asynchronous communication protocols and used to
link perception and action. This has been illustrated (Bonzon,
2017) though the simulation of simple animal behaviors. In this
formalism, brain processes are first abstracted through virtual
microcircuits representing canonical invariant computations as
called for above. Sets of microcircuits are then assembled into
mesoscale virtual circuits linking perceptions and actions. Virtual
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circuits giving rise to streams can be compiled into virtual code
implications to be eventually used just in time to deduce virtual
code instructions that are finally interpreted by a virtual machine
(see the Supplementary Information section).

While the usual approach to simulating neural dynamics starts
with current flows represented by differential equations, we opted
for a conceptual abstraction of synaptic plasticity represented
by communicating processes between concurrent threads,
which correspond either to a single or to a group of neurons
possibly interleaved at a higher level. Contrary to traditional
neuron models in which incoming signals are summed in some
integrated value, thread inputs can be processed individually,
thus allowing for threads to maintain parallel asynchronous
communications. Threads can be grouped into disjoint sets, or
fibers, to model neural assemblies (Huyck and Passmore, 2013),
and discrete weights (e.g., integer numbers) can be attached to
pairs of threads that communicate within the same fiber. A fiber
containing at least one active thread constitutes a stream. On this
basis, a short term cache memory (STM) as well as a long term
associative memory (LTM) relying on LTP/LTD were defined.
This eventually led to the modeling (Bonzon, 2017) of animal
behaviors exhibiting, among others, rule learning capabilities
(Zentall et al., 1981; Katz et al., 2008) demonstrating primitive
forms of animal consciousness according a typology (Pepperberg
and Lynn, 2000) proposed in the context of comparative zoology.

Basic Concepts
To introduce the basic concepts of this formalism, let us consider
a simple case of synaptic transmission between any two threads P
and Q (NB throughout this text, identifiers starting with a capital
letter stand for variable parameters). This can be represented by
the circuit fragment (or wiring diagram) contained in the simple
stream given in Figure 1, where the symbol ->=>- represents
a synapse.

This circuit fragment can be represented by two symbolic
expressions involving a pair of send/receive processes as shown
in Figure 2.

In Figure 2, the thread P e.g., a sensor thread sense(s), will
fire in reaction to the capture of an external stimulus s, with the
send process corresponding to the signal, or spike train, carried
by a pre-synaptic neuron’s axon. In the threadQ [e.g., an effector
thread motor(X), where the variable X becomes instantiated as
the result of the stimulus], the receive process represents the
possible reception of this signal by a post-synaptic neuron. The
compilation of these expressions will give rise to virtual code
implications implementing the communication protocol given
in Figure 3.

This protocol corresponds to an asynchronous blocking
communication subject to a threshold. It involves a predefined
weight between the sender P and the receiver Q that can be
either incremented or decremented. On one side, thread P
fires thread Q if necessary and sends it a signal. On the other
side, thread Q waits for the reception of a signal from thread P
and proceeds only if the weight between P and Q stands above
a given threshold. The overall process amounts to opening a
temporary pathway between P andQ and allows for passing data
by instantiating variable parameters (see example below).

A Simple Model of Classical Conditioning
As an example, let us consider a simple model of classical
conditioning in which a conditioned stimulus cs elicits a
weak reflex, and a unconditioned stimulus us produces a
massive reflex. After a few pairings of cs and us, where
cs slightly precedes us, a stimulus cs alone triggers an
enhanced reflex. This is represented by the virtual circuit given
in Figure 4.

In Figure 4, the threads sense(us) and sense(cs) correspond
to sensory neurons, and motor(X) to a motor neuron, where
X is a variable that will be instantiated into us or cs. Finally,
the thread ltp (for long term potentiation) acts as a facilitatory
interneuron reinforcing the pathway (i.e., augmenting its weight)
between sense(cs) andmotor(cs). The protocols depicted by the
symbols ->=>- and /|\ represent, respectively, a synapse and
the modulation of a synapse, the sign ∗ indicates the conjunction
of converging signals, and the sign + either the splitting of a
diverging signal, as used in the lower branch, or, a choice between
converging signals, as used in the right branch instantiating
the thread motor(X). Classical conditioning then follows
from hebbian learning i.e., “neurons that fire together wire
together.” Though it is admitted today that classical conditioning
in aplysia is mediated by multiple neuronal mechanisms
including a post-synaptic retroaction on a presynaptic site,
the important issue is that the learning of a new behavior
requires a conjoint activity of multiple neurons that leads to
implement the thread ltp as a detector of coincidence, as done in
Figure 5.

The generic microcircuit abstracting the mechanism of long
term potentiation (ltp) is given in Figure 5. In order to detect the
coincidence of P and Q, thread P fires an ltp thread that in turn
calls on process join to wait for a signal from threadQ. In parallel,
thread Q calls on processmerge to post a signal for ltp and then
executes a send(R) command to establish a link with thread R.
After its synchronization with thread Q, thread ltp increments
the weight betweenQ and R.

A Model of a Simple Case of Operant
Conditioning
As another example, let us consider a simple form of
operant conditioning in which an organism, as a result
of a perception, generates either an excite or an inhibit
internal stimulus and associates this feedback with either
an accept or reject action. This gives rise to two competing
neural populations, as represented in the circuit given in
Figure 6 in which inputs are represented by a vector I of
external perceptions.

At the beginning of the simulation, the pathways from
sense(I) to learn[accept(I)] is open, while the pathways to
both accept(I) and reject(I) are closed. After a few trials, the
pigeon will have learned to close learn[accept(I)] through an
ltd process and to open either accept(I) or reject(I)through
an ltp process. This procedure matches a fundamental
principle in circuit neuroscience according to which
inhibition in neuronal networks during baseline conditions
allows in turn for disinhibition, which then stands as a key
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FIGURE 1 | Circuit fragment implementing a synaptic transmission.

FIGURE 2 | Thread patterns for a synaptic transmission.

FIGURE 3 | Communication protocol for an asynchronous communication.

FIGURE 4 | A mesoscale virtual circuit implementing classical conditioning.

mechanism for circuit plasticity, learning, and memory retrieval
(Letzkus et al., 2015).

Communication Protocols
As illustrated and briefly discussed above, virtual circuits rely on
communication protocols that are pictured in thread diagrams
by iconic symbols representing themselves microcircuits. These
protocols are defined by pairs of procedures:

- send/receive, denoted by the symbols ->=>- or -<=<-,
represents a synaptic transmission

- join/merge, denoted by /|\ or \|/, implements long term
potentiation/depression (ltp/ltd)

- push/pull, denoted by -<A>-, models a short term cache
memory (stm)

- store/retrieve, denoted by -{P}-, models an associative
memory (ltm) based on long term storage and retrieval
(lts/ltr)

The microcircuits implementing these protocols are detailed in
Bonzon (2017).

Virtual Machine Definition
The virtual machine (Bonzon, 2017), which was originally
designed to execute a “sense-act” cycle of embodied cognition, is
extended here to implement a “sense-act-reflect” cycle that allows
for tracing down the sequences of synchronized events associating
a thread and a stimulus (see Figure 7 for the functional definition
of this machine, and the online Supplementary Information for
its complete operational specifications).

Let us just mention some characteristics of this machine
that clearly distinguish it from traditional computers of
the von Neumann type. First, it does not involve stored
program acting on stored data. Consequently, this machine
doesn’t have an instruction register holding the current
instruction being executed after its retrieval from an addressable
memory. The ist predicate (standing for “is true”) implements
contextual deduction (Bonzon, 1997). A register clock (T), which
corresponds to a program counter in traditional machines, is
associated with each thread and hold its local time T. These
registers are used in turn to deduce an instruction. Whenever
an instruction succeeds, its thread clock is advanced and the
next instruction is deduced, and whenever it fails, it is executed
again until it eventually succeeds. Altogether, this amounts to
descending into a thread instruction tree, with its local clock time
corresponding to the currently reached depth. In other words, as
postulated for instance by Zeki (2015), there is no central clock,
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FIGURE 5 | Micro-circuit and communication protocol for ltp.

FIGURE 6 | A virtual circuit implementing simple operant conditioning.

thus “making of the brain a massively asynchronous organ.”
The execution of virtual instructions leads to a wiring/unwiring
process that produces model configurations that are akin to
plastic brain states. By interpreting code deduced configurations
that are akin to brain states, the overall architecture of this
system could thus turn out to be close to that of a brain.

The core of a simulation platform implementing the
formalism described above is defined by a logic program of about
300 lines. This platform can be run on any PC equipped with
a Prolog compiler, which thus allows for an easy reproduction
of results.

RESULTS

Simulating Simple Animal Behaviors
In order to explore a possible duality between synchronous
vs. asynchronous processes and conscious vs. unconscious
behaviors, we used our extended formalism to perform a series
of simulation of simple animal behaviors exhibiting in turn the

first three level of animal consciousness according to Pepperberg
and Lynn’s typology (Pepperberg and Lynn, 2000). While this
taxonomy is not the definite source on the subject, their proposal
does comply with the requirements listed in our Introduction
i.e.,

• they follow a comparative approach refining similar functions
in the behavior of relevant species

• they include an evolutive learning dimension
• they can be implemented by canonical operations defined

as invariant computations that constitute particular cases of
operant conditioning linked to plausible neural processes.

Briefly, the first level of animal awareness corresponds to the
ability to follow a simple rule involving the perception of a
specific item or event and then either its acceptation or its
rejection (e.g., a case of matching/oddity to sample). Whereas,
this first level does not allow for an immediate transfer to a
similar task, an organism with the second level is aware enough
of a rule to transfer it across situations and thus to adopt for
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FIGURE 7 | High level definition of a virtual machine run.

example a win/stay lose/shift rule (or strategy) relying on a short-
term memory. In order to make a categorical judgment (e.g., to
sort items by recalling their properties), the third level of animal
awareness provides an organism with the additional capacity to
integrate two different sets of stored information. This implies in
turn some kind of associative long term memory.

A Simulation of the First Level of Animal Awareness
Our first simulation refers to an experiment (Wright, 1997) that
was designed in order to discriminate between two possible
strategies for solving a non-matching-to sample (NMTS) task
(Katz et al., 2008). In this experiment, a subject (e.g., a pigeon) is
presented with a sample that can be of one of two colors (e.g., red
or green), and then confronted with a pair of buttons (e.g., one
left and one right button) of two different colors, one of them
matching the color of the sample. In order to get a reward, the
subject must choose the button that doesn’t have the same color
as the sample. A first strategy, called configural learning, is to learn
the correct choice associated with each combination of colors
(or external stimuli). The resulting unconscious reactive behavior
then relies on memorized links between perception and action.
This strategy is implemented in the circuit given in Figure 8 that
constitutes an extension of Figure 6 including an internal fetch
stimulus that triggers a random choice between the two buttons.

The execution trace of a running simulation is
given in Figure 9. In this example, the same vector
i.e., [sensor(left([green]),right([red]),sample([red]))] was
repeatedly presented as input. The prefixes 1:, 2:, 3:, etc.,
represent the stream’s sequence numbers I akin to a global time
series and the arguments (3), (4), (3), (3), etc., are threads local
times. These traces contain first a transient part (Figures 9A–C)
corresponding to the learning process. This process is
implemented via successive internal fetch and excite/inhibit
stimuli that give rise in turn to the increment/decrement
of synaptic weights. This demonstrates how internal stimuli
associated with a population of excitatory neurons inhibit in turn
other neural assemblies i.e., a kind of neuronal wiring/unwiring
process that is reflected in the progressive trimming of the
execution trace. The second part (Figures 9D,E), void of any
internal stimulus, then reflects an unconscious reactive behavior
associating a sensor and an effector.

Another strategy, called relational learning, is to compare in
turn each button with the sample, learn to match colors, and then
choose the button that doesn’t match the sample. In other words,
subjects do not learn to choose a color, but to match colors and
then avoid the matching color i.e., to choose the non-match. This
behavior corresponds to the first level of animal consciousness
defined as the ability to learn and apply a simple rule associating
the perception of a specific concept or event and then either
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FIGURE 8 | Circuit for configural learning.

its acceptation or its rejection (Pepperberg and Lynn, 2000).
This strategy is implemented in the circuit given in Figure 10,
where two additional layers implement learning to match and
eventually choosing to avoid the match.

The same configuration i.e.,

[sensor(left([green]),right([red]),sample([red])),
sensor(left([green]),sample([red])),
sensor(right([red]),sample([red]))]

was repeatedly presented as input. The execution trace, which
reflects the learning of a rule followed by its repeated application,
contains a transient part (Figures 11A–D) made of successive
internal stimuli followed by a persistent part (Figures 11E,F)
presenting the recurrent pattern of a single internal stimulus i.e.,
inhibit, which signals the application of the rue commanding to
“avoid matching the color.”

Simulating the Second and Third Level of Animal

Awareness
Similar results have been obtained with simulations that were
performed for experiments (Savage-Rumbaugh et al., 1980;
Cole et al., 1982) characterizing, respectively, the second and
third levels of animal consciousness. A subject with the second
level is aware enough of a rule to transfer it across situations
and thus to adopt for example a win/stay lose/shift rule. This
implies a capacity to remember one’s last choice, and has been
implemented using a short term cache memory (STM) that
allow for the modeling of a synchronized recall thread. The third
level of animal awareness refers to the additional capacity to
make a categorical judgment (e.g., to sort items) and has been
implemented using an associative long term memory (LTM) that

similarly allows for the recall of facts or events (see Bonzon, 2017
for details).

Summary of Results
The results of the simulations presented above can be
summarized as follows:

- as illustrated in Figure 9, unconscious reactive behaviors
relying on configural learning produce transient traces that
reflect the asynchronous processing of internal stimuli

- as illustrated in Figure 11, behaviors relying on a rule produce
traces containing a transient part that reflect the asynchronous
processing of internal stimuli, followed by a persistent part that
present a recurrent synchronous pattern corresponding to the
rule conscious application.

From these results, we postulate as a principle:

- persistent recurrent patterns in execution traces reveal

potential synchronous roots of consciousness.

Let us recall from Figure 7 that our formalism relies on a
fiber structure, where asynchronous threads having each their
own local time are grouped into streams, which represent
disjoints sets of simultaneously active threads, each stream being
associated with a sequence number akin to a global time. The
synchronization defined on this basis then simply associates the
instruction being executed at thread time T with its supporting
stream at sequence number I. Each recurrent pattern thus
actually reflects the synchronization of an internal stimulus with
its supporting stream e.g., in Figures 11E,F, the synchronization
of stimulus

inhibit(match(left([green]),sample([red])))
in thread
try(match(left([green]),sample([red])))
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FIGURE 9 | Execution trace. (A–C) Transient part. (D,E) Void part.

at its local time (3) with its supporting stream at global time 1:
These recurring patterns constitute an example of emergent
brain structures that might be associated with higher level
cognitive capabilities. Following advances in the study of glial
cells (Tadi et al., 2015; Dallérac and Rouach, 2016; Papouin
et al., 2017), the possible relation of these synchronizations with
consciousness could be found in the interaction between neurons
and astrocytes. According to the “astrocentric hypothesis”
(Robertson, 2013), conscious perception arises through a process
of global synchrony in which information patterns carried by
neuronal spike trains are transferred to astrocytic waves (Pereira
and Furlan, 2009; Pereira et al., 2017). It is suggested that the
persistent traces revealed in our simulation are at the roots of
this transfer process.

DISCUSSION

This discussion will extend in three directions i.e., the
hypothetical formal properties of the proposed formalism,
its relevance to the study of consciousness, and its comparison
with previous similar work.

Hypothetical Formal Properties
The assessment of a system’s formal properties should include
both its validation and a theoretical account of its computational
power. A throughout development of these two points is out
of the scope of this paper. We shall therefore restrict ourselves
to situate the proposed formalism within these contexts. Its
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FIGURE 10 | Circuit for rule learning.

various components are further presented below in the online
Supplementary Information.

Validation
The validation of a system aims at providing a mathematical
proof that its implementation satisfies its requirements i.e., that
“what it actually does” is “what it was designed to do.” To try and
answer the first question, let us consider the functional signature
that can associated with the function representing the run of
a model. The concept of a virtual machine that we use allows
for emulating the execution of a program given in a symbolic
language S on a system having its own logical language L. On
the cognitive side, virtual circuits, which somehow correspond
to cognitive software written in language S, are compiled into
virtual code implications of language L. On its neural side, these
implications are used in turn to deduce just in time instructions
that get interpreted by the virtual machine i.e., this virtual
machine actually performs contextual deductions (Bonzon,
1997). In addition, languages I and O define, respectively,
input/output sentences captured by sensors and delivered to
effectors. Running a model on a virtual machine then defines the
function:

run : I × S× (S → L)×L → L× O

According to classical results in computer science, symbolic
expressions that have been compiled and then interpreted
by a virtual machine get their operational semantics from
the transitions they induced on the state of this machine.
In other words, what the system actually does is to update
the virtual machine state. As there is no specified final
state, whichever state the machine is in at any given time
is acceptable and represents the simulated subject’s current
state of mind.

As for the second question (i.e., “what was this machine
designed for”), the goal of the present work was to study the
emergence of brain structures that might be associated with
higher level cognitive capabilities i.e., with processes that are still
unknown. In this perspective, the whole idea of validation and/or
model checking, which eventually should to lead to ask “how to
specify a given task,” may look premature.

Computational Power
Following the pioneering work of Siegelmann and Sontag
(Siegelmann and Sontag, 1995), the computational equivalence
between rational recurrent neural networks and Turing machines
has become the starting point for the study of devices with super
Turing computational power. Various extensions incorporating
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FIGURE 11 | Execution trace. (A–D) Transient part. (E,F) Persistent part.
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concepts such as rational vs. analog machine and interactive
vs. evolutive machines have recently culminated in a new
equivalence stating that “basic neural models combining the
two crucial features of evolvability and interactivity are actually
capable of super-Turing computational capabilities, irrespective
of whether their synaptic weights are modeled by rational or
real numbers” (Cabessa, 2012; Cabessa and Villa, 2013). In
other words, taking into account both evolving and interactive
capabilities in a neural net model provides an “alternative
and equivalent way to the incorporation of the power of
the continuum toward the achievement of super-Turing
computational capabilities.” Intuitively, our own model, which
incorporates both a mechanism of communication based on
concurrent threads and an implementation of synaptic plasticity
based on Hebbian learning, satisfies the conditions required to
belong to the class of super Turing computational devices. The
proof of this statement will eventually require a substantial effort
toward mapping our formalism into the primitive operations
that are allowed in such proofs.

Relevance With the Study of
Consciousness
Very generally, unconscious and conscious behavior have been
described, respectively, as lacking conscious attention and as
enjoying an introspective reporting capability (Shanahan, 2010).
Various studies have focused on the search for the signature of
the neural activity that differentiates between the two, but their
overall results appear inconsistent (Dehaene and Changeux,
2011). Some of these results however are compatible with
our postulate as stated in section Summary of Results. As an
example, experiments related to a delayed matching to sample
task (Dehaene et al., 2003) have suggested that the neural
signature of unconscious vs. conscious perception could be a
local coordination vs. a global synchronization of neural activity.
Further results (Dehaene et al., 2006; Melloni et al., 2007) about
the same task have concluded that transient synchronization is
the critical event that triggers an access to consciousness. Our
postulate is also consistent with the proposal (Lamme, 2003)
of recurrent interactions, first locally within the visual system,
and then globally into parieto-frontal regions, as well as with
the hypothesis (Zeki, 2003) of an asynchronous construction
of visual perception in distributed sites before binding into a
“macro-consciousness.” By referring to synchronized events
associating a stimulus with a sensory stream, it is also compatible
with another approach (Morsella et al., 2015) concluding
that the origin of consciousness could be found at the level
of processing that is shared with “representations of the
immediate external environment.” Hypothetically, as noted
in section Summary of Results, persistent traces revealed in
our simulations could be at the root of the transfer process
from neural spike trains to astrocytic waves (Pereira and
Furlan, 2009). Our concept of a virtual machine offering an
interface between two domains (see section Bottom Up Design
of Virtual Circuits of the Supplementary Information)
could constitute the adequate tool for modeling such
a transfer.

Related Work
Previous work related to the modeling of brain and cognition
using symbolic methods, and more generally to global
brain simulations and the emergence of consciousness, are
now reviewed.

In an extension of his early work on classical conditioning
(Klopf, 1988), Klopf Johnson et al. (2001) did propose a
computational model of learned avoidance that relies on an
internal clock controlling both classically and instrumentally
conditioned components, thus allowing for an explicit
“proprioceptive feedback” i.e., a kind of primitive consciousness.
This proposal opposed the then dominant paradigm requiring
an evaluative feedback from the environment. This opposition
did rest on the argument that “animals do not receive error
signals during learning,” thus pointing out to the biological
implausibility of error-correction back propagation i.e., an
argument that, notwithstanding the proven effectiveness of this
technique as a tool for functional approximation, is still valid
today for brain research.

Using classical results on Hopfield networks and attractors
(Hopfield, 1982), Balkenius and his co-workers (Balkenius
et al., 2018) did implement a memory model for robots.
In this model, a prototypal form of consciousness arises
from sensory information filled in a memory that in turns
produces memory transitions over time, thus creating an
inner world that is used both to interpret external input
and to support “thoughts disconnected from the present
situation.” A far reaching but questionable conclusion
of this study is that “an inner world is a sine qua non
for consciousness.”

The work by Deco et al. (2008) falls in the category
of “whole (or global) brain” simulations. Their theoretical
account follows an overall statistical strategy. Degrees of
freedom are successively reduced to resolve an otherwise
intractable computational problem. Populations of spiking
neurons get first reduced to distribution functions describing
their probabilistic evolution, giving then rise to neural fields
defined by differential operators involving both temporal and
spatial terms. It finally proposes a measure for partitioning
the brain into functionally relevant regions, this so-called
“dynamical workspace of binding nodes” being supposedly
responsible for binding information into conscious perceptions
and memories. As in our own proposal, this formalism uses
a multilevel architecture, which in this case distinguishes
between the single neuron level, the mesoscopic describing
how neural elements interact to yield emergent behavior,
and the macroscopic level of dynamical large-scale neural
systems such as cortical regions, the thalamus, etc. Each level
of this description relates to neuroscience data, from single-
unit recordings, through local field potentials to functional
magnetic resonance imaging (fMRI). In conclusion, this
formalism uses analytical and statistical tools to search for
existing patterns in a functioning brain. In contrast, our own
framework, which is constrained solely by a symbolic model
of synaptic plasticity, proposes a tool for shaping the brain
by linking perception to behavior trough a mechanism of
hebbian learning.
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Besold and Kühnberger (2015) envision a system that
operates on different levels corresponding to the layers in a
system’s architecture in order to update network structures
via the artificial equivalent of synaptic dynamics. Our
formalism relying on a virtual machine can be considered
as an attempt to implement this architecture via a conceptual
abstraction of synaptic plasticity. Our formalism also bears
some similarities with a new model of neural networks,
namely fibring neural networks (Garcez and Gabbay,
2004) that, similarly to threads, allow for the activation
of groups of neurons and thus represent different levels
of abstraction.

With a few notable exceptions (e.g., Smith, 1992; Ruksénasz
et al., 2009; Su et al., 2014), system validation is an issue that is
seldom addressed in computational cognitive neuroscience. In
order to obtain symbolic descriptions of neuronal behavior that
allow for model checking, Su et al. have applied concurrency
theory in a framework extending classical automata theory
with communicating capabilities. A network of communicating
automata is then mapped into a labeled transition system

whose inference rules (for both internal transitions and

automata synchronizations) define the semantics of the overall
model. Su et al. further show that, in accordance with our
own approach, asynchronous processing is not only a more
biologically plausible way to model neural systems than do
conventional artificial neural networks with synchronous
updates, but also offers new perspectives for the cognitive
modeling of higher level cognitive capabilities through emergent
synchronous processes.
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