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Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases among the elderly people. The T2DM increases 
the risk of cardio-cerebrovascular disease (CCD), and the main pathological change of the CCD is atherosclerosis (AS). 
Meanwhile, the carbonic anhydrases (CAs) are involved in the formation and progression of plaques in AS. However, the 
exact physiological mechanism of carbonic anhydrase III (CAIII) has not been clear yet, and there are also no correlation 
study between CAIII protein and T2DM with CCD. The 8-week old diabetic mice (db/db−/− mice) and wild-type mice (wt 
mice) were feed by a normal diet till 32 weeks, and detected the carotid artery vascular opening angle using the method of 
biomechanics; The changes of cerebral cortex and myocardium were watched by the ultrastructure, and the autophagy were 
observed by electron microscope; The tissue structure, inflammation and cell injury were observed by Hematoxylin and 
eosin (HE) staining; The apoptosis of cells were observed by TUNEL staining; The protein levels of CAIII, IL-17, p53 were 
detected by immunohistochemical and Western Blot, and the Beclin-1, LC3, NF-κB were detected by Western Blot. All 
statistical analysis is performed using PRISM software. Compared with wt mice, db/db−/− mice’ carotid artery open angle 
increased significantly. Electron microscope results indicated that autophagy in db/db−/− mice cerebral cortex and heart tissue 
decreased and intracellular organelle ultrastructure were damaged. HE staining indicated that, db/db−/− mice’ cerebral cortex 
and heart tissue stained lighter, inflammatory cells infiltration, cell edema were obvious, myocardial fibers were disorder, and 
myocardial cells showed different degrees of degeneration. Compared with wt mice, TUNEL staining showed that there was 
obviously increase in db/db−/− mice cortex and heart tissue cell apoptosis. The results of immunohistochemistry and Western 
Blot indicated that CAIII, Beclin-1 and LC3II/I expression levels conspicuously decreased in cortex and heart tissue of db/
db−/− mice, and the expression level of IL-17, NF-κB and p53 obviously increased. The carotid artery’ vascular stiffness 
was increased and which was probably related with formation of AS in diabetic mice. And the autophagy participated in 
the occurrence and development of diabetic CCD. CAIII protein might somehow be involved in the regulation of autophagy 
probably through affecting cell apoptosis and inflammation, but the underlying mechanism remains to be further studied.
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Background

With the aging of population becoming more serious, health 
problems increase sharply with the changing of people’s life 
style, including diabetes mellitus, atherosclerosis, cardio-
cerebrovascular disease (CCD), hypertension and neurode-
generative diseases etc.. (Vasilopoulos et al. 2014). Type 
2 diabetes mellitus (T2DM) is one of the most common 
chronic diseases among the elderly, and the patients with 
T2DM worldwide will reach to 578.4 million by 2030 and 
700.2 million by 2045 according to the 9th edition of IDF 
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Diabetes Atlas (2019). Epidemiological studies showed that 
T2DM increased the risk of CCD by about 2–4 times, and 
even in the aggressive treatment of diabetes, the risk of myo-
cardial infarction or stroke was seven to ten time that in indi-
viduals without diabetes (Gregg et al. 2014). In China, stroke 
is an important public health concern as the leading cause of 
morbidity and mortality (Yang et al. 2013), and the mortal-
ity rate of stroke in 2014 was 125.78 per 100,000 for urban 
residents and 151.91 per 100,000 in rural areas (Chen et al. 
2017). Although CCD associated with diabetes is seriously 
harmful, its pathogenesis has not been fully figured out.

The pathogenesis and influencing factors of T2DM with 
CCD are extremely complicated, including genetic, insulin 
resistance, atherosclerosis (AS), hyperinsulinemia, and so 
on. AS is the most important factor. The cholesterol accu-
mulation in the arterial wall causes the formation of plaque 
and vascular stenosis, which leads to the development of AS. 
When the plaque of AS ruptures, it may clog blood vessels 
and cause a variety of diseases, such as stroke, myocardial 
infarction, peripheral arterial thrombosis or another organ 
thrombosis. AS is a dynamic pathological process with com-
plex mechanism, including inflammatory response and cel-
lular senescence, which are closely related with autophagy 
dysfunction. It is a new field about autophagy in the devel-
opment of AS. In recent research, it showed that autophagy 
may cause some specific diseases and play multiple roles 
in these diseases (Choi et al. 2013). Autophagy exists in 
eukaryotic cells and is used to degrade intracellular damaged 
organelles, abnormal proteins, DNA and other substances. 
And it can also reuse the amino acids, ribose and other prod-
ucts to maintain cell homeostasis. In normal physiological 
conditions, the level of autophagy is quite low. However 
under the conditions of hypoxia, ischemia, infection and 
other factors, autophagy will be enhanced and play a role 
of scavenging and prevents the activation of inflammatory 
responses in turn (Hubbard-Lucey et al. 2014). In the stress 
responses, a variety of cytokines are involved, such as IL-6, 
NF-κB and many other adipokines (Tavridou et al. 2011).

Carbonic anhydrases (CAs) are zinc-containing metal-
loproteinases, which are the main protein components with 
functions of accelerating the hydration and dehydration of 
carbon dioxide in red blood cells (Yoshimoto and Walde 
2018). CAs exist in different tissues and are involved in many 
physiological processes, including gluconeogenesis, acid-
base balance, adipogenesis, and calcification etc. (Supuran 
2011). CAIII protein is a special member of CAs family, it 
involves in a variety of diseases, such as T2DM, myocardial 
injury, and skeletal muscle injury etc. (Lippi et al. 2008; 
Nishita et al. 1995). CAIII protein is a cytosolic enzyme with 
a relatively low activity of carbon dioxide hydratase and it 
may scavenge oxygen free radicals in vivo and protect cells 
from oxidative damage (Liu et al. 2012). The expression of 
CAs in AS are down-regulated, which indicates that CAs 

are involved in the occurrence and development of plaques 
(Yu 2010). In a recent study, the results indicated that the 
expression of CAIII protein was also down-regulated in Alz-
heimer’s disease (Kant et al. 2018).

However, the exact physiological mechanism of CAIII 
protein is not clear yet, and there are also no related research 
reports of the association between CAIII protein and CCD 
associated with T2DM. Therefore, the preliminary study of 
CAIII protein in diabetic animals with CCD and its correla-
tion with autophagy dysfunction are the main purposes of 
our study.

Materials and methods

Animal grouping

Mice were purchased from the Model Animal Research 
Center of Nanjing University. We bought 40 8-week old 
mice which were divided into two groups by type: db/
db−/− mice and wt mice (20 mice per group). The approval 
number for experimentation with animals was 2018 HSJS-
190. In order to observe the arteriosclerosis and CCD caused 
by diabetes mellitus, we fed 8-week old type 2 diabetic mice 
(db/db−/− mice) and wild-type mice (wt mice) by a normal 
diet for 24 weeks, and they were free to eat and drink water 
till they are 32-week in experimental animal department of 
Fudan University Shanghai Medical College, with approval 
from the Ethics Committee for Animal Research.

Vascular opening angle

The measurement of vascular opening angle was performed 
as described previously (Fung and Liu 1991). After the 
animal was sacrificed, the carotid artery was rapidly taken 
(0.5 cm), cut along the long axis of the artery, then the blood 
vessel rings were obtained. Placed the rings in oxygenated 
Krebs’ solution and equilibrated at 4 °C for 30 min. Next, the 
vascular ring was incised along the ventral and equilibrated at 
4 °C for 10 min. Finally, scan the vascular ring with a scanner 
and measured the lateral angle at which the two ends of the 
vascular ring are connected, and that is the open angle.

Transmission Electron microscopy

Transmission electron microscopy (TEM, PHILIPS 
CM-120, Netherlands) was performed as previously 
described (Gonzales et al. 2013). Tissues of the cortex and 
myocardium were perfused with 2.5% glutaraldehyde perfu-
sate, fixed with 2.5% glutaraldehyde. Then fixation by fixa-
tive solution, dehydrated, embedded in paraffin, sliced and 
3% uranyl acetate and lead citrate double staining. Finally, 
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the sections were observed by CM-120 PHILIPS and photo-
graphed under transmission electron microscope.

HE staining

Hematoxylin and eosin (HE) staining was performed as 
described previously (Guan et  al. 2017). The paraffin-
embedded sections of the cortex and myocardium were 
dewaxed and fixed with 95% ethanol for 20 min, washed 
twice with PBS, immersed in a hematoxylin staining solu-
tion for 2–3 min to stain the nuclear components. Then, the 
slices were re-washed with water and immersed in an eosin 
staining solution for 1 min to stain the cytoplasm.

TUNEL staining

TUNEL staining was performed as described previously 
(Wei et al. 2017). The sections of the cortex and myocar-
dium were incubated with protease K at room temperature 
for 30 min, washed with PBS twice, incubated with 50 μl 
TUNEL reaction mixture in a wet box at 37 °C for 60 min, 
then washed with PBS for three times. Next, the sections 
were incubated with 50 μl conversion agent-POD in the 
wet box at 37 °C for 30 min, washed with PBS for three 
times. Then, the color developing agent 3,3′-diaminobenzi-
dine was dropped at room temperature for 10 min, and then 
the sections were washed with distilled water, followed by 
1-min hematoxylin re-staining, dehydration and transpar-
ency. Finally, the sections were sealed via neutral gum and 
observed by microscope.

Protein preparation

The right cortex and heart tissue proteins were extracted 
as the method described (Mlyniec et al. 2014a, b). Eight-
month-old mice were sacrificed and the proteins from 
fresh cortex and heart tissue were prepared. The tissues 
were homogenized using RIPA buffer (20 mg of tissue 
with 200 μl of RIPA), and the tissue lysates were centri-
fuged at 12,000 rpm for 5 min and the supernatants were 
collected to determine the protein concentrations using a 
bicinchoninic acid (Beyotime Institute of Biotechnology, 
Shanghai, China).

Western blotting

Western blotting with proteins of the cortex and myocar-
dium was performed as described previously (Mlyniec et al. 
2014a, b). To confirm equal loading of the samples on the 
gel, the membranes were re-probed with an antibody spe-
cific to GAPDH as an internal control. The specific primary 
antibodies used included rabbit polyclonal antibodies against 
CAIII (1:1000; abcam), Beclin-1 (1:200; Santa Cruz), LC3 

(1:1000; abway), P53 (1:1000; abcam), IL-17 (1:1000; 
abcam), NF-κB (1:200; Santa Cruz), GAPDH (1:2000; 
Boster). Finally, the X-ray films were developed and fixed 
in a dark room.

Immunohistochemistry

Immunohistochemistry was performed as described previ-
ously (Tu et al. 2017). Tissues samples of the cortex and 
myocardium were fixed with 4% polyformaldehyde, embed-
ded in paraffin, cut into slices (thickness, 10 μm), dewaxed 
and hydrated. Then the slices were incubated with 3% 
hydrogen peroxide, washed with PBS, blocked with 10% 
normal goat serum at 37 °C for 30 min, incubated with 
rabbit polyclonal antibody for CAIII (1:200; Abcam), P53 
(1:100; Abcam), IL-17 (1:1000; Abcam), in PBS contain-
ing 3% BSA overnight at 4 °C, followed by incubation with 
biotinylated secondary anti-rabbit antibody at 37°Cfor 
45 min. Immunohistochemical staining followed by diam-
inobenzidine staining was subsequently performed. Finally, 
all sections were dehydrated sequentially with 75% ethanol 
for 5 min, 85% ethanol for 5 min, ethyl alcohol twice for 
every 5 min, and xylene for 6 min. They were then covered 
on slides for image analysis.

Statistical analysis

All statistical analyses were performed using the GraphPad 
Prism 6.0 (Graph Pad; San Diego, CA, USA) and Excel 
(Microsoft Corporation; Redmond, WA, USA) software 
programs, and all data is represented as means ± standard 
error of the mean (SEM). The Western blot and tissue data 
was analyzed by student t-test. For all analyses, P-values less 
than 0.05 were considered significant.

Results

The vascular opening angle was increased 
in diabetic mice

The vascular opening angle was considered to be a meas-
urement of the residual strain of the vessel wall. As shown 
in Fig. 1, the left picture was the anterior vascular ring and 
the right one was the opening angle after cutting (Fig. 1, 
Φ0). The carotid artery opening angles in db/db−/− and wt 
groups were detected respectively. Compared with wt mice, 
the carotid artery opening angle of db/db−/− mice obviously 
increased (P < 0.01, Fig. 1). The result showed long-term 
diabetes might lead to increased vascular stiffness, which 
may be affected the structure, elasticity and remodeling of 
large blood vessels in turn.
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The brain and myocardium’ ultrastructure were 
damaged in diabetic mice

Transmission electron microscopy was used to observe 
the ultrastructure of brain and myocardial tissues. The 

results showed that compared with wt mice, the db/
db−/− mice’ nerve cells were significantly edema, as well 
as the decrease of autolysosome formation, intracellular 
organelles and mitochondria (Fig. 2A). Compared with wt 
mice, the db/db−/− mice’cardiac autolysosome were promi-
nently reduced, mitochondria was decreased, endoplas-
mic reticulum was disorganized, and myocardial fiber was 
damaged even more (Fig. 2B). The above result showed 
that diabetes may cause the damage of tissues’ ultrastruc-
ture and autophagy disfunction.

The cortex and myocardium in diabetic mice had 
obvious inflammation and cell damage

The pathological changes of cortex and myocardium were 
observed by Hematoxylin and eosin (HE) staining. HE 
staining showed that, the number of relative normal cells 
in cortex and myocardium of db/db−/− mice were all sig-
nificantly less than that in WT mice (all P < 0.01). As 
shown in Fig. 3A, the db/db−/− mice’ cortex was shal-
lowed lighter, microvascular and normal cells reduced, 
accompanied with inflammatory cells infiltration, signifi-
cant edema and necrosis. In contrast, the wt mice’ cortex 
was shallowed deeper, with normal cell density, morphol-
ogy and arrangement, and the interstitial cells were dense 
and uniform. The cardiomyocytes in db/db−/− mice were 
hypertrophy with irregular nuclei and different degrees 
of degeneration, and the myocardial fibers arranged in 
disorder. While in the wt mice, the cardiomyocytes were 
slim and neat, and the myocardial fibers arranged densely 
(Fig. 3B).

Before Cut     A�er Cut

db/db WT
Before Cut        A�er Cut

A

B

Fig. 1   The carotid artery opening angles of db/db−/− and WT were 
detected respectively, and the carotid artery vascular opening angle of 
db/db−/− mice increased than WT mice (**, P < 0.01). N = 4

Fig. 2   Compared with WT 
mice, the db/db−/−mice’ autol-
ysosomes were significantly 
reduced, accompanied with 
nerve cells edema (A), and the 
mitochondria decreased and 
disorganized, myocardial fiber 
damaged (B). The arrows point 
to autolysosomes (Cortex, WT) 
or lipofuscin (Myocardium, 
WT), lipofuscin is composed 
of residual lipids digested by 
autolysosome. N = 4

2 um

A
Cortex

B
Myocardium

dbdb WT

dbdb WT
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The apoptosis level of cortex and myocardium 
was increased in diabetic mice

Tissue cells were stained by TUNEL to observe the apop-
tosis level of cortex and myocardium. As Fig. 4 shown, the 
apoptosis level of cortex and myocardium in diabetic mice 
increased in comparison to the wt mice (A: Cortex, P < 0.05; 
B: Myocardium, P < 0.001), and the results indicated that 
diabetes mellitus might induce excessive apoptosis and 
impaired function of tissue cells.

The expression of CAIII protein was reduced 
in cortex and myocardium of diabetic mice

The expression of CAIII protein was assessed using 
immunohistochemistry and western blotting. The results 
showed that the expression of CAIII protein in cortex and 
myocardium of diabetic mice were obviously decreased 
(P < 0.05, Fig. 5A). Meanwhile, the results of western 

blotting confirmed that CAIII protein levels had a down-
ward trend in cortex of the db/db−/− group. In myocardium, 
the CAIII protein levels were decreased markedly in dia-
betic group compared with wt group (P < 0.05, Fig. 5B).

The expression of Beclin‑1 protein and the LC3‑II/I 
ratio were reduced in cortex and myocardium 
of diabetic mice

As the western blotting results shown, the expression of 
Beclin-1 protein in cortex of diabetic group were decreased 
significantly than wt (P < 0.01, Fig. 6A). While the expres-
sion of LC3II/Ionly had a downward trend without differ-
ence (P > 0.05). In myocardium of diabetic group, both the 
expressions of Beclin-1 and LC3II/Iwere reduced, and the 
difference of LC3II/Iwas significative (P < 0.001, Fig. 6B). 
The results showed that the cortex and myocardium in 
diabetic mice may both have autophagy dysfunction.

Fig. 3   Hematoxylin and eosin 
(HE) staining showed that, 
the number of relative normal 
cells in cortex and myocardium 
of db/db−/− mice were all sig-
nificantly less than that in WT 
mice (Cortex, ***, P < 0.001; 
**, Myocardium, P < 0.01). 
Compared with WT mice, the 
cortex of db/db−/− mice was 
shallowed lighter, microvascu-
lar and normal cells reduced, 
accompanied with inflammatory 
cells infiltration, significant 
edema and necrosis. And the 
cardiomyocytes in db/db−/− 
mice were hypertrophy with 
irregular nuclei and different 
degrees of degeneration, and 
the myocardial fibers arranged 
disorder. N = 4
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The expression of IL‑17 and NF‑κB were increased 
in cortex and myocardium of diabetic mice

As the immunohistochemistry results show, the expression 
of IL-17 protein in cortex and myocardium of diabetic 
group were increased significantly than wt (P < 0.01 and 
P < 0.0001, Fig. 7A). And the results of western blotting 
showed that both the cortex and myocardium’ IL-17 pro-
tein were increased in diabetic mice, especially in myo-
cardium (P < 0.01, Fig. 7B). The expression of NF-κB 
protein in cortex of diabetic group was increased obviously 
than wt (P < 0.05, Fig. 7C). Meanwhile, the expression of 
NF-κB protein in myocardium had a upward trend with-
out difference. The results showed that there were obvious 

inflammatory responses in the cortex and myocardium of 
diabetic mice.

The expression of p53 protein was increased 
in cortex and myocardium of diabetic mice

As the immunohistochemistry results shown, the expression of 
p53 protein in cortex and myocardium of diabetic group was 
increased significantly than wt (P < 0.001, Fig. 8A). And the 
results of western blotting showed that the expression of p53 
protein in diabetic mice was more than wt mice (P < 0.05), 
while there was no difference in myocardium (P > 0.05, 
Fig. 8B). The results showed that the apoptosis level of cortex 
and myocardium in diabetic mice might increase.

Fig. 4   Tissue cells were stained 
by TUNEL to observe the 
apoptosis levels of cortex and 
myocardium, and The images 
of apoptosis were viewed at 200 
x magnification. There were 
significant differences of the 
apoptotic cells in cortex and 
myocardium of db/db−/− mice 
compared with WT mice (A: 
Cortex, *, P < 0.05; B: Myo-
cardium, ***, P < 0.001). The 
arrows point to the apoptotic 
cells. N = 4

dbdb WT

dbdb WT

A

B

Cortex
M
yocardium
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Discussion

AS is the main pathological basis of T2DM combined with 
CCD. However, the mechanism of AS in diabetic patients 
are complicated and unclear. A variety of risk factors take 
part in the process of AS, many stress conditions can affect 
cell homeostasis in T2DM (Carneiro and Travassos 2013), 
and they break the dynamic balance between proliferation 
and apoptosis of the vascular endothelium which is a 
critical regulator of overall vascular health (Libby et al. 
2013; Widlansky and Hill 2018). With the increasing of 
age, there are hypertrophy, hyperplasia and phenotype 
alterations of vascular smooth muscle cells (Intengan and 
Schiffrin 2001; Qiu et al. 2014; Ueno et al. 2000). Along 
with the opening angle changes, these processes have been 
described as adaptive responses to alterations in flow and 
pressure (Matsumoto et al. 1996). The vascular opening 
angle is a biomechanical indicator of zero-stress state of 
vascular, and it can be affected by the tissue proliferation 
and morphological. Previous studies showed that the 
minification of opening angle indicated a higher rate of death 

and a decrease in autologous contraction function of the 
vascular endothelial cells (Fung and Cowin 1993). Fung’s 
hypothesis of non-uniform remodeling states that if the inner 
wall grows more than the outer wall, the opening angle will 
increase; whereas if the outer wall grows more than the inner 
wall, the opening angle will decrease (Fung 1991). In this 
research, we found that the carotid artery’ opening angles in 
diabetic mice increased, and so speculated smooth muscle 
cells proliferated complicated with calcification during the 
progression of AS vascular stiffness increaseed, and vascular 
bed extension tension increased, resulting in the increase of 
vascular opening angle.

In the process of AS, the oxidative stress, which increas-
ing in aging tissues due to decreased activity of antiox-
idant enzymes, is a key step (Bala et al. 2006; Tawakol 
and Jaffer 2018). As a special member of CAs, CAIII 
protein mainly presents in tissues characterized by a high 
oxygen consumption rate, such as skeletal muscle, liver, 
and brain, where they could participate in the processes 
of cell defense counteracting oxidative damage (Monti 
et al. 2017). CAIII protein not only regulate intracellular 

Fig. 5   Immunohistochemical 
staining showed that the expres-
sion of CAIII protein obviously 
decreased in db/db−/−mice (A: 
Cortex *, P < 0.05; Myo-
cardium ***, P < 0.001). 
Western Blotting indicated that, 
compared with WT group, the 
CAIII levels had a downward 
trend in cortex, While decreased 
significantly in myocardium of 
the db/db−/−group (B: Cor-
tex, P > 0.05; Myocardium *, 
P < 0.05). The arrows point to 
the CAIII protein. N = 4
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pH by delivering CO2 produced during cellular metab-
olism (Cote et al. 1999), and participate in cell defense 
processes counteracting oxidative damage, apoptosis and 
signal transduction (Monti et al. 2017), but also regulate 
the metabolism of intracellular energy. Meanwhile, some 
researches had found that the level of CAIII protein was 
almost unchanged after myocardial infarction thromboly-
sis, while myoglobin concentration increased significantly, 
so CAIII protein could be used in the differential diagnosis 
of acute myocardial infarction (Shiomi et al. 2013).

In T2DM, hyperglycemia and insulin resistance can 
increase the level of anaerobic conversion, lactic acid 
accumulation in red blood cells, and induce the level of 
CAIII protein protein decreasing, which will inhibit the 
binding of oxygen to hemoglobin and increase HbAlc 
(Speeckaert et al. 2014). The above reactions eventually 
lead to tissue hypoxia, inducing inflammation and oxida-
tive stress in the blood vessels, and finally accelerate the 
development of T2DM and CCD. In our study, we found 
that the expression of CAIII protein was reduced in aging 

Fig. 6   Western Blotting 
indicated that, the expression 
of Beclin-1 protein in cortex 
of db/db−/−group decreased 
significantly than WT (A: **, 
P < 0.01), while there was only 
a downward trend in expression 
of LC3II/I. In myocardium of 
db/db−/−group, both the expres-
sions of Beclin-1 and LC3II/
Iwere all reduced, and the dif-
ference of LC3II/Iwas significa-
tive (B: ***, P < 0.001). N = 4
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Fig. 7   Immunohistochemical staining showed that the expressions 
of IL-17in cortex and myocardium of db/db−/− group increased sig-
nificantly than WT (A: Cortex **, P  < 0.01; Myocardium ****, 
P  < 0.0001). And the Western blotting results indicated that IL-
17increased in db/db−/− mice, especially in myocardium (B: **, 

P  < 0.01). The expression of NF-κB protein in cortex of db/db−/− 
group increased obviously than WT (C: *, P < 0.05). The expression 
of NF-κBin myocardium had a upward trend but without difference. 
The arrows point to the IL-17. N = 4

2337Metabolic Brain Disease (2021) 36:2329–2341



1 3

diabetic mice. In recently, some important results elucidat-
ing the physiological role of CA III protein in aging and 
aging-related processes have been obtained from a study 
on the nucleus pulposus phenotype, and the expression of 
CAIII was silenced of the nucleus pulposus cells, and the 
result showed high sensitivity to oxidative stress depend-
ent apoptosis through caspase-3 activation. So it has been 
suggested that mechanisms regulating CAIII expression 
may represent novel therapeutic targets to reduce the nega-
tive effects of with aging (Silagi et al. 2018). Autophagy 
and apoptosis are interconnected. If stress persists and 
autophagy is not able to support cell survival in dying 
cells, apoptosis will be activated to induce an efficient 
elimination of cell debris (Kroemer et al. 2010). Mean-
while, as a marker of the apoptosis, the p53 protein has 
two effects on the process of autophagy (Tang et al. 2015): 
Firstly, it plays a role of transcription factor function to 
mediate autophagy in the nucleus; Secondly, it achieves its 
negative regulatory role of autophagy by the non-dependent 
transcriptional activity in the cytoplasm, the inhibition of 
AMPK activity and activation of mTOR pathway (Maiuri 
et al. 2010; Tasdemir et al. 2008). And there was also 

evidence that cells transfected with CAIII protein were 
protected from apoptosis induced by hydrogen peroxide 
(Raisanen et al. 1999).

As the core protein of autophagy, Beclin-1 not only stim-
ulates or inhibits the occurrence of autophagy by regulating 
the formation of autophagy precursors, but also participates 
in the process of cell death and regulates the dynamic bal-
ance between autophagy and apoptosis (Kondo and Kondo 
2006). The protein of LC3 is the hallmark of autophagy, 
and the expression of LC3–1 is downregulated while the 
LC3-II is opposite, and LC3-II is in direct proportion to 
the number of autophagic bodies (De Angulo et al. 2015). 
The autophagy works through two signal pathways: mTOR 
depended pathway and Beclin1/ClassIII PI3K3C depended 
pathway. Previous studies demonstrated that there were 
autophagy disfunctions mediated by Beclin-1 in brain tissues 
of diabetic mice, which might accelerate the development 
of cerebrovascular disease (Guan et al. 2016). Our results 
suggest that the expression of Beclin-1 is downregulated 
obviously in the pallium of diabetic mice, and the ratio of 
LC3II/I has a downward trend. So, there is autophagy dys-
function in brain tissue of diabetic mice.

Fig. 8   Immunohistochemi-
cal staining showed that the 
expression of p53 protein in 
cortex and myocardium of db/
db−/− group were all increased 
significantly than WT group (A: 
***, P < 0.001). And the West-
ern blotting results indicated 
that the p53 protein in cortex of 
db/db−/− mice expressed more 
than WT mice (B: *, P < 0.05), 
while that in myocardium had 
no difference between two 
groups. The arrows point to the 
p53 protein. N = 4
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Under the stress condition, the enhancement of autophagy 
can regulate the level of inflammation by inhibiting the for-
mation of inflammatory complex and blocking the accumu-
lation of inflammatory factors (Harris et al. 2011). However, 
if the autophagy dysfunction occurs, inflammatory responses 
cannot be regulated normally. IL-17 is a newly discovered 
key pro-inflammatory factor, which will be imbalanced in 
the aged and increase the incidence of cardiovascular dis-
ease, CCD and AS (van Leeuwen et al. 2009), and it can 
accelerate the formation of AS by inhibiting autophagy func-
tion and promote the expression of other inflammatory fac-
tors, such as NF-κB, which pathway has been revealed as a 
key molecular system involved in pathological brain inflam-
mation (Cai and Liu 2012; Tavridou et al. 2011). Also the 
studies have suggested that NF-κB activation may be related 
to neuronal apoptosis, and it can induce cytotoxic products 
that exacerbate oxidative stress and promote apoptosis (Pahl 
1999; Li et al. 2013).While the data from experiments using 
cell lines and animal models suggested that CA III protein 
might function to protect cells from oxidative damage. And 
the downregulation of antioxidant enzymes might be a trig-
ger of autoimmune (Alver et al. 2011). And IL-17 also plays 
an important role in the pathogenesis of several autoimmune 
diseases (Yamada 2010). However, in our study, the apopto-
sis, oxidative stress and inflammation were whole increased, 
while CAIII protein was reduced in aging diabetic mice, 
so there might be more complex mechanisms waiting to be 
explored.

Conclusion

In this research, we found that the carotid artery’ opening 
angles in diabetic mice increased, and suggested the carotid 
artery’ vascular stiffness was increased and which was 
probably related with formation of AS in diabetic mice.. 
Both the CA III protein and autophagy related proteins 
were decreased significantly in the brain and heart of db/
db−/− mice, suggesting that there may be internal relation-
ship between CA III protein and autophagy. On one hand, 
the low-level of CA III protein may increase oxidative stress, 
local inflammatory response, tissue hypoxia and secretion of 
inflammatory factors, for example IL-17 and NF-κB. And 
the reaction process above may further inhibit autophagy. On 
the other hand, it may inhibit autophagy and induce cardio-
vascular and CCD by inducing the increase of p53 protein 
and promoting apoptosis. How does CA III protein regulate 
autophagy and participate in the development of AS and 
what signal pathways are used? Its objective truth and inter-
nal mechanism are not totally known yet.

In this study, we firstly found the decline of CAIII in 
the cortex and myocardium of db/db−/−mice, then con-
firm that the autophagy participated in the occurrence and 

development of diabetic CCD, and speculated that CAIII 
might somehow be involved in the regulation of autophagy 
probably through affecting cell apoptosis and inflammation. 
CAIII protein may be a potential intervention target to pre-
vent or improve CCD associated with T2DM. but it still 
needs further in-depth systematic study, and our group are 
currently carrying on relevant research in this field in the 
future.
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