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Abstract: Spin Hamiltonian parameters of a pentanuclear
OsIII2 Ni

II
3 cyanometallate complex are derived from ab initio

wave function based calculations, namely valence-type con-
figuration interaction calculations with a complete active
space including spin-orbit interaction (CASOCI) in a single-
step procedure. While fits of experimental data performed so
far could reproduce the data but the resulting parameters
were not satisfactory, the parameters derived in the present
work reproduce experimental data and at the same time have
a reasonable size. The one-centre parameters (local g matrices
and single-ion zero field splitting tensors) are within an
expected range, the anisotropic exchange parameters ob-
tained in this work for an Os� Ni pair are not exceedingly large
but determine the low-T part of the experimental χT curve.
Exchange interactions (both isotropic and anisotropic) ob-
tained from CASOCI have to be scaled by a factor of 2.5 to

obtain agreement with experiment, a known deficiency of
such types of calculation. After scaling the parameters, the
isotropic Os� Ni exchange coupling constant is J ¼ � 4:2 cm� 1

and the D parameter of the (nearly axial) anisotropic Os� Ni
exchange is D ¼ Jk � J? ¼ 18:8 cm� 1, so anisotropic ex-
change is larger in absolute size than isotropic exchange. The
negative value of the isotropic J (indicating antiferromagnetic
coupling) seemingly contradicts the large-temperature behav-
iour of the temperature dependent susceptibility curve, but
this is caused by the negative g value of the Os centres. This
negative g value is a universal feature of a pseudo-octahedral
coordination with t52g configuration and strong spin-orbit
interaction. Knowing the size of these exchange interactions
is important because Os(CN)3�6 is a versatile building block for
the synthesis of 5d/3d magnetic materials.

Introduction

Open-shell transition metal centres usually have localised unpaired
electrons which are the carriers of their electronic and magnetic
properties. Compared to the (naked) ions, the electronic and
magnetic structure gets more involved for transition metal centres
stabilised by diamagnetic ligands because of ligand-field splittings,
that is, the symmetry reduction caused by the ligand field. Still,
the magnetic properties of single centres remain somewhat
boring, since there is a limited range of possibilities what they can
do. But as soon as several such centres interact with each other,
the richness of the electronic and magnetic structure grows very
strongly, in principle exponentially with the number of interacting
transition metal centres. Since this often leads to novel properties,
one can say that there is some sort of cooperation between the
metal centres to create these properties. Possible applications are

rather diverse, and different applications require distinctly different
magnetic properties. For example, for magnetic storage[1] it is
required that a sample, once magnetised by an external magnetic
field, keeps the magnetisation as long as possible after the field
has been removed, which usually requires a well-separated
ground state with large magnetic anisotropy. In magnetic
cooling[2] on the other hand, the magnetised sample must, when
removing the magnetic field, efficiently convert thermal energy
into demagnetisation, which requires a high density of states and
no sizeable magnetic anisotropy. The notion of what is a „good“
or „bad“ magnetic behaviour, and whether the interaction
between the transition metal centres is termed „cooperative“ or
„destructive“, thus largely depends on the beholder. What remains
universally true is that one has to analyse and understand the
properties of the building blocks and in particular their inter-
actions before any attempt at synthesising targets with specific
properties can be made.

An important step towards understanding the complex
behaviour of oligonuclear transition metal complexes is to
reproduce their physical behaviour in a typical „magnetic“ experi-
ment (where only energy levels close to the ground state are
populated) by a phenomenological spin Hamiltonian.[3,4] The
mathematical form of the (many-) spin Hamiltonian used in this
work is
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(1)

where the g ið Þ matrices describe local magnetic moments of
spin centre i and the single-ion zero field splitting (ZFS) D ið Þ

tensors describe the interaction of this local spin with its
environment. These parameters are associated with a certain
spin centre i and are often transferable between spin centres of
the same type in a similar environment. The isotropic exchange
coupling constants J ijð Þ in the first term, and the anisotropic
exchange tensors D ijð Þ in the last term describe the (isotropic
and anisotropic) interaction between centres i and j, the D ijð Þ are
trace-less (any trace can be absorbed in the J ijð Þ), and they can
also be assumed symmetric, any anti-symmetric part para-
metrises the Dzyaloshinskii-Moriya (DM) interaction[5,6] which we
do not consider explicitly in this work: In many cases, the DM
interaction only has a small impact on the magnetic properties
at least in the strong exchange limit, where the isotropic
exchange dominates antisymmetric exchange.

In transition metal complexes, spin-orbit coupling is the
major microscopic origin of the g matrix anisotropy and of the
anisotropic exchange interactions, much more important than
direct spin-spin interactions. Therefore, oligonuclear aggregates
having both 3d and 5d transition metal centres are very
interesting, since both types of spin centres contribute very
different properties. 3d centres often have several unpaired
electrons and thus can make a large contribution to the overall
magnetic moment of the aggregate. On the other hand, the
high nuclear charge of the 5d centres leads to large spin-orbit
coupling constants and thus fosters magnetic anisotropy.[7] The
combination of such types of centres opens a chemical space
where interesting magnetic properties can emerge. There is,
however, still a gap in understanding such aggregates: the
physics behind single-centre g matrices and D tensors is not so
difficult to understand, and these quantities are also routinely
obtained experimentally from mononuclear species. Both from
experiment and theory, the understanding of isotropic ex-
change coupling constants J ijð Þ is also well developed.[8] This is,
however, much less the case for anisotropic exchange inter-
actions. For example, these interactions are often not included
when experimentalists model the measured magnetic proper-
ties of their substances with a spin Hamiltonian. For example,
Hilfiger et al.[9] reported the synthesis and magnetic properties
of a new pentanuclear cluster with two OsIII and three NiII

centres. While the magnetic properties could be reproduced
with a spin Hamiltonian having only isotropic exchange
interactions, this fit led to NiII single-ion D tensors that were
„unrealistically large“ (citation from Ref. [9]), and the authors
attributed this to the fact that anisotropic exchange was not
considered when fitting the magnetic data. In a subsequent
publication[10] the same group presented another fit of the
same experimental data, where an anisotropic exchange
interaction between OsIII and NiII was considered but no single-
ion ZFS at the NiII centres. A certain amount of temperature-

independent paramagnetism had to be assumed in this fit to
achieve agreement between the experimental and fitted χT
curve in the range 150–300 K. Using exchange interactions with
[OsIII(CN)6]

3– to boost the blocking temperature of single-
molecule magnets has further been investigated
experimentally[11]. Quite generally, to obtain a fit that both
reproduces experimental data and provides meaningful fitting
parameters, one often has to impose constraints on the fit
parameters based on prior experience, but the „knowledge
base“ for anisotropic exchange still seems somewhat limited.
Therefore the purpose of the present work is to calculate
anisotropic exchange in the pentanuclear Os2Ni3 cluster of Ref.
[9] based on ab initio all-electron wave functions and then to
set up a spin Hamiltonian whose parameters are extracted from
such calculations. If magnetic properties (such as the magnetic
susceptibility as a function of the temperature, or the magnet-
isation as a function of the magnetic field) calculated with such
a spin Hamiltonian reproduce experimental data, confidence in
the physical significance of the spin Hamiltonian parameters is
greatly increased.

The hexacyano osmate(III) building block opens a large
chemical space when combined with 3d centres, and although
this building block is isotropic in the sense that it cannot have a
single-ion D tensor, the large spin-orbit coupling constant of
the Os centres supports substantial anisotropic exchange
interactions. Anisotropic exchange interactions in compounds
of this type has already been discussed by Mironov,[12] but the
computational procedure that led to the results is not
completely clear to the present author, and no calculations on
existing compounds where one could directly compare with
experimental data has been performed. More detailed analyses
were presented for the anisotropic exchange interaction
between (high-spin) MnIII and OsIII.[13,14] Without spin-orbit
interaction, the three (spatial) components of the 2T2g state that
arises from the low-spin t52g configuration at the OsIII centre have
different (isotropic) exchange interactions with the 3d metal
coordinated to one of the cyano ligands, depending on which
of the three t2g orbitals is singly occupied. For example, if the
cyano ligand is oriented along the z axis, the π type interaction
is strongest but only occurs if one of the dxz and dyz metal
orbitals is singly occupied.[15] The δ type interaction which
occurs if the dxy orbital is singly occupied is much smaller, and
this is especially true if the interaction is mediated by a cyano
ligand which only has σ and π type orbitals. So in a linear
Os� CN� M arrangement (with M a 3d metal), one expects that
two of spatial the components of the Os 2T2g have a stronger
exchange interaction with M than the third one. These
considerations apply to a situation without spin-orbit coupling.
Taking into account the strong spin-orbit coupling at the Os
atom, the six micro-states from the 2T2g are strongly mixed and
result in a lower Kramers doublet well separated by
� 4500 cm� 1 from two other such doublets. Regarding the
lower doublet as a pseudo spin with S ¼ 1=2, the differences in
the isotropic exchange couplings in the spin-orbit-free case
then lead (at least phenomenologically) to an anisotropic
exchange interaction.[13,14]
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The purpose of the present work is therefore to evaluate
anisotropic exchange in the pentanuclear Os2Ni3 cluster of Ref.
[9] based on ab initio all-electron wave functions, and to
reproduce the experimental magnetic data with a spin Hamil-
tonian whose parameters are derived from such calculations. In
the following sections we describe our computational approach
and present the results, including numerical experiments that
demonstrate the relative importance of different spin Hamil-
tonian parameters to be able to reproduce the experimental
data.

Methods and Materials

Molecular geometry

The pentanuclear charge-neutral complex [Ni(tmphen)2]3[Os(CN)6]2
(tmphen=3,4,7,8-tetramethyl-1,10-phenantroline) features a trigo-
nal bipyramidal arrangement of the five metal centres (see
Figure 1). The two Os atoms are the apices of the bipyramid, while
the three Ni atoms are in its equatorial plane. Each Os atom is
octahedrally coordinated by six cyano ligands, three of which point
outwards, the other three coordinate to each of the Ni atoms. For
each of the Ni atoms, the sixfold coordination is completed by two
tmphen ligands. There are thus six Os-CN� Ni bridges (from both Os
to the three Ni) that promote the Os� Ni exchange interaction. The
complex has been synthesised and its temperature dependent
magnetic susceptibility measured in Ref. [9], from that source we
obtained a molecular geometry from the X-ray crystal structure, as
well as the field dependent magnetisation data. The experimental
χT curve has again be presented in Figure 4 of Ref. [10] which has
been used as the source of experimental data to compare with. To
facilitate the analysis, we slightly modified the geometry such that
it adopts axial C3 symmetry. To this end, a fully diamagnetically
substituted variant (all OsIII replaced by IrIII and all NiII replaced by
ZnII was optimised in C3 symmetry. The geometry was optimised
using density functional theory (DFT) with the PBE0 exchange-
correlation functional[16] and def2-TZVP basis sets,[17] using a scalar
quasi-relativistic effective core potential replacing 60 core
electrons[18] at the Ir atoms. The DFT calculations were performed

with a local version of the TURBOMOLE program[19–21] using the
Berny algorithm[22] as implemented in the Gaussian16 program[23]

for the update of the coordinates. Note that there is no horizontal
mirror plane, so the two Os atoms (Os1 and Os2) are not symmetry
equivalent, while the three Ni centres (Ni3, Ni4, Ni5) are. The tensorial
parameters of the spin Hamiltonian (g ið Þ, D ið Þ and D ijð Þ) depend on
the orientation of the molecule, so following Ref. [10], an
orientation was chosen where Os1,2 are on the positive and negative
z axis, while Ni3,4,5 are in the xy plane, with Ni3 on the x axis. The
cartesian coordinates are documented in the Supporting Informa-
tion and used in all subsequent calculations.

CASOCI wave functions

A qualitatively correct wave function for an oligonuclear transition
metal complex is necessarily highly multi configurational if
antiferromagnetic coupling and/or spin-orbit interaction is impor-
tant, therefore we use a complete active space (CAS) valence-type
configuration interaction (CI) wave function. The CI is performed
using a new CASOCI (complete active space spin-orbit CI) program
described in detail elsewhere.[24] The calculations use a quasi
relativistic fourth-order Douglas-Kroll Hamiltonian,[25,26] two-electron
spin-orbit effects were including by constructing the matrix
elements of a spin-orbit mean-field operator[27] which were then
used as an input to our Douglas-Kroll „machine”. To extract g
matrices from CASOCI wave functions, one needs the matrix
elements of the Zeeman operator (see following paragraph), and
we used the non-relativistic Zeeman operator (L̂þ geŜ), with ge the
free-electron g value, for that purpose.

The orbitals used in the CASOCI calculation were obtained from
scalar-relativistic restricted open-shell Hartree-Fock (ROHF) calcula-
tions using the scalar-relativistic part of the Douglas-Kroll operator.
In the all-electron calculations, a TZVP basis set[28] was used for the
non-metal (N, C, H) atoms, while a basis sets derived from a
compilation of Hirao and Nakajima[29] was used for Os, Ir, Ni, and Zn.
To facilitate the calculations with and without replacing Os/Ir and
Ni/Zn, the basis sets of these atom pairs had the same overall
structure, such that molecular orbital coefficients could be used as
start orbitals across diamagnetic substitutions. For Ni and Zn, we
started from the primitive 20s15p9d basis set and contracted the
steepest 7 s, the steepest 5 p, and the steepest 4 d functions. Then,

Figure 1. Molecular structure of the „Os2Ni3“ complex.
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a diffuse p and d function was added, and then a set of f functions
taken from the QZVPP[30] basis. For Ir and Os, we started from the
27s23p15d10f primitive basis, contracted the steepest 10s6p5d6f
functions, and added one diffuse p, d, and f function. Contraction
coefficients have been derived from atomic calculations with the
fourth-order Douglas-Kroll Hamiltonian, and the all-electron basis
sets thus constructed are documented in the Supporting Informa-
tion.

The details of the ROHF orbital optimisation, including the
Roothaan parameters, are found in the Supporting Information.
Here we just mention that the problem with optimising the scalar-
relativistic orbitals comes from those either empty (Os eg) or fully
occupied (Ni t2g) in the high-spin ROHF reference configuration(s).
Empty orbitals are not optimised at all, while fully occupied orbitals
can mix with the doubly occupied ligand orbitals without changing
the wave function. Both problems are addressed by including Slater
determinants which have local excitations, e.g. high-spin t32ge2

g at
the OsIII atoms or t52ge3

g at the NiII atoms. Since our data is extracted
from calculations in which different numbers of metal centres have
been „muted“ by diamagnetic substitution, it is important to
impose size consistency, that is, the orbitals optimised at one
centre do not depend on whether another weakly interacting
centre is active or diamagnetically substituted. While this require-
ment is very difficult to meet when using state-averaged CASSCF
calculations to optimise the orbitals (which is a standard procedure
for mononuclear complexes) it is straightforward to impose in the
ROHF case (see Support Information). The ROHF energy is defined
as a weighted average of the energy expectation values of the
(ground and excited configuration) Slater determinants considered,
and for such an energy expression the orbitals can be optimised
with standard methods.

In the present case, with 34 active electrons (five from each OsIII

and eight from each NiII) in 25 orbitals (five 5d orbitals for each
metal centre), this results in a CI-dimension of 4:9*1012 and it would
at least be very difficult with a conventional CAS-CI program. While
one can come close to the full CAS-CI solution using the density
matrix renormalisation group (DMRG) approach,[31,32] such a calcu-
lation would not necessarily produce additional insight: What
interests us is how the properties of the building blocks and their
interactions build the electronic and magnetic structure of the
overall system. Therefore we use diamagnetic substitution as a
technique to extract such one-centre and two-centre terms.
Diamagnetic substitution means that individual spin centres are
„muted“ by replacing them with a diamagnetic centre of the same
charge and about the same size, without changing the molecular
geometry. In our case, OsIII (low-spin octahedral d5) is replaced by
IrIII (d6) and NiII (octahedral d8) is replaced by ZnII (d10). Diamagnetic
substitution is also used in experimental investigations and occa-
sionally is a challenge to synthesis, but in quantum chemical
calculations one can make such substitutions very easily.

Extracting spin Hamiltonian parameters from ab initio wave
functions

Effective Hamiltonian theory is the basis for connecting microscopic
(ab initio) and phenomenological (spin) Hamiltonians.[33–36] Since
CASOCI is not a perturbative method but diagonalises the CI matrix,
the model space is formed by selecting, when the CASOCI
calculation has completed, some states well separated from the
others. The effective (giant) spin ~S is then implicitly determined by
the number of model space functions which amounts to 2Sþ 1.
Then matrix elements of the Zeeman operators (for determining
the geff matrix or matrix elements of the zero-field Hamiltonian (for
determining ZFS tensor Deff ) are mapped onto the matrix elements
of an effective single-spin Hamiltonian of the form

Ĥeff ¼ mB
~B � geff �~Sþ~S � Deff �~S (2)

It is, however usually not possible to get a perfect match of the
model space and spin Hamiltonian matrix elements. For example,
the Zeeman part of the spin Hamiltonian can only have matrix
elements between SMj i model space spin states where the values
of M differ by 1 at most, while it is possible that the ab initio model
space functions have a non-zero matrix elements between
corresponding model space functions where M differs by more
than one. An exact match can always be found if one includes
higher-order spin operators in the spin Hamiltonian,[35] but this
leads to a spin Hamiltonian with a very large set of parameters.
Instead, our approach is to perform a least-squares procedure to
define the lowest-order spin Hamiltonian (Eq. 2) that gives the best
match of the matrix elements.[37] In cases where spin-orbit
interaction is weak, the choice of the model space basis functions is
usually obvious, because the ab initio wave functions are still close
to pure spin functions. One can also systematically determine the
model space functions by an adiabatic connection formalism[35]

where one starts with ab initio wave functions obtained without
spin orbit coupling (which can be chosen as pure spin functions)
and then adiabatically switches on the spin-orbit interaction and
rotates the ab initio wave functions at each new (increased) value
of the spin orbit coupling such that spin Hamiltonian parameters
evolve continuously. In the present case, this is not possible
because of the strong spin orbit interaction at the Os centre, which
produces a low-energy Kramers doublet in which all components
from the 2T2g manifold are heavily mixed. In other words, having
such a Kramers doublet it is not clear which linear combination of
the two components of the doublet maps to the spin-up and which
to the spin-down model function. To remove the ambiguity, the
wave function analysis module of the CASOCI program[24] follows a
suggestion by Chibotaru and Unger[38] which can be viewed as the
choice which makes the g matrix as diagonal as possible. First one
determines the magnetic axes of the model space by constructing
the Abragam-Bleaney tensor G as

Gkl ¼
3

S Sþ1ð Þ 2Sþ1ð Þ
Yih Ĥk

ZeemanYj

�
�

�
Yih Ĥl

ZeemanYi

�
�

�
(3)

where the Ψi,j run over all components of the model space,
k; l ¼ x; y; z and Ĥk

Zeeman is a cartesian component of the magnetic
field Zeeman operator. The important point here is the G is
invariant to a unitary mixing of the Ψi. If (and only if) there is a
perfect match of the matrix elements in the model space and the
matrix elements of the spin Hamiltonian, G as defined here equals
geff � ðgeffÞT where the superscript T denotes taking the transpose of
the matrix. Diagonalising G gives the magnetic axes, and then one
diagonalises the Zeeman operator within the model space for a
magnetic field along the main magnetic axis and sorts the resulting
eigenvectors by the interaction energy, this gives the coefficients of
the model space functions ΨM (which are mapped to the SMj i basis
functions of the spin Hamiltonian) as linear combinations of the Ψi.
Of course, diagonalisation only specifies the ΨM up to a complex
phase factor cM, and these phase factors are determined as to make
the geff matrix as diagonal as possible. To fix the phase, we have to
use all three magnetic axes that form a right-handed coordinate
system and transform the Zeeman matrix elements of the ΨM to
this new system, where the matrix representation of Ĥz

Zeeman is
diagonal by construction with monotonically rising diagonal
elements. The phase of the ΨM is then adjusted such that

= YM� 1h Ĥx
ZeemanYM

�
�

�� �2
þ < YM� 1h ĤY

ZeemanYM

�
�

�� �2
(4)

is minimised (this makes geff
xy and geff

yx small, see Eq. (33) in Ref. [37])
and then possibly a minus sign is applied to ΨM to make
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< YM� 1h Ĥx
ZeemanYM

�
�

�
> 0 (5)

= YM� 1h Ĥy
ZeemanYM

�
�

�
> 0 (6)

and if both conditions cannot be fulfilled simultaneously, (only) the
condition involving the matrix element that is larger in absolute
value is fulfilled. This convention to construct the model space
functions makes geff

zz > 0 (because the ΨM are sorted by their
interaction energy with the magnetic field) and the positivity
conditions make at least one of gxx, gyy positive. While the sign of
individual g values is not a physical observable, the sign of their
product is. We use the wording „sign of the g value“ to indicate the
sign of the product of the three g values. This sign determines the
orientation of the precession of the effective spin around the axis
of an external magnetic field,[39] and matches the sign of the
expression

6
S Sþ 1ð Þ 2Sþ 1ð Þ

=
X

i;j;k

Yih Ĥx
ZeemanYj

�
�

�

Yj

�
Ĥy

ZeemanYk

�
�

�
Ykh Ĥz

ZeemanYi

�
�

�
(7)

which is also invariant with respect to a unitary mixing of the Ψi

and equals the determinant of geff (and therefore the product of
the g values) if the model space and spin Hamiltonian matrix
elements match. In the case of the OsIII centres, this expression is
negative (see below), so the construction of the model space
functions ΨM produces gxx and gyy being equal in absolute value
but having different sign, which seemingly contradicts the axial
symmetry of the system. This can be cured by rotating the
reference frame of the spin operators in the spin Hamiltonian (see
next section). The whole procedure extracts a molecular geff that
refers to the effective (giant) spin of the many-spin system, while
we are mainly interested in the g matrices of the individual spin
centres. Therefore we use diamagnetic substitution and in a series
of calculations, all spin centres except one are „muted“, and the
resulting geff is then the g matrix of the un-muted centre. After
having specified the model space functions, the Hamiltonian matrix
which is diagonal (with the ab initio micro-state energies as
diagonal elements) in the space of the ab initio wave functions Ψi

is transformed to the model space functions, and from that matrix
representation the effective ZFS tensor Deff is extracted. As for the
geff matrices, we use the equations we have given in Ref. [37]. This
is how the single-ion D tensors of the NiII centres are extracted
from CASOCI calculations where only one Ni centre is un-muted.

The exchange interaction parameters for a given Os� Ni pair are
extracted from CASOCI calculations where all but one Os and one
Ni centre are un-muted. The problem here is, that the effective ZFS
tensor Deff for such an Os� Ni pair will depend both on the single-
ion ZFS tensor at Ni and on the anisotropic exchange tensor of the
Os� Ni pair. To disentangle these two contributions, we have
performed a calculation where the spin-orbit matrix elements for
Ni-centred orbitals were set to zero. As a result, we get three
Kramers doublets, the lower two doublets energetically close and
separated from the highest one. This can be reproduced by an
isotropic ferromagnetic exchange interaction, with the lower
quartet further split by zero field splitting. Other interpretations are
possible (see next section), but this one allows to apply relations
only valid in the strong exchange limit. In this limit, for two spins
with S1 ¼ 1=2 and S2 ¼ 3=2

Deff ¼
1
3D

12ð Þ (8)

so the anisotropic exchange tensor for a Os� Ni pair with spin-orbit
interaction switched off at the Ni centre is just three times the
effective ZFS tensor for that pair. The isotropic J value for that pair
is then simply adjusted such that the spin Hamiltonian reproduces
the energy spacing to the uppermost Kramers doublet. Of course,
one must then check whether the CASOCI results from a calculation
where the entire spin-orbit interaction is present are reproduced by
a spin Hamiltonian where the single-ion D tensor or the Ni centre is
included, and these tests were successful (see the Supporting
Information). Because of the strong spin-orbit interaction at the Os
centres and the ambiguity to define the reference frame of the spin
operators there, one must now be careful to combine spin
Hamiltonian parameters extracted from CASOCI calculations with
different diamagnetic substitution patterns. There is an ambiguity
in the choice of the spin Hamiltonian parameters and this will be
spelled out in the next section.

The full tensors are given in the Supporting Information, here we
give the g values (the eigenvalues of the single-centre g ið Þ matrices)
and the D and E parameters of the single-ion D ið Þ and anisotropic
exchange DijÞ tensors. Since these tensors are traceless, their
eigenvalues D1;D2;D3 sum so zero, and sorting them such that D3 is
the largest in absolute value, the D and E parameters are defined as

D ¼ D3 �
1
2 D1 þ D2ð Þ (9)

E ¼ 1
2 D1 � D2j j (10)

Spin rotations in the spin Hamiltonian

To demonstrate the ambiguity of the spin Hamiltonian parameters,
we start with the effective (single-spin) Hamiltonian Eq. (2) and
choose new spin operators ~Sk which arise from rotating the original
ones

~Sk ¼ RlkŜl (11)

(k ¼ x; y; z). The rotation matrix R is not arbitrary. First, the new
spin operators should be Hermitian which implies that R is a real
matrix. Then, S2 ¼ ~S2 should hold, from this follows that R is an
orthogonal matrix. Finally, the usual angular momentum commuta-
tion relations of spin operators should also hold for the ~Sk which
implies that the determinant of R is positive (+1). Since R is
orthogonal, it is also easy to express the original spin operators
through the rotated ones

Sk ¼ Rkl
~Sl (12)

We now want to re-write the single-spin Hamiltonian in terms of
the new spin operators ~Sk and arrive at

Ĥeff ¼ mB
~B � geff �~Sþ~S � Deff �~S

¼ mB
~B � ~geff � ~S

!
þ ~S
!
� ~Deff � ~S

! (13)

~geff ¼ geff � R (14)

~Deff ¼ RT � Deff � R (15)

Note that this equation means that the two Hamiltonians (ex-
pressed through the un-primed and primed spin operators) are the
same and thus have the same matrix elements with a given set of
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basis functions. So two spin Hamiltonians with very different
parameters reproduce the same physics, which also means that the
G tensor, the product of the g values, and the D and E values are
the same for both reference spin frames. Such a rotation of the
frame of the giant (effective) spin has already been discussed in
Refs. [35,37]. In the present case, such rotations are necessary to
transform a g matrix with one negative diagonal element (as
obtained initially for the Os centres) to one with three negative
diagonal elements which represent the symmetry of the environ-
ment of the Os centre. More involved is the case where one rotates
the reference frames of two local spins w.r.t. each other in the
many-spin Hamiltonian Eq. (1). Here one rotates each spin individ-
ually, described by a rotation matrix R ið Þ for each centre

~s ið Þ
k ¼ R ið Þ

kls ið Þ
l (16)

The one-centre parameters of the many-spin Hamiltonian transform
in the same way as for the single effective spin Hamiltonian except
that now each centre has its individual rotation matrix

~g ið Þ ¼ ðR ið ÞÞT � g ið Þ (17)

~D ið Þ ¼ ðR ið ÞÞT � D ið Þ � R ið Þ (18)

but two-centre (exchange) interactions transform in a special way.
Here one must combine the isotropic and anisotropic exchange
into a single matrix X ijð Þ and then calculate its transformed form

X ijð Þ ¼ J ijð ÞIþ D ijð Þ (19)

~X ijð Þ ¼ ðR ið ÞÞT � X ijð Þ � R jð Þ (20)

(I is the 3� 3 unit matrix), before one can determine the
transformed ~J ijð Þ as one third of the trace of ~X ijð Þ and ~D ijð Þ as the
symmetric part of ~X ijð Þ after making it traceless. Note further that
~X ijð Þ is not necessarily symmetric since the rotation matrices of two
different centres have been applied. This means that if for two
centres the spin reference frames are rotated differently, then this
may introduce a DM interaction where there was none using the
original frames. This is not surprising because the DM interaction is
an energetic contribution that comes from spin canting, and
whether two spins are canted or not depends on the relative
orientation of their reference frame. In the same way, isotropic and
anisotropic exchange is transformed into each other.

These considerations seem to be quite esoteric at first sight, but are
of importance in the present context. We want to extract spin
Hamiltonian parameters for the pentanuclear Os2Ni3 complex from
different CASOCI calculations on variants where one Os and one Ni
centre is un-muted, and these parameters at the end have to fit
together in a single spin Hamiltonian. The strong spin-orbit
coupling at the Os centre, together with its negative g value, leads
to different local spin frames in different calculations. For example,
we have chosen the frames in the “mono-nuclear” calculations such
that the g matrices of both Os and Ni are more or less diagonal.
From this one expects for an Os� Ni pair (at least within the strong
exchange limit) that the resulting molecular G matrix is diagonal as
well, which was not the case for the CASOCI data. This could be
rectified by assuming that the local spin frame at the Os centre was
rotated, and we determined the rotation that produced the off-
diagonal G in the CASOCI calculation in the spin Hamiltonian
calculation as well. Then we rotated back to the original frame
which changes the exchange parameters, both J ijð Þ and D ijð Þ . As a
result, we have obtained a spin Hamiltonian where the Os spin
frame is in the original position and which produces results that

match CASOCI. Note that this „back-rotation“ also produced a small
amount of DM interaction because the transformed ~X matrices
were not symmetric. We left out this antisymmetric part after we
have verified that a spin Hamiltonian with and without the DM
interaction produces essentially the same results.

Results and Discussion

As a first step, the one-body spin Hamiltonian parameters (local
g ið Þ matrices and single-ion D ið Þ tensors) were extracted from a
set of five calculations where all but one spin centre was muted,
following the procedures outlined above. This step is relatively
easy since for only a single un-muted centre, the effective
(molecular) g and D tensors can be identified with those
associated with the un-muted canter. The resulting g matrices
and D tensors were symmetry equivalent to a high degree of
accuracy. For the use in spin Hamiltonian calculations we take
the symmetrised matrices/tensors which keep the equivalency
of the Ni centres in the spin Hamiltonian. The principal values
of these one-body matrices/tensors are presented in Table 1.
Although the two Os centres are not strictly symmetry
equivalent, their g values match to two decimals. The Os g
matrices are diagonal and axial, with the z component markedly
different from the x,y components. Most noteworthy is,
however, that the Os centres have negative g values. While the
sign of the individual g values is somewhat arbitrary (see
paragraph on spin rotations in the Methods section), their
product g1g2g3 is uniquely defined and determines a physical
observable, namely the orientation of the precession of the
magnetic moment.[39] The sign of the g value can be detected in
spectroscopic experiments but will not affect magnetisation
and magnetic susceptibility. The average OsIII g value
(gav ¼ � 1:93) obtained with CASOCI should be compared with
gj j ¼ 1:82 reported from a broad EPR resonance for mono-
nuclear [Ph4P]3[Os(CN)6]

[40] (this experiment does not indicate
the sign of g). We are not aware that negative g values have
been discussed for OsIII so we investigated this using a ligand
field simulation implemented as a „notebook“ for the computer
algebra program Mathematica.[41] For an octahedral d5 com-
plex with an infinitely large octahedral splitting and a strong
spin-orbit coupling we find

g ¼ � geþ4k
3 (21)

where k is the so-called orbital reduction factor,[42] which is
applied to the angular momentum matrix elements. This

Table 1. One-centre spin Hamiltonian parameters of the Os2Ni3 complex
(principal values, D and E in cm� 1). Note the negative g values of the Os
centres. The full tensors are given in the Supporting Information.

Centre g matrix D tensor
g1 g2 g3 D E

Os1 � 2.08 � 2.08 � 1.63
Os2 � 2.08 � 2.08 � 1.63
Ni3,4,5 2.29 2.32 2.34 � 4.86 1.50
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expression agrees with expressions given in the literature[10,13,15]

except for the negative sign. The ligand field simulation shows
that the negative g value is a universal feature of the t52g

occupation with large spin-orbit splitting. An orbital reduction
factor of k ¼ 0:85 has been used to reproduce gj j ¼ 1:8 as
found in EPR experiments.[11] It must be noted, however, that in
reality the finite value of the octahedral splitting leads to spin-
orbit induced mixing with excited quartet states, so with an
octahedral splitting of Doct ¼ 10Dq ¼ 38500 cm� 1 and a spin-
orbit coupling constant of 3100 cm� 1 as suggested in Ref. [40],
the g value from our ligand field simulation changes from � 1.8
to � 1.9 (when using k ¼ 0:85) and this only weakly depends on
the value of the Racah parameter B. While most experiments on
a mononuclear compound are not affected by the sign of the g
value, this is different when such a centre is exchange coupled
to other spin centres.

The Ni g matrices are nearly isotropic with g � 2:3. There is
a significant orbital contribution to the Ni magnetic moments
(since g > 2), but the calculated g value is in the expected
range (albeit at its upper end). For the Ni single-ion D tensors
we find an extreme rhombicity ( E=Dj j �

1
3), so the sign of D is

meaningless. Such a large rhombicity means that one eigenval-
ue of D is close to zero, while the other two have opposite sign.
The eigenvector corresponding to the near zero eigenvalue is
parallel to the z axis (the axis parallel to a line connecting the
two Os) for all three Ni centres, the other eigenvectors being in
the equatorial (xy) plane of the bipyramid formed by the five
metal centres.

Relevant exchange interactions are only expected between
the Os and Ni centres, since they are connected by a cyano
bridge. A CASOCI calculation on a system with two un-muted
Ni centres and with the spin-orbit interaction switched off yields
a quintet ground state, with a triplet 0.002 cm� 1 and a singlet
0.003 cm� 1 higher. This implies a very weak (JNiNi ¼ 0:001 cm� 1)
ferromagnetic coupling between the Ni centres, which can
certainly be ignored. There are only two non-equivalent Os� Ni
pairs, and their exchange interaction parameters are listed in
Table 2. The parameters as extracted from the CASOCI calcu-
lations are marked with the attribute unscaled (see below for
the scaled parameters). Although the two Os atoms are not
strictly symmetry equivalent, it can be seen that the exchange
parameters are quite similar. Most striking is that the isotropic
exchange coupling constants are negative (antiferromagnetic
coupling). This seems to contradict the observed increase of χT
when lowering the temperature, starting at 300 K, but the
reason for this seeming discrepancy is the negative g value of
the Os centre: a parallel spin alignment with opposite g values

reduces the magnetic moment, compared to the uncoupled
situation present at high temperatures. The anisotropic ex-
change tensors have quite a small rhombicity, D ijð Þ ¼ 7:5 cm� 1

together with J ijð Þ ¼ � 1:7 cm� 1 means that the exchange
interaction constant is Jk ¼ 3:3 cm� 1 for parallel spins in one
direction and J? ¼ � 4:2 cm� 1 if they are aligned perpendicular
to that direction. Note that the absolute values of Jk; J? are not
very different, and the eigenvector corresponding to the
k direction is also not oriented along a line connecting Os and
Ni.

The microscopic origin of the anisotropic exchange is that
without spin-orbit interaction, there are very different isotropic
exchange coupling constants for the states arising from the 2T2g

manifold.[13,15] Therefore we also looked at the scalar-relativistic
energy levels obtained in CASOCI calculations with one OsNi
pair un-muted. The energy levels are given in the Supporting
Information (Table S2). We find a doublet ground state sepa-
rated by � 400 cm� 1 from two close-lying higher doublets. This
pattern, a 2A and a 2E in C3 symmetry, arises from the trigonal
distortion of the octahedral field at the Os centre. The small
splitting � 30 cm� 1) calculated for the two 2E states comes from
the diamagnetic substitution pattern (one NiII and two ZnII)
which destroys the C3 axis. For each of the three groups,
exchange coupling with the Ni centre gives a pair consisting of
a quartet at lower energy and a doublet slightly (2–16 cm� 1)
above, giving three isotropic positive (ferromagnetic) exchange
coupling constants with 3.11, 10.76, and 1.69 cm� 1. So the
differences between these values are in the same ballpark as
the anisotropy of the exchange after spin-orbit coupling is
included. To interpret the isotropic couplings, one must note
that the trigonal distortion not only splits the t2g orbitals but
also rotates them. Taking the Ni� NC� Os axis as a the local z axis
for the moment and considering the observed trigonal
distortion of the octahedral field, one get three symmetry
adapted linear combinations of the t2g orbitals with

d1 ¼
1ffiffi
6
p 2dxy � dxz � dyz

� �

d2 ¼
1ffiffi
2
p dxz � dyz

� �

d3 ¼
1ffiffi
2
p dxy þ dxz þ dyz

� �

(22)

where d1,2 have the same orbital energy and d3 is � 500 cm� 1

higher. Because of the degeneracy, there can be a unitary
mixing of d1 and d2 but the choice given here corresponds to
the symmetry breaking of the diamagnetic substitution. In the
lowest group of the states, d3 is the magnetic orbital (singly

Table 2. Isotropic and anisotropic exchange interactions in the Os2Ni3 complex (principal values, in cm–1). Unscaled values are extracted from the CASOCI
wave functions, the scaled ones are multiplied by 2.5. The full tensors are given in the Supporting Information. Ignoring the rhombicity, one can combine
the J and D into Jk ¼ J þ 2=3D, J? ¼ J � 1=3D to facilitate comparison with the literature.

Centres J(ij) D(ij) E(ij) Jk(ij) J?(ij)

Os1� Ni3 unscaled � 1.69 7.50 0.70 3.31 � 4.20
Os1� Ni3 scaled � 4.23 18.76 1.75 8.27 � 10.49
Os2� Ni3 unscaled � 1.67 7.52 0.58 3.35 � 4.18
Os2� Ni3 scaled � 4.17 18.81 1.45 8.37 � 10.44
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occupied), while in the two higher groups d1 and d2 are the
magnetic orbital. Since these orbitals are given in a local frame
where the Os� Ni connection is the z axis, the dxz,yz orbitals make
the efficient (π type) exchange coupling while the dxy, being of
δ type w.r.t. the Os� Ni linkage, cannot provide an efficient
coupling pathway. Therefore it follows that a state with d2

singly occupied should have the largest isotropic coupling
constant, while the smallest coupling constant is expected if d1

is singly occupied and an intermediate value if d3 is singly
occupied. This matches the coupling constants of the scalar-
relativistic CASCI calculation (Supporting Information, Table S2)
where an intermediate value (J ¼ 3:11 cm� 1) is found for the
states arising from coupling the Os 2A state with the Ni, while
the largest and the smallest value is found for the two close-
lying states arising coupling Os 2E with the Ni. Because of the
trigonal distortion of the Os coordination, the situation is
therefore more complex as in simple two-centre models (see,
e.g. Ref. [13]) which have a tetragonal, corner-shared arrange-
ment of the octahedra of the two centres. This difference,
however, is only important for the isotropic coupling of the
scalar-relativistic states. Because spin-orbit coupling at Os is
� 10 times stronger than the trigonal distortion, the spin-orbit
induced mixing of the six micro-states arising from the 2T2g

manifold only weakly depends on how these states are split by
the ligand field. So the argument developed in Ref.[13], namely
that the rhombicity of the anisotropic exchange tensor is mainly
affected by the bending angle between Os-CN and the 3d
metal, remains valid. In our case, the angle is � 160� which
explains the observed rhombicity ( E=Dj j � 0:09, see Table 2) of
the anisotropic exchange tensor obtained from the CASOCI
calculations.

These two-centre parameters have been validated (see the
Supporting Information) by comparing spin Hamiltonian calcu-
lations on OsNiOs and NiOsNi aggregates and comparing with
CASOCI calculations on the Os2Ni3 complex where two Ni
centres, or one Os and one Ni centres, have been muted. With

these spin Hamiltonian parameters, the temperature depend-
ence of χT has been calculated (Figure 2, dotted line). The χT
curve is only plotted up to 100 K since it gets quite boring
beyond, the inset documents how the curves behave over the
full temperature range. Comparing the simulated (dotted) curve
with experimental data (from Ref. [10]) it can be seen that the
overall behaviour of χT is similar to experiment, but that the
peak is at much too low temperatures. This indicates that the
exchange interactions are underestimated in the calculation. In
fact, valence-type CI calculations with (only) metal-centred
active orbitals are known to severely underestimate (by a factor
of 2 to 3) exchange interactions (see, e.g. Refs. [36, 43]). This
deficiency of CASSCF-type calculations has been examined in
detail,[44] where it is attributed to the inability of the orbitals
optimised for the ground state to describe charge-transfer
excitations which are important for super-exchange. Therefore
we repeated the spin Hamiltonian calculations scaling all the
exchange interactions (J ijð Þ and D ijð Þ) with 2.5 (Figure 2, solid
line), and this considerably improves the agreement with
experiment. The parameters which are extracted „as is“ from
the CASOCI calculations are denoted unscaled, while the
parameters obtained by multiplying these values with 2.5 have
the attribute scaled. From the discussion of spin rotations in the
Methods section, it follows that because spin rotations within
the spin Hamiltonian formalism transform different types of
exchange interaction into each other, the isotropic and
anisotropic exchange interactions should be scaled with a
common factor. While one may regard this approach as
somewhat eclectic, it must be pointed out that we apply a
single correction factor to address a well-known deficiency of
the computational method. So it is fair to say that the
experimental χT curve could be reproduced using spin Hamil-
tonian parameters that are based on ab initio wave function
based results. Of course now it is interesting to compare the
anisotropic exchange parameters used here with those resulting
from a fit of the experimental χT curve in Ref. [10]. To avoid

Figure 2. Temperature dependence of χT for the Os2Ni3 complex from spin Hamiltonian calculations using parameters extracted from CASOCI wave functions
(solid line). The dotted („unscaled”) and solid („scaled”) have been obtained using the scaled and unscaled exchange parameters from Table 2 (see Supporting
Information for the full tensors). The inset shows the curves over the full range of temperatures used in the experimental measurements. Experimental data
points are from Ref. [10].
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over-parametrisation which leads to a good fit but meaningless
parameters, such a fit must restrict the number of parameters,
therefore uniaxial Os� Ni anisotropic exchange tensors (with
two parameters Jk and J?) have been assumed, with the parallel
eigenvector oriented along the Os� Ni connection in an
idealised geometry. Moreover, no single-ion ZFS tensors of the
NiII centres have been included in the spin Hamiltonian when
fitting the experimental data. For this reason, we repeated our
simulation setting those tensors to zero as well and indeed
found out that the Ni single-ion ZFS tensors have a small
influence on the simulated χT curve (see Supporting Informa-
tion, Figure S4). The fit in Ref. [10] has Jk ¼ 47:6 cm� 1 (we have
multiplied the value found there with 2 to compensate for an
additional factor 2 in the definition of the spin Hamiltonian
followed in that work) and J? ¼ 2:4 cm� 1, which are substan-
tially different from our (scaled) values (Jk ¼ 8:3 and
J? ¼ � 10:4 cm� 1). Again, the different sign of the exchange
interaction parameters follows from the fact that in Ref. [10] a
positive Os g has been assumed but what remains is that our
exchange interaction parameters are much smaller. Digging
into this, we found that the exchange interaction constants of
Ref. [10] are probably much too large: they produce a χT curve
which considerably declines from 100 to 300 K although the
experimental curve is essentially flat there. To compensate for
this, a sizeable temperature independent paramagnetism (TIP)
had to be assumed that essential „lifts“ the declining branch of
the χT curve. Our interpretation of this is, that because of
ignoring the negative Os g value, the exchange interactions
had to be chosen that strong to reproduce the low-T part of the
χT curve. This led to too small susceptibilities at higher
temperatures which was then compensated by adding a TIP
correction, which adds a correction proportional to the temper-
ature to the χT curve. Our CASOCI based (scaled) spin
Hamiltonian parameters on the other hand are able to fairly
reproduce the experimental data over the whole range of
temperatures without including TIP in the model.

In order to complete the comparison of experimental data
with the results of our simulation, the field-induced magnet-
isation for variable magnetic fields at a fixed temperature of
1.8 K was extracted from our simulation and compared with the
experimental data points from Ref. [9] (Figure 3). For small
magnetic fields up to 1 T, the simulation is close to the
experimental values which also implies that the magnetic
susceptibility, which is the slope of that curve, is retrieved
correctly. It is, however, obvious from Figure 3 that the
saturation of the magnetisation experimentally observed at
higher magnetic fields is not very well reproduced in the spin
Hamiltonian simulation. We note in passing that this is also the
case for a simulation taking the spin Hamiltonian parameters of
Ref. [10]. It seems that the saturation observed both in
experiment and simulation quite sensitively depends on the
magnetic properties of the lowest eigenstates.

Finally, we want to point out that although it is possible to
reproduce the essential features of the experimental χT curve
without including single-ion ZFS tensors at the NiII centres, this
does not mean that these have no influence on the magnetic
properties in general. To this end, we have plotted the
spectrum (108 energy levels) obtained in our simulation with
and without the Ni ZFS tensors (Figure 4), using the scaled
exchange interaction parameters since they best reproduce the
experimental data. Zero field splitting at the Ni centres slightly
spreads the spectrum (the left panel is more extended than the
right one in Figure 4) but the main effect is that without zero
field splitting at the Ni (right panel), the spectrum is much more
structured, with clustered eigenvalues and gaps between the
clusters. Including the Ni single-ion ZFS tensors (left panel) fills
the gaps and leads to an unstructured spectrum. This certainly
adds pathways for magnetic relaxation. Fast relaxation has been
observed experimentally[9] (no out-of-phase signal down to
1.8 K in AC magnetic susceptibility measurements), and the
conjecture, based on the data obtained here, is that single-ion
(Ni) zero field splitting in cooperation with anisotropic (OsNi)

Figure 3. Plot of the magnetisation as a function of the magnetic field strength for a fixed temperature of 1.8 K. Scaled CASOCI parameters have been used in
the simulation, experimental data points are from Ref. [9].
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exchange boosts magnetic relaxation. This statement has to be
taken with a grain of salt, since one must not over-stretch the
interpretation of individual spin Hamiltonian parameters.

Conclusions

Using spin Hamiltonian parameters extracted from ab initio
calculations performed on congeners of a pentanuclear OsIII2 Ni

II
3

complex with various diamagnetic substitution patterns, it was
possible to reproduce experimental magnetic properties from
the spin Hamiltonian calculation. While it was necessary to scale
up the exchange interactions from the underlying CASSCF-type
spin-orbit CI calculation, the resulting spin Hamiltonian param-
eters look quite reasonable, and can be physically interpreted
by the properties of the individual centres (g matrices and
single-ion D tensors) and their connection (J ijð Þ and D ijð Þ

exchange interactions). No further corrections such as adding
TIP have been necessary to fit the experimental χT curve over
the whole temperature range. Comparing our ab initio based
spin Hamiltonian parameters with those from a literature, we
find marked differences. To a large part, these differences arise
since a positive g value for the OsIII has seemingly been
assumed so far in all fits to experimental data. While the sign of
the g value has little effect on most experiments on mono-
nuclear species, it strongly affects the magnetic properties once
such a centre is exchange-coupled with a „normal“ spin centre
with a positive g value, and ignoring the negative g value at the
Os centres when fitting experimental data naturally has a big
effect on fitted exchange interaction constants. Given the
richness of cyanometallate chemistry, the ability of quantifying
the anisotropic exchange interaction between building blocks
such as [Os(CN)6]

3– and 3d centres is of great importance for
rationalising, tuning, and predicting magnetic properties in this
class of oligonuclear 3d=5d compounds.

Supporting Information
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