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Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their 
effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to 
nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the 
agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment 
(TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology 
field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers 
to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods 
that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and 
modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss 
TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers 
and predict drug delivery to tumors and antitumor response.
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INTRODUCTION
The tumor microenvironment (TME) is characterized by many factors including increased concentrations 
of extracellular matrix proteins such as collagen, hyaluronan, and fibronectins, as well as low extracellular 
pH, tortuous neovasculature, and hypoxia[1]. This environment plays an essential role in tumor development 
and response to therapy, and is often highly heterogeneous even within the same tumor type and the same 
patient[1]. The gold standard of cancer treatment is chemotherapy; however, the effectiveness is limited 
due to heterogeneity of the TME itself, multidrug resistance, and nonspecific drug distribution[2]. The 
likelihood of a chemotherapeutic crossing tumor vasculature to act on cancer cells is inherently decreased 
due to physical barriers created based on these varying factors in the TME. To overcome these barriers, 
there has been an increasing trend toward utilizing nanotechnology. Nanotechnology has many theoretical 
advantages in regards to cancer treatment including prolonged exposure, increased solubility, targeted 
delivery, and overall improved therapeutic index[3]. There is also an expected increase in permeability when 
using nanotechnology due to their nanometer size and the association with the enhanced permeability and 
retention (EPR) effect. In theory, the EPR effect is caused by leaky neovasculature and defective lymphatic 
drainage[4,5]. However, the factors that affect EPR and the true presence of the EPR effects in preclinical 
tumor models and especially in patients with solid tumors are unclear. In addition, it is possible that the 
EPR effect is highly variable across tumor types and within patients.

A few nanoparticle agents have been developed and approved by the United States Food and Drug 
Administration (FDA) for the treatment of solid tumors including PEGylated liposomal doxorubicin 
(Doxil®), liposomal daunorubicin (DaunoXome®), liposomal irinotecan (Onivyde®), and paclitaxel albumin-
bound particles (Abraxane®)[6,7]. Although treatment response has improved with the development of these 
nanoparticle drugs, in many cases the theoretical advantages of these drugs are not fully realized. The lower 
than expected efficacy of nanoparticles may be a result of the overall low tumor uptake of these agents that 
is due to the heterogeneity of the components that comprise the TME[4,5]. The varying factors of the TME 
that contribute to this heterogeneity include angiogenesis, stiff extracellular matrix, high interstitial fluid 
pressures, hypoxia, acidic pH, and the presence of immune cells (e.g., macrophages). A characteristic of 
tumor growth is angiogenesis where the rapid growing neovasculature are incredibly fragile, tortuous or 
containing abnormal twists and turns, irregularly shaped, dilated, and highly permeable with increased 
geometric resistance[8]. This abnormal vascular network results in heterogeneous hypoperfused or 
necrotic areas within tumor tissue[9] with variability in blood distribution leading to variability in drug 
distribution[4]. After extravasation of the nanotherapy agent through the tumor vasculature, the stiff 
extracellular matrix caused by activated cancer associated fibroblasts and upregulation of extracellular 
matrix proteins exists as a barrier to the diffusional movement of the agent through the interstitial space[10]. 
High interstitial fluid pressures also prevent extravasation of the nanotherapy agents where they are 
expelled into systemic circulation from the tumor periphery into adjoining tissues[11]. Hypoxia further 
prevents nanotherapy from reaching various parts of the tumor by causing irregular vasculature and poorly 
perfused regions[12]. Immune cells, such as macrophages and monocytes, have been shown to take up 
nanoparticles in circulation, tumor, and tissues, and also alter the delivery of nanoparticles to tumors[13,14].

Many combinational therapies have been developed to improve the efficacy of nanoparticles; however, 
there are still several identified and unidentified factors and barriers in the TME that inhibit nanoparticle 
delivery to tumors[15]. The most promising approach to improving drug delivery and efficacy in solid 
tumors is to modify or “normalize” the TME. This also demonstrates the need for methods to evaluate the 
components of the TME. These methods may also allow for greater efficacy of nanoparticle agents and 
potentially personalized treatment methods for patients or specific tumors and monitoring of treatment 
response[16]. Table 1 summarizes the factors within the TME, their effect on nanoparticle delivery to solid 
tumors, and the imaging methods that can be used to measure these TME factors. The response of the 
TME to selected treatment methods is also an important factor to consider in determining continuation of 
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treatment; however, this topic is beyond the scope of this review. In this review we will summarize current 
imaging methods used to identify TME factors that could affect nano-drug delivery in an effort to provide 
insight on evaluating and modulating these factors as ways to improve nanoparticle drug delivery and 
efficacy. 

IMAGING THE TUMOR MICROENVIRONMENT 
Many cancer therapies can be more or less effective depending on the components of the TME. For 
example, the primary mechanism of radiation therapy is the generation of reactive oxygen species where 
hypoxic tumors are radiation resistant. Hypoxia and other extracellular matrix proteins including collagen 
also act as a barrier to some chemotherapy, resulting in further disease progression[29]. To evaluate the 
mechanism of resistance of the TME to therapy, nanoparticles have been engineered to be stimuli-
responsive when they interact with changes in physiochemical parameters such as changes in temperature, 
light, reduction/oxidation enzymes, or pH. These drugs include functional computed tomography (CT) 
contrast nanoagents that respond to the acidic pH in the tumor microenvironment[30] and glutathione[31], 
and fluorescent nanoprobes utilizing quantum dots that are “switched on” when binding to matrix 
metalloproteinase[32]. The EPR effect in the TME has also been evaluated where tumor accumulation of 
fermuxytol iron nanoparticles imaged with magnetic resonance imaging (MRI) is correlated to tumor 
delivery of nanoliposomal irinotecan[33]. Other nanoparticles used in imaging can be targeted with tumor 
specific antigens to allow for monitoring of cancer nanotherapy including tumor associated macrophage 

TME factor Effect on tumor drug delivery Characterization method
Extracellular matrix proteins: 
collagen, proteoglycan 
(hyaluronan), fibronectin, and 
lamanin

Contribute to tissue density and stiffness, and creating 
a physical barrier to drug penetration[17]

OCT, PAI, and MRI*

Matrix metalloproteinase Upregulates anti-apoptotic molecules protecting cancer 
cells from chemo-induced apoptosis[18]

Optical imaging (fluorescence, 
bioluminescence), PET, SPECT, MRI, PAI, and 
FMT*

Mesenchymal stromal (Stem) 
cells

Can differentiate into various cell types and protect 
cancer cells from external aggression allowing them to 
escape apoptosis[19] 

Fluorescence, bioluminescence, MRI, PET, and 
SPECT

Cancer associated fibroblasts Produce extracellular matrix proteins creating a physical 
barrier to drug delivery[20,21] 

MRI

Immune cells Down regulates proapoptotic molecules and 
upregulates interleukin-6, protecting tumor cells from 
chemo-induced cell death[22]

MRI, PAI, fluorescence, ultrasound, CT*, PET, 
SPECT, and bioluminescence

Tumor vasculature and 
lymphatics 

Upregulates VEGF, modifying the apoptotic signaling 
pathway and expressing anti-apoptotic proteins[23] and 
has varied and disorganized blood flow[24] leading to 
variability in drug distribution

MRI, CT, PET, ultrasound, PAI, intravital 
microscopy, OCT, fluorescence, and 
bioluminescence

Metabolic-choline-
phospholipid metabolism

Increases levels of glutathione, reducing ROH species 
resulting in chemoresistance[25] 

MRI and PET

Hypoxia Induces radio- and chemo-resistance through 
the mechanism of reactive oxygen radicals that 
damage DNA and down-regulate expession of DNA 
topoisomerase II[26] 

PET, MRI, and CT 

Glycolysis Leads to increased production of lactic acid and H+ 
inducing hypoxia and reduced pH[27] 

PET

pH Influences drug uptake based on the acidity of the 
drug, protonating basic chemotherapeutics or allowing 
accumulation of acidic chemotherapeutics[26] 

CT, MRI, PET, fluorescence, bioluminescence, 
and PAI

Tumor-stroma Interactions Abnormal context of the TME facilitates abnormal 
cross-talk allowing tumor cells to disregard rules and 
adapt to the multicellular environment[28] 

Fluorescence, intravital microscopy, MRI, and 
PET

Table 1. Summary of tumor microenvironment factors, their effect on drug delivery to tumors, and characterization methods for each 
factor

*MRI: Magnetic resonance imaging; PET: positron emission tomography; SPECT: single photon emission computed tomography; CT: 
computed tomography; PAI: photoacoustic imaging; FMT: fluorescence molecular tomography; OCT: optical coherence tomography.
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targeted fluorescent nanoparticles (ferumoxytol-VT680XL)[34], antigen specific targeted nanoparticles 
radiolabeled with indium-111 and imaged with single photon emission computed tomography (SPECT)[35], 
positron emission tomography (PET) imaged 64Cu-labeled HER-2 targeted PEGylated liposomal 
doxorubicin for HER-2 positive metastatic breast cancer[36], and targeted ultrasound contrast agents (or 
targeted microbubbles) for vascular endothelial growth factor receptor-2 or avb3 used to image tumor 
neovasculature and aid in assessment of tumor malignancy and treatment response[37]. This allows the 
nanoparticle agents to be used for targeted delivery and interaction with the TME, resulting in increased 
accumulation, facilitated drug release, and an increase in uniform distribution[38]. This type of active 
targeting depends on the specific interaction of the designed nanoparticle with the targeted component of 
the TME. Tracking of cells that interact with the TME is also useful in determining their use for antitumor 
therapy where mesenchymal stem cells can be tracked using organic semiconducting polymer nanoparticles 
imaged with photoacoustic imaging[39] and superparamagnetic iron oxide nanoparticles with MRI[40]. 
Targeted delivery and tracking facilitate the need for a method to easily determine if the targeted or altered 
conditions are present in the TME and monitor the changes in these factors during and post treatment to 
determine the effectiveness. 

In this section, promising imaging methods for characterization and monitoring of the TME will be 
reviewed. Current imaging methods that are available for potential use in the clinic include MRI, PET, 
SPECT, CT, and ultrasound. In addition, other optical imaging methods including photoacoustic imaging 
(PAI), intravital microscopy (IVM), bioluminescence, fluorescence, fluorescence molecular tomography 
(FMT), and optical coherence tomography (OCT) will be discussed. The goal is to present a high-level 
overview of current imaging methods used to characterize the TME relative to nanoparticle drug delivery. 

Magnetic resonance imaging
Introduction
MRI allows for a nondestructive quantitative investigation of various aspects of the TME with good tissue 
contrast, spatial information, and sensitivity. Detailed, whole body anatomical images are obtained by 
employing a strong magnetic field and radio frequency (RF) electromagnetic waves. The protons in the 
human body normally have a scattered orientation; however, when they enter the magnetic field, the 
protons align with this field. The applied RF pulse causes the protons to become deflected by 90° and store 
the energy of the RF pulse. After the RF pulse is suspended, the protons relax to their normal state and 
emit their stored energy where the time it takes for this phenomenon to occur differs depending on the 
type of tissue. Contrast agents can also be used to increase resolution and target specific cell types. The 
disadvantages of MRI as a technique for evaluating the TME include high costs and long acquisition times. 
MRI has the ability to reveal tumor treatment response of various sizes of nanoparticles by evaluating 
the EPR effect of a tumor. Karageorgis et al.[41] measured the functional parameters of eight different 
orthotopic tumor models which were correlated with optical imaging results of accumulation of three 
sizes of fluorescent nanoparticles. They found that comparing permeability and blood volume fraction 
with fluorescent accumulation of the nanoparticles allowed for differentiation of “EPR positive” and 
“EPR negative” tumors[41]. Magnetic nanoparticles can also be used to model colocalization of therapeutic 
nanoparticles, yielding valuable insight into the kinetics of nanoparticle distribution in tumor-bearing 
mice[42]. Ramanathan et al.[33] also demonstrated that the deposition characteristics of ferumoxytol iron 
nanoparticles in tumors may predict tumor response to nanoliposomal irinotecan in patients with solid 
tumors. Patients received ferumoxytol iron nanoparticles and the deposition characteristics and iron 
levels were quantified to demonstrate the EPR effect within tumor lesions. Treatment with nanoliposomal 
irinotecan followed and the tumor levels were measured at two separate biopsy locations. A positive trend 
was observed between ferumoxytol iron lesion values and irinotecan levels as well as tumor response[33]. 
These studies demonstrate the ability of MRI measurements of the distribution of iron nanoparticles to 
predict response to nanotherapy. 
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Extracellular matrix proteins and immune cells 
The development of advanced MRI techniques such as dynamic contrast-enhanced-MRI (DCE-MRI), 
diffusion-weighted MRI (DW-MRI), blood oxygen level dependent (BOLD) MRI, tissue oxygen level 
dependent (TOLD) MRI, and MRI-chemical exchange saturation transfer (CEST) have further increased 
the utility of MRI as an imaging modality for the TME. The use of DW-MRI, and various contrast agents 
in DCE-MRI, have allowed for the specific imaging of extracellular matrix (ECM) proteins including 
collagen[43,44] and hyaluronan[45,46]. These ECM proteins are recruited to the TME through activated fibroblast 
cells which are known to migrate toward the tumor. Tracking of fibroblasts has been achieved with MRI 
by pre-labeling fibroblasts ex vivo and then using magnetic resonance and optical probes to image the 
labeled fibroblasts post injection. The results showed recruitment of fibroblasts to the tumor and migration 
of the fibroblasts throughout the tumor[47,48]. Mesenchymal stem cells (MSCs), a fibroblast-like cell found 
surrounding blood vessels, have also been shown to migrate towards tumors. These cells have potential 
for repair of diseased or damaged tissue and are inherently tumor-homing and immunosuppressive, 
displaying many pro-tumor roles after arrival[49]. Tracking of MSCs labeled with superparamagnetic iron 
oxide nanoparticles in both malignant gliomas[40] and pulmonary metastases[50], and determining their 
use as vehicles for anti-tumor therapy[51] have been performed using MRI, showing their tumor-homing 
response. Further use of iron nanoparticles as MRI contrast agents has resulted in imaging of tumor 
immune cells, specifically tumor-associated macrophages (TAMs). TAMs are also recruited to the TME, 
promote tumor progression[52], and have been proven to be involved in phagocytosis and clearance of 
nanoparticle chemotherapeutics, and the tumor delivery of nanoparticles[53,54]. In addition, increased TAM 
presence in several types of human cancer have been associated with increased vascular density and worse 
clinical outcome. Thus, selective TAM imaging could guide treatment decisions and serve as a biomarker 
for long-term prognosis. Ultrasmall superparamagnetic iron-oxide nanoparticles (USPIO) are virus 
sized nanoparticles with an iron oxide core and a hydrophilic carboxydextran coating which, along with 
their size, allow them a much longer circulation half-life and help determine their pharmacology[55]. Iron 
exposure helps to regulate expression of iron transport related proteins, which are correlated to macrophage 
polarization states, suggesting that iron oxide nanoparticles would be preferentially phagocytosed by the 
multitude of TAMs in the TME[56]. In a study by Daldrup-Link et al.[55] results showed that FDA approved 
USPIO are preferentially phagocytosed by TAMs versus neoplastic tumor cells; however, uptake of the 
USPIO nanoparticles by the neoplastic tumor cells could be a confounding variable when preferentially 
targeting macrophages. Preferential accumulation of nanoparticles in TAMs as measured by MRI has also 
been used to study metastatic lymph nodes in prostate cancer[57-59].

Tumor vasculature 
MMPs are known to be involved in tumor angiogenesis and their activity has been evaluated in vivo using 
novel proteinase-modulated MRI contrast agents[60-63]. This novel proteinase-modulated MRI contrast 
technology was used in the development of theranostic nanoparticles (TNPs) which enabled enzyme-
specific drug activation at tumor sites and simultaneous in vivo MRI of drug delivery. The particles used 
ferumoxytol conjugated to an MMP-activatable peptide conjugate of azademthylcolchicine. The TNPs 
resulted in significant antitumor effects and tumor necrosis, demonstrating the potential of a nanotemplate 
that integrates tumor specificity, drug delivery, and in vivo imaging in a single moiety[63]. Other studies 
of MMP activity have utilized signal-amplifiable self-assembling (19) F MRI probes[64] and an activatable 
cell-penetrating peptide covalently linked to cyclic-RGD, an integrin avb3 binding domain which takes 
advantage of the interaction of MMP-2 with integrin avb3

[65]. These avb3, along with avb5, integrins have more 
recently been imaged with superparamagnetic iron oxide loaded (SPIO) cRGD PEGylated polyion complex 
vessels in order to image the neovasculature in glioblastoma[66]. Modified SPIO in magnetoliposomes have 
also been used for targeting avb3 integrins to study tumor angiogenesis[67]. Specific investigation of tumor 
vasculature can be achieved with various advanced MRI methodologies. The first is DCE-MRI which uses 
direct markers of angiogenesis such as avb3 integrins[68]. The second methodology is dynamic susceptibility 
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contrast (DSC)-MRI, which is the most commonly used MRI method for cerebral perfusion[69-71]. For both 
DSC-MRI and DCE-MRI, the contrast agent extravasates from the vasculature of leaky blood vessels in the 
tumor and the vessel size and density, vascular permeability and perfusion, and extravascular space can be 
assessed[72-75]. DW-MRI is also used for evaluation of tissue perfusion; however, very complex quantitative 
analysis is required for this approach[71,76]. In order to acquire tissue blood flow and volume, arterial spin 
labeling BOLD-MRI is used. In BOLD-MRI methodologies, the visibility of the contrast is based on the 
concentration of deoxyhemoglobin, which is paramagnetic, and works best in poorly oxygenated tumors[77]. 
BOLD-MRI has demonstrated changes in tumor oxygenation following induction of angiogenesis[78] and 
maps of functional vasculature[79]. 

Tumor hypoxia
BOLD-MRI has also been used to image tumor hypoxia as a result of the leaky and tortuous vasculature. 
There are many clinical trials involving the use of agents to combat hypoxia and permit increased response 
to radiotherapy; however, tumor hypoxia for each patient should be measured in the clinic to determine 
eligibility for the studies. O’Connor et al.[80] have used the fraction of tumor tissue refractory to oxygen 
challenge as a biomarker of hypoxia and demonstrated the ease at which this can be implemented in the 
clinic. A review of the comparison of BOLD-MRI and TOLD-MRI was completed by O’Connor et al.[81] 
and described the theory and potential use of both methodologies to identify, spatially map, and quantify 
tumor hypoxia. Biomarkers derived from both BOLD-MRI and TOLD-MRI such as the dioxygen molecule 
(O2) and the deoxyhemoglobin monomer (Hb), can reveal underlying low pO2 and tissue hypoxia[81]. 
Several others have also demonstrated BOLD- and TOLD-MRI as prognostic biomarkers of response 
to therapy[82-84]. DCE-MRI has also proven useful for imaging tumor hypoxia where this methodology 
is routinely used for identification of tumors in patients, demonstrating the ease at which this could be 
implemented in the clinic[85-87]. Stoyanova et al.[85] used an unsupervised pattern recognition technique 
which used a differential signal versus time curve associated with different TME characteristics in DCE-
MRI data to differentiate between well perfused, hypoxic, and necrotic regions of prostate cancer. With 
DCE-MRI already routinely used for tumor identification, this technique could be easily translated to the 
clinic[85] [Figure 1].

Glycolysis and tumor pH
Under the hypoxic conditions in the TME, glycolysis is the predominant pathway for energy production 
leading to decreased pH of the extracellular space and inducing resistance of chemotherapies that are weak 
bases[88]. This glycolysis has been profiled with MRI in pancreatic ductal adenocarcinoma by Yamamoto et al.[89] 
and in lymphoma by Rodrigues et al.[90] who used 13C-MRI. The resulting anaerobic conditions lead to 
decreased pH in the TME in which many MRI methods have been developed for imaging this gradient 
in pH. Gallagher et al.[91] and Scholz et al.[92] measured and quantified pH using 13C labeled bicarbonate. 
More commonly used for tumor pH imaging is CEST-MRI which selectively saturates exchangeable 
protons that are transferred to bulk water signal[93,94]. Chen et al.[95] has demonstrated accurate tumor pH 
measurements with parametric maps of CEST-MRI data and Longo et al.[96] demonstrated a CEST-MRI 
approach to measuring pH using an X-ray contrast agent. To remove the influence of concentration on pH 
measurements, paramagnetic CEST (PARACEST)-MRI can be used[97-100]. It is also possible to differentiate 
between intracellular pH and extracellular pH with CEST-MRI. Intracellular pH detection methods 
utilize amine and amide concentrations from endogenous tissue proteins, which predominately remain in 
the intracellular space[101-106]. Exogenous molecules have also been utilized as extracellular pH reporters, 
permitting monitoring the effectiveness of novel anticancer treatments which reverse the glycolytic tumor 
phenotype[107-111]. The ability to translate CEST-MRI to the clinic still requires significant optimization; 
however, preliminary results and continued optimization studies for reducing respiration artifacts and 
expand the coverage of the body during an acquisition show promising results[96,112-117].
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Nuclear medicine
Introduction
The two most commonly used imaging modalities in nuclear medicine are SPECT[118] and PET[119]. 
Both modalities allow visualization of metabolic processes by detecting gamma rays through use of 
radiopharmaceuticals. The radiopharmaceutical is conjugated to a biologically active molecule (typically a 
sugar used for cellular energy) and injected into the vasculature. The detectors capture emissions from the 
radiopharmaceuticals and use software to create tomographic images of the concentrations in the body. 
These radiopharmaceuticals in SPECT imaging emit gamma rays while the radiopharmaceutical in PET 
imaging emit positrons. SPECT imaging offers a significantly cheaper option in terms of equipment and 
radio tracer costs as well as the possibility of greatly increased imaging time due to SPECT tracers typically 
having a much longer half-life. In contrast, PET offers the advantage of higher spatial resolution images, 
and the ability to quantify metabolic activity for accurate assessment of therapeutic effect. Although 
PET offers more radio tracers available specific to molecules in the TME, their production also requires 
availability of a cyclotron[118,119]. PET also offers excellent sensitivity to small concentrations providing 
biochemical information of diseases including cancer through molecular imaging[120]. Detection of isotopes 
with PET can be obtained down to the 100 picomolar level in target tissues, where this low concentration 
has little or no physiological effect, allowing the independent study of the target mechanism[121].

SPECT imaging
PET is more commonly used for cancer imaging and diagnosis; however, SPECT has been previously used 
to image MMPs[62,122], MSCs[51,123], hypoxia[124], and immune cells[125]. SPECT has also been used to monitor 
cancer nanotherapies such as imaging of prostate specific membrane antigen targeted nanoparticles that 

A

B

Figure 1. Study of well perfused, hypoxic, and necrotic regions of a prostate cancer tumor with dynamic contrast-enhanced mri with 
pattern recognition. (A) Composite color images of individual tumor subtissue features as identified by PR analysis. Images are 
presented for five tumor slices in four tumors with sizes: (a) 478 mm3, (b) 744 mm3, (c) 870 mm3, and (d) 1230 mm3. The perfused 
(red), hypoxic (green), and necrotic (blue/black) features are represented. (B) Tissue feature fractions in the four tumors. Figure 
reproduced with permission from[85].

a b c d

B



Page 389                                         Moody et al . Cancer Drug Resist  2021;4:382-413  I  http://dx.doi.org/10.20517/cdr.2020.94

were radiolabeled with indium-111 along with their untargeted nanoparticle. Results showed that the 
targeted nanotherapy revealed an accumulation of ~6% ID/g that remained constant over time whereas the 
untargeted nanoparticle had a higher tumor uptake of ~8% ID/g but was cleared more quickly between 48-
96 h[35]. Other biodistribution studies of cancer nanotherapies demonstrate the increased circulation time of 
IV administered PEGylated liposomes[126] along with the selective accumulation of technetium-99m (99mTc)-
radiolabeled Caelyx® in the tumor compared to surrounding tissue[127,128].

PET imaging 
Similar to SPECT, PET offers the ability to image track the biodistribution of cancer nanotherapy including 
the analysis of 64Cu-labeledHER2-targeted PEGylated liposomal doxorubicin in patients with HER2 positive 
metastatic breast cancer showing their long circulation time and decreased accumulation in healthy tissue. 
The tracking of this nanotherapy also showed large heterogeneity of tumor accumulation in primary 
breast carcinomas and in different metastatic lesions[36]. This tracking of nanotherapy is an important 
application of PET and further demonstrates the application of imaging and characterization of the TME in 
determining factors dictating the response to nanoparticle treatment. In other experiments, the application 
of PET zirconium-89 nanoreporter to predict response to nanotherapy was investigated. This study showed 
correlation of the tumor uptake of zirconium-89 nanoreporter with the tumor uptake of various other 
nanoparticle drugs. This demonstrated that the zirconium-89 nanoreporter could be used as a surrogate 
measure of nanoparticle tumor delivery and used as inclusion criterion for patient’s tumor that is amenable 
to nanotherapy[129]. PET has also been used for imaging MMPs[130-134], MSCs[135-138], and immune cells[139-141]. 
Choline-phospholipid metabolism PET imaging has been demonstrated by several groups and successfully 
translated to the clinic, despite limitations in metabolite discrimination[142-145]. PET imaging is also very 
useful for measuring tumor vasculature and lymphatics through quantitative measurement of blood flow 
and perfusion[146-148], blood volume and vascular permeability[149,150], and specific molecular markers of 
tumor vasculature including integrins[151-156], VEGF receptors, and EGF receptors[157-165].

Tumor hypoxia and pH
PET offers much more advanced imaging of tumor hypoxia[166,167]. The most commonly used PET tracer 
for hypoxia imaging is FMISO[168] which has been used in patients with glioma[169,170] and in mice with 
micrometastases[135]. When compared with other PET tracers for imaging tumor hypoxia, studies showed 
that each tracer had advantages that could be used depending on the desired imaging requirements[171,172]. 
PET imaging also has the capability of detecting changes in hypoxia before and after treatment, providing 
insight on treatment response[173-175]. Various materials have been investigated for use in PET hypoxia 
imaging including copper[176] and gallium[177], where copper demonstrated faster accumulation while 
gallium demonstrated minimal liver accumulation and excellent specificity to hypoxic tissue. Changes 
in hypoxia and glycolysis in the TME result in changes in pH where a few PET probes for pH have been 
developed; however, research in this area is limited due to the limited spatial resolution[178-181]. Under 
hypoxic conditions, glycolysis is the major energy producing pathway making glycolysis an attractive target 
for therapeutic interventions. Moreover, glycolytic inhibitors that cause ATP depletion show promising 
anticancer activity and regressions in in vivo models of solid tumors[182]. Monitoring glycolysis using PET 
has been demonstrated; however, only the early stages of glycolysis are probed, where more characterization 
is needed to evaluate complete metabolism[89,183-185]. Nuclear medicine has demonstrated broad use in 
imaging multiple factors within the TME, further demonstrating the abilities for correlating factors within 
the TME to successful delivery of nanotherapies[129].

Computed tomography
Introduction
CT is a noninvasive tomographic imaging technique based on X-ray attenuation that permits high 
efficiency and fast temporal resolution related to the electron density of tissue. The X-ray images are 
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generated with a fan-shaped X-ray beam and digital X-ray detector that rotate about the patient to 
collect multiple X-ray projections needed to generate a tomographic CT image. The image processor 
then performs massive calculations to construct the CT image. A limitation of CT in imaging soft tissue 
lesions such as tumors, is a lack of contrast between the soft tissue and normal tissue, therefore contrast 
agents are necessary to achieve accurate tumor detection[186]. Clinically, iodinated small compounds are 
used as a CT contrast agent, but are usually limited by short circulation time, potential adverse effects, 
and lack of specificity[187]. However, Sahani et al.[188] used CT contrast agents allowing the assessment of 
tumor vascularity and perfusion in rectal cancer where tumors showed higher blood flow and shorter 
mean transit time which reversed after treatment with chemotherapy and radiation therapy. Additionally, 
the study indicated that initial high blood flow and short mean transit time typically responded poorly to 
chemotherapy and radiation therapy[188]. To improve circulation time, specificity, and visualization of CT 
contrast agents in the tumor vasculature, nanoparticle contrast agents have been explored, allowing not 
only investigation of the tumor vasculature, but also how the nanoparticles interact with the TME[189-191]. 
Ghaghada et al.[191] showed that the longer circulation time of nanoparticle CT contrast enabled 
longitudinal tracking, revealing regions with high ‘leakiness’ and increased vessel permeability within 
tumors. The extravascular signal enhancement of these nanoparticle CT contrast agents showed highly 
heterogeneous signals within all tumors and also varied between animals[191]. In recent years, there has been 
even more advancement in CT contrast agents with the development of negative CT contrast agents as well 
as spectral CT, making it feasible to use functional CT contrast nanoagents (FCTNAs) for evaluation of the 
TME[192-194]. These FCTNAs can be targeted to specifically bind to overexpressed receptors in the TME for 
imaging purposes and for targeted drug delivery. Zou et al.[195] used targeted CT contrast to accumulate at 
an avb3-integrin positive B16 melanoma, which once degraded, released the loaded doxorubicin resulting in 
suppression of the B16 melanoma. Targeted CT imaging has also been achieved for different cancer types, 
including human hepatocellular carcinoma through binding to the overexpression of asialoglycoprotein 
receptors[31], 4T1 breast tumors through overexpressed p32 cell surface receptors[196], and for the over- or 
under-expression of avb3 integrin in various tumor types[197].
 
Tumor hypoxia and pH
Another use of FCTNAs involves contrast that is designed to diagnose, determine different levels of, and 
treat tumor hypoxia, offering improved prognosis and decreased treatment resistance[198-201]. When a tumor 
is hypoxic, this often leads to changes in pH where FCTNAs have been developed to respond to the acidic 
microenvironment of the tumor. Tian et al.[30] developed a FCTNA that, through interaction with the acidic 
TME, folds and inserts into the lipid bilayer of the tumor cells. Negative CT contrast agents have also been 
designed to generate hydrogen in response to the acidic TME for accurate diagnosis of osteosarcoma [193] 
[Figure 2]. In order to enhance the effectiveness of pH responsive contrast agents, FCTNAs have also 
been conjugated to respond to glutathione[31,202,203]. Although conventional CT may be limited, it has great 
advantages of high spatial and temporal resolution and new nano-CT contrast agents have improved 
the CT technology allowing for improved monitoring of the TME, although it is important to note that 
relatively high local concentrations of contrast are needed to achieve good sensitivity[204].

Ultrasound 
Introduction 
Ultrasound is a widely used diagnostic tool for visualizing the structure of native tissues which uses 
backscattered radio-frequency sound waves to generate a gray-scale image, resulting in a qualitative 
image of tissue structure. The ultrasound beam is created through mechanical oscillations of crystals in 
a transducer that is excited by electrical pulses and converts the energy into sound. The sound waves are 
detected as reflected echoes after propagation through tissue where the reflections occur at the boundary 
between tissues with varying densities. This leads to the altered physical tissue characteristics in disease 
states being readily visualized. Conventional and advanced ultrasound techniques are excellent probes for 



Page 391                                        Moody et al . Cancer Drug Resist  2021;4:382-413  I  http://dx.doi.org/10.20517/cdr.2020.94

monitoring and correlating factors within the TME due to cost effectiveness, ease of use, lack of ionizing 
radiation, non-invasiveness, portability/accessibility of the equipment, and the ability to multiplex. 
Recent work has focused on the use of nanotechnology in combination with ultrasound to increase the 
localized delivery of drugs to solid tumors[205]. The leaky and tortuous vasculature within the TME prevents 
accumulation of the nano-drug; however, an ultrasound process called sonoporation can increase the size 
of pores in the cell membrane after mechanical impact of ultrasound radiation, increasing permeability 
and allowing passive entry of nanoparticles into cells[205]. Ultrasound can also be used to release drug from 
nanoparticles. For example, ultrasound induced shear stress can be used to rupture nanoparticles (e.g., 
drug loaded polymersome, perfluorocarbon nanoemulsions, and liposomal nanocarriers), releasing their 
cargo at the targeted site[206]. Thus, sonoporation of the endothelial cells and shear stress of the nanoparticle 
drugs after interaction of ultrasound radiation allows for increased cell permeability, cell retention of the 
drug, stimulation of drug release only at the targeted site, and decreased off-target toxicity[205,207]. The field 
would benefit from increased depth imaging and improved quantification to allow increased translation of 
these advanced techniques into the clinic. Over the past several decades, many researchers have developed 
techniques to improve the ability to make tissue characterization with ultrasound quantitative[208-211]. Lizzi et al.[212] 
and Ghoshal et al.[208] performed analytical investigations of specific tissue features that determine spectral 
signatures. These advancements in ultrasound imaging have resulted in successful quantification of 
collagen, a major component of the TME and barrier to drug delivery to tumors[213-216]. 

Figure 2. Computed tomography (CT) images using a negative CT contrast agent designed to generate hydrogen in response to acidic 
pH in the tumor microenvironment of osteosarcoma. (A, C) CT images of osteosarcoma-bearing rats by intratumor and intravenous 
injection of HMSN@AB@PEG nanoparticles (at various time points). Transverse gray and corresponding pseudo color images were 
obtained with a dashed line representing the area of osteosarcoma and the region of arrows was the low CT density area of H2 release. 
The rectangle ROI were used to calculate the variation of CT density between two time points (Pre and 120 min). (B, D) Corresponding 
intratumor and intravenous 3D reconstruction maps of rat with a dashed line representing the area of osteosarcoma. Figure reproduced 
with permission from[193].
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Tumor vasculature 
Other advancements in ultrasound imaging including the development of acoustic angiography based 
on the use of ultrasound contrast agents, called microbubbles, have resulted in visualization of tumor 
microvascular architecture without a significant contribution from background tissues[218]. Microbubbles 
are spherical cavities with a gas encapsulated in a shell made of phospholipids, surfactant, denatured 
human serum albumin, or synthetic polymer which resonate with ultrasound waves. Microbubbles provide 
a strongly reflective interface, and are currently clinically approved for use as an ultrasound contrast agent 
in cardiac and liver imaging[219]. These microbubble contrast agents are confined to the blood stream 
when injected intravenously. Acoustic angiography has been used to map micro-vascular networks in the 
TME[218,220-222], differentiate tumor tissue from healthy tissue[217,221] and various tumor types[223], as well as 
monitor response to therapy[37,224]. The dense and tortuous vessel network in solid tumors allow the use 
of acoustic angiography in the assessment of neo-vascularization for early diagnosis[217] [Figure 3]. One 
limitation of acoustic angiography for vascular imaging is the imaging depth (up to several centimeters[218]). 
However, this can be overcome by using techniques such as Doppler-based ultrasound techniques[225] and 
ultrasound localization microscopy[226], although these methods are susceptible to tissue motion. In order 
to increase specificity of ultrasound imaging to target molecules, microbubbles conjugated to antibodies or 
ligands are used where the molecular ultrasound targets are expressed on vascular endothelial cells. These 
microbubbles have greatly reduced adverse effects when compared to CT/MRI contrast agents with an 
added advantage of real-time imaging[37].
 
MMPs are involved in angiogenesis, tumor invasion, and metastasis where ultrasound microbubbles have 
been conjugated with specific antibodies for MMP imaging[227]. Other angiogenic markers are vascular 
endothelial growth factor receptor 2 (VEGF-2) and avb3 integrin receptor, which are both hallmarks of the 
neovasculature that occurs in tumors at an early stage to establish an independent oxygen and nutrient 
supply. Targeted microbubbles for VEGF-2 have been developed where imaging studies show expression of 
the receptor in several different tumor models[228-231]. Along with molecular targeting of vascular markers, 
microvasculature imaging is also an excellent tool in assessment of tumor malignancy and response to 
treatment such as predicting response to therapy before measurable changes in tumor volume [37]. Vessel 
tortuosity, or vessels that contain abnormal twists and turns leads to abnormal or variable drug distribution 
of nanoparticle drugs within the tumor. Lindsey et al.[232] have assessed the combined microvascular and 
molecular imaging in a technique termed molecular acoustic angiography, suggesting that increased 
distance from VEGFR2- and selectin-targeting sites showed decreased vessel tortuosity. Lakshman et al.[233] 
performed screening studies of the tumor vasculature in the TME of an orthotopic mouse model of human 

Figure 3. Acoustic angiography images of angiogenesis and vessel tortuosity. (A) Images of control non-tumor bearing regions and (B) 
fibrosarcoma tumor bearing regions in a rat. Tumor size is represented with dashed yellow lines. Tortuous vessels denoted by red arrows 
represent angiogenesis around the periphery of the tumor. Higher vascular density in the tumor is demonstrated by more enhancement 
in the images due to higher contrast agent perfusion. The vasculature in control images is more linear and directional, as shown. Figure 
reproduced with permission from[217].
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pancreatic cancer and demonstrated heterogeneous microvascular distribution with high perfusion at the 
periphery of the tumor and a poorly perfused core. 

Ultrasound elastography
Ultrasound elastography is an advanced ultrasound method available for assessing factors within the 
TME. Elastography has the ability to measure tissue pressure and stiffness by visualizing the shear 
modulus of tissue, an intrinsic property of soft tissue defined as the ratio of shear stress to shear strain. 
For measurement of shear modulus, tissue motion is induced by using quasi-state, harmonic, or transient 
mechanical source. The mechanical movement or spatial variation of the tissue response is measured with 
an ultrasound transducer in which a simplified or continuum mechanical model is applied to obtain shear 
modulus values[234]. The pressure gradient at the tumor margin exerts mechanical stress which creates an 
increase in shear modulus[235]. Relative to the study of cancer, initially, ultrasound elastography has been 
primarily used for differentiating benign tumors from malignant[236-239]; however, more recently it has 
been used for the study of various factors within the TME. The correlation of cancer associated fibroblasts 
in breast cancer with markers of aSMA and CD34, has been investigated using ultrasound elastography 
finding that aSMA was positively associated with elastography scores and elevated in malignant lesions, 
while CD34 was negatively associated with elastography scores and is downregulated in malignancies[240]. 
Several other studies have shown increased collagen fibers with increased shear modulus[241-243]. In regards 
to drug delivery, elastography has been used to map the relationship between shear modulus and drug 
delivery within the pancreatic ductal adenocarcinoma TME. Results showed that drug delivery was directly 
influenced by shear modulus and that the factors within the TME including collagen modulate the shear 
modulus values[244].

Optical imaging techniques
Introduction 
Current clinically available imaging techniques including PET, MRI, and CT typically have low spatial 
resolution, therefore, it is difficult to use these techniques for any real-time in vivo analysis of genetic, 
molecular, and cellular events[245-247]. Optical imaging methods are those that use luminescent enzymes 
such as bioluminescence or fluorescent proteins and dyes where these have been largely used for in vitro 
and ex vivo applications in cellular and molecular biology. These methods have the advantage of speed and 
versatility as well as the lack of special equipment, allowing the technique to be performed in any research 
lab or clinic[248]. Although these techniques are limited by depth of penetration (i.e., millimeter range), the 
ability to image the functional dynamics of the TME relative to time and space would give information in 
predicting and monitoring response to therapy.

Photoacoustic imaging
Photoacoustic imaging, or PAI, uses pulses of light to illuminate tissue, which causes a pressure change 
when absorbed, generating ultrasound waves that can be detected with an ultrasound transducer. To 
allow the spatial resolution, temporal resolution, imaging depth, and image contrast to be tuned in PAI, 
light sources varying in wavelength can be used. Wavelengths in the visible and near-infrared region 
primarily takes advantage of the contrast due to hemoglobin, although other contrast agents including 
dyes or genetically expressed absorbers are used to obtain targeted molecular contrast. PAI has been 
used to quantify nanodrug delivery by conjugating the particles with molecules that are oxidized during 
release to produce a concentration-dependent photoacoustic signal [249]. Additionally, PAI is used for 
visualizing the development of vasculature in tumors including tumor vessel tortuosity[250] [Figure 4], 
vessel diameter and density[251], and the recruitment of existing vessels to feed the tumor mass[250,252]. Tumor 
vasculature characteristics are imaged by using a single wavelength of light, selected as an isosbestic 
point of Hb and HbO2 at 532 nm and permits sub-100-mm resolution, non-invasively. Total hemoglobin 
concentration blood oxygen saturation (sO2) can be measured with PAI in combination with spectral 
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unmixing algorithms where total hemoglobin concentration is typically higher and sO2 is typically lower 
in tumor tissue compared to normal tissue[253-257]. Low sO2 values are due to typical tumor hypoxia leading 
to poor perfusion and high consumption of O2 which can also be correlated with vascular maturity and 
perfusion efficiency[258-261]. In contrast, decreasing total hemoglobin concentration has been shown to 
indicate vessel normalization following anti-angiogenic therapies[262] and increasing sO2 has been shown to 
predict radiotherapy response in mice[263,264]. Complementing the investigation of vascular features, tumor 
hypoxia[265] and tumor pH[95,266,267] can also be evaluated. 

Extracellular matrix proteins and immune cells
Aside from tumor vasculature and oxygenation, many other components can be evaluated with PAI 
including collagen, MMPs, and immune cell infiltration. Preclinical studies of fibrosis and lipids has 
mainly focused on other diseases including Crohn’s disease[268,269] and atherosclerosis[270,271], but show 
excellent promise for its application in the TME. The monitoring of MMP production or activity in the 
TME provides a potential predictive biomarker of metastasis and their production has been monitored 
preclinically with PAI[272-275]. By using exogenous contrast agents, immune cells can be labeled and tracked, 
in vivo, and this has been shown with fluorescently labelled T cells[276,277]. Other contrast agents including 
organic semiconducting polymer nanoparticles and small-molecule dyes have been used to label and 
track injected stem cells[39,278] where this pre-loading of cells avoids the macrophage phagocytosis of the 
nanoparticles[279]. The organic semiconducting nanoparticles in the far infrared window revealed significant 
photoacoustic contrast enhancement, demonstrating feasibility for real-time photoacoustic monitoring of 
stem cell behaviors such as cell differentiation which would advance the understanding of stem cell-based 
therapy[39]. 

Intravital microscopy 
Intravital microscopy allows for in vivo imaging of cancer at subcellular-scale resolutions. This nonlinear 
microscopy relies on scanning tissue with single photon or multiphoton fluorescent microscopy and 

Figure 4. Tumor vasculature development and vessel tortuosity using photoacoustic imaging. (A) Volume-rendered 3-D photoacoustic 
image of a LS174T subcutaneous tumor (day 8 post inoculation) with arrows indicating artery-vein pairs. (B) Top: Maximum intensity 
projection (MIP) of the image presented in (A). The insets show magnified y-zy-z and x-yx-y MIPs of a region containing a small blood 
vessel. Bottom: Profiles across this vessel between points A-B and C-D were plotted and fitted with a Gaussian function to obtain spatial 
resolution. (C) Photoacoustic images of a larger SW1222 subcutaneous tumor (day 12 post-inoculation) illustrating an imaging depth of 
at least 9 mm. Figure reproduced with permission from[250].
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is commonly used to image the extracellular matrix in cancers[280]. To form the image, the excitation 
beam interacts with the target molecule to excite a transition between two energy levels. The light that is 
emitted upon relaxation of the target molecule is due to vibrational and rotational motion and this light 
is detected to generate the final image[281]. Most studies have been completed preclinically, with clinical 
applications being limited to endoscopic investigation of gastrointestinal cancers[282] and cytoscopic 
investigation of bladder tumors[283]. Preclinically, advanced fluorescent labeling techniques can be used 
with IVM to characterize the TME in relation to tumor vasculature growth, regression, and density[284,285], 
as well as metastasis[286], tumor-associated immunocytes[287], the interaction of cancer therapeutic agents 
with cancer and immune cells[288], and the response of macrophages to neoadjuvant chemotherapy[289]. 
Often, a window of dorsal skinfold chamber is installed on animals with superficial tumors including skin 
tumors for IVM imaging, where deeper tumors such as colon, liver, or pancreatic tumors are not directly 
accessible, requiring specific surgical procedures to expose the tumor[290,291]. The heterogeneity of immune 
components such as macrophages can lead to large variances in prognosis. Cuccarese et al.[34] studied the 
heterogeneous distribution of macrophages between tumors showing large heterogeneity between tumor 
sizes which was later correlated to nanotherapeutic drug delivery [Figure 5]. The authors found that the 
uptake of nanotherapeutics into the tumor were dependent upon macrophage density, where macrophage 
depletion decreased nanotherapy delivery and efficacy[34]. Macrophages have also been shown to mediate 

A B

Figure 5. Investigation of the large heterogeneity in tumor macrophages and tumor size with intravital microscopy. (A). Early-stage 
tumors with clear indication of surrounding tumor associated macrophage (TAM) presence. TAM infiltration is observed in response 
to 16 individual tumor cells within a single nascent nodule. Scale bars, 1000 mm (top), 100 mm (middle/bottom). (B) Mouse tumor 
analysis at 2 stages of disease progression revealing facile tumor detection at varying locations and heterogeneous distribution of TAM. 
Dashed lines outline the lung. Scale bars, 1000 mm. For all, days denote time post inoculation. Figure reproduced with permission 
from[34].
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the antitumor activity of bisphosphonates in 4T1 mouse mammary tumors[292]. There have also been 
studies that employed nanotechnologies, referred to as “smart” nanotechnologies, that use fluorophores 
or quenchers which respond to changes in the TME conditions[293]. One limitation of IVM is overlap or 
bleed-through between related fluorophores and when using particular laser light sources and microscope 
filter sets while labeling and imaging more than one component of the TME. To overcome this limitation, 
fluorescence-lifetime imaging microscopy can be used in which fluorophores with different fluorescence 
lifetimes are used[294] and this can be combined with standard wavelength filtering to allow investigation of 
TME dynamics[295,296].

Bioluminescence imaging
Bioluminescence uses ultra-sensitive charge-coupled device cameras to measure biopermeable 
luminescence after administration of a luciferase gene such as D-luciferase of coelenterazine. Luciferases 
proteins are found naturally in insects, bacteria, and plants and have enzymatic activity that catalyzes 
the oxidation of the substrate in a reaction in the presence of ATP, oxygen, and luciferin resulting in the 
emission of a photon. The resulting photons can travel through tissue and thin bones and are detected 
to form the image. This process allows the visualization of the movement of cancer cells in living 
animals[297-299]. Bioluminescent nanoprobes have been developed for the in vitro analysis of MMP activity 
composed of AuNPs and luciferases, where the AuNPs efficiently quenched the bioluminescent emission 
allowing the nanoprobe to detect the proteolytic activity of MMP-2[300]. Other in vitro bioluminescent 
probes have been developed in combination with quantum dots allowing for multiplexing of different 
MMP activities and increased detection sensitivity[301,302]. In vivo bioluminescent detection of MMP activity 
has been achieved by using luciferase-quenched protein nanoprobes bound to collagen, allowing them to 
remain in the extracellular space for increased sensitivity[303]. Bioluminescent probes have also been used 
to track MSCs in vivo[304-307], in vitro[308], and ex vivo[309], as well as immune cells[310]. Tumor hypoxia and 
altered pH were shown to reduce bioluminescent signals[311,312] which led to the development of specific 
bioluminescent probes for tumor hypoxia using CYP450 reductase[313] and a HIF-1a reporter construct[314]. 
Due to the advantage of bioluminescence for visualizing movement of cells, it is also an excellent tool 
for the analysis of tumor-stroma interactions and has been used with heterogeneous 3D models for drug 
screening[315,316].

Fluorescence imaging
Fluorescence imaging excites the atoms in the target molecule to a higher energy level and when they relax 
to a lower level, they emit photons at a lower energy but longer wavelength than the excitation light. The 
emitted light is filtered from the excitation light based on wavelength before sent to the detector to form 
an image. Fluorescence imaging has an increased spatial and temporal resolution in comparison with 
bioluminescence imaging and has the ability to detect single cells in real time[247,317]. Fluorescent proteins 
can effectively transfect cancer cells, allowing visualization of the movement of cancer cells through 
vasculature, in vivo, demonstrating the ability to image processes such as metastasis and intravasation or 
extravasation of cancer cells[318]. By using multicolor fluorescent imaging, cancer cells can be distinguished 
from stromal cells in the TME[319,320] and the interactions between the cancer cells and the tumor stroma 
can be elucidated[321,322]. Growth factors including the Ras superfamily G protein[323] and VEGF which 
promotes angiogenesis[324] have been fluorescently imaged, showing the promise of this method for analysis 
of cell signaling. Further studies of tumor angiogenesis using fluorescent imaging has been performed 
using a near infrared probe that labels blood vessels to evaluate changes over time[325]. Other fluorescent 
studies of tumor vasculature include combination with multispectral unmixing[326], the use of Cy5.5-labeled 
probe for CD13 expression on tumor neovessels[327], the use of a VEGF conjugated infrared dye[328], and 
the use of dynamic fluorescent imaging for monitoring vascular density, perfusion rate, and permeability, 
simultaneously[329]. Similar to bioluminescence imaging, there are excellent fluorescent nanoprobes for 
imaging MMP activity that are “switched on” by the enzyme activity when they bind to the MMP target. 
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The design of these probes involves the use of quantum dots conjugated to peptides[32,330,331] or the use 
of silica nanoparticles[332] and gold nanoparticles[331,333,334]. Fluorescent probes have also been designed 
to investigate the accumulation of hyaluronan and collagen in ex vivo tumor sections[335] and for in vivo 
intraoperative imaging of hyaluronic acid conjugates for assistance in surgical resection of pancreatic 
cancer[336]. Both MSCs and immune cells may be labeled ex vivo with fluorescent molecules to determine 
the localization and quantification of immune cells in whole tissue[337] or to inject the prelabeled cells and 
view their activity in vivo[338,339]. Quante et al.[340] showed evidence that CAFs originate from bone marrow 
and derive from MSCs through the expression of red fluorescent protein in aSMA-RFP transgenic mice. 
Often, investigations of CAFs are performed using immunofluorescence, in vitro[341,342]; however other 
studies have shown the expression of fibroblast activation protein on CAFs[343]. To study hypoxia in the 
TME, several fluorescent probes have been designed, primarily involving the use of near infrared probes 
conjugated to hypoxia activatable molecules, demonstrating a turn-on fluorescent probe[344-347]. Activatable 
fluorescent probes are also used to monitor pH in the tumor microenvironment[348-351]. Fang et al.[349] 
designed a fluorescent probe that responds to the acidic nature of the tumor microenvironment by using a 
coumarin-hybridized dye with spirolactam ring structure which remains in a ring-closed form at neutral 
pH, displaying fluorescent peaks in the visible region but the rings opens up at acidic pH, displaying 
fluorescent peaks in the near infrared region. These probes are excellent for identifying the tumor. Liu et al.[350] 
developed a fluorescent probe based on CdSe quantum dots where the reduced tumor pH leads to the loss 
of the surface stabilizer of the quantum dot, changing the fluorescence intensity and a mathematical model 
between fluorescence intensity and pH reveals the pH of the tumor environment within a range of 6.1-7.8. 
Optical imaging methods are advantageous in their increased spatial and temporal resolution as well as the 
ability to image multiple targets simultaneously; however, the depth of imaging is still limited as well as the 
topographical information. 

Fluorescence molecular tomography
FMT takes advantage of the diffuse nature of photon propagation in tissue, producing a tomographic 
reconstruction in 3D through combining micro-CT and fluorescence images. Similar to fluorescence 
imaging, a fluorescent agent is injected and accumulated in targeted tissues. The fluorescent agent is excited 
with a laser, emitting photons with a longer wavelength than the excitation wavelength allowing them to 
be filtered and detected. With FMT, multiple spatial locations on the tissue are illuminated allowing a 3D 
reconstruction of the target tissue[352]. A main focus of FMT has been the imaging of MMPs including 
macrophages[353]. Activatable probes analyzed with FMT have been used to monitor the greatly upregulated 
MMP in glioblastoma by injecting a MMP-750 probe followed by acquiring a micro-CT and fluorescence 
images for the reconstruction of FMT[354]. The results allowed for accurate location detection of orthotopic 
glioma mouse tumors. MMPs have been shown to play a large role in angiogenesis, where FMT has been 
used to evaluate the volume of tumor vasculature in mice as well as the normalization of tumor vasculature 
over time after treatment with antiangiogenic agents[355,356]. A good correlation between the degree of tumor 
vascularization and the degree of tumor accumulation was found with FMT, suggesting that FMT can be 
used not only to characterize and predict enhanced accumulation of nanoparticle drugs but can be used 
to pre-select patients that are likely to respond to passively tumor-targeted nanomedicine treatments[357]. 
The advantages of FMT include its inherent quantitative nature, depth of penetration, ability to image 
without any ionizing radiation, and its ability to multiplex by using fluorophores that do not overlap all 
demonstrating the potential abilities of FMT for evaluation of the tumor microenvironment[358].

Optical coherence tomography
OCT is a relatively new, non-invasive imaging technique that provides label-free imaging of living tissue. 
The contrast in OCT is due to the light scattering properties of cells, stroma, and other tissue structures and 
utilizes longer wavelengths in the near infrared region, which allows imaging at high resolutions deeper 
into tissues. The image is constructed by illuminating the sample and measuring the echo time delay and 
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intensity of the backscattered light from the tissue. The tissue and boundaries causing the backscattered 
light have different optical properties and the dimensions of the tissue structure can be determined by 
measuring this backscattering time[359]. The mechanical components used for OCT can also be miniaturized, 
allowing them to be integrated into small probes, catheters, and endoscopes for imaging at internal sites[291]. 
In order to determine the longitudinal treatment response to nanotherapeutic delivery of rare ocular 
cancers, OCT was used and correlated with histopathology and flow cytometry, revealing relationships 
between neoplastic growth, neovascularization, and the immune microenvironment facilitating 
development of targeted therapies[360]. For investigating the TME, OCT has been used to investigate the 
collagen structures associated with bladder and skin cancer[361,362] and to study the relationship between 
fibroblasts and mammary epithelial cells, in vitro, where the matrix stiffness was manipulated by changing 
the collagen content[363]. Assessment of the morphology of tumor vascular networks was performed using 
microstructural OCT[291] and combining architectural and vascular OCT images acquired simultaneously 
allows for differentiating intra-tumor and peri-tumor vessels[364]. Other evaluations of vascular patterns 
have been performed in melanoma skin lesions with dynamic OCT[365]. The addition of contrast agents 
to OCT increases sensitivity, extending the capabilities into molecular imaging[366] allowing for improved 
microvascular imaging[367-369], investigation of the fundamental behaviors of tumor associated macrophages 
and other leukocytes through speckle-modulating OCT[370] as well as the human epidermal growth factor 
receptor 2 (HER2 neu) protein with magnetomotive OCT which uses antibody conjugated magnetic 
nanoparticles[371]. 

CONCLUSION AND FUTURE WORK
Factors within the TME are typically investigated individually in preclinical studies and the imaging 
modality most appropriate for that specific or desired TME target is used. However, the TME is highly 
variable and there are dynamic interactions between the TME and cancer cells that affect tumor growth, 
development, and response to nanotherapies[372]. Thus, there is an urgent need for improved analysis of 
interactions and crosstalk within the TME, which requires advanced imaging techniques. As described 
above, standard imaging modalities currently used in the clinic are CT, MRI, PET, SPECT, and ultrasound 
where there are both advantages and disadvantages to these techniques when evaluating the tumor 
microenvironment. MRI, PET, and SPECT are very expensive to use and have long acquisition times; 
however, they provide excellent sensitivity and soft tissue contrast. PET and SPECT also require exposure 
to radiation. CT is not as costly and allows rapid, whole-body imaging with high resolution but has low soft 
tissue contrast and similarly requires exposure to radiation. Ultrasound is only semiquantitative with low 
soft tissue contrast but has the advantages of being a real-time imaging method with rapid, high spatial, 
and temporal resolution along with low cost. Other advancements in ultrasound imaging, including the use 
of contrast agents and the development of photoacoustic imaging, have demonstrated greatly improved soft 
tissue contrast. The continued development of safe and effective contrast agents will permit improvements 
in all clinical imaging modalities[373]. Optical imaging methods including PAI, OCT, FMT, intravital 
microscopy, fluorescence, and bioluminescence have a much higher sensitivity for contrast agents and a 
much broader availability of probes permitting detection of multiple TME components, but are limited by 
imaging depth, small field of view, and difficulty in quantitation[374]. There is an inherent tradeoff between 
imaging resolution and depth of penetration and the optimal selected method will be dependent upon the 
desired imaging goal and target. A summary of the imaging methods discussed with their advantages in 
resolution and imaging depth as well as safety concerns can be found in Table 2.

Currently, there is not one single imaging technology that can simply screen multiple TME factors in a 
single scan. Thus, to identify the dominant factor that alters tumor delivery of nanoparticles, multiple 
imaging technologies or varying contrast would need to be applied to each tumor in a similar fashion to 
immunohistochemical staining of tumor samples to evaluate a series of TME factors. In order to better 
select the appropriate imaging technique, it is important to know the advantages and disadvantages of the 
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