
TYPE Original Research

PUBLISHED 26 September 2022

DOI 10.3389/fnins.2022.971937

OPEN ACCESS

EDITED BY

Arindam Basu,

City University of Hong Kong,

Hong Kong SAR, China

REVIEWED BY

Lei Deng,

Tsinghua University, China

Jyotibdha Acharya,

Institute for Infocomm Research

(A*STAR), Singapore

*CORRESPONDENCE

Lina Bonilla

libonill@gmail.com

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 17 June 2022

ACCEPTED 26 August 2022

PUBLISHED 26 September 2022

CITATION

Bonilla L, Gautrais J, Thorpe S and

Masquelier T (2022) Analyzing

time-to-first-spike coding schemes: A

theoretical approach.

Front. Neurosci. 16:971937.

doi: 10.3389/fnins.2022.971937

COPYRIGHT

© 2022 Bonilla, Gautrais, Thorpe and

Masquelier. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Analyzing time-to-first-spike
coding schemes: A theoretical
approach

Lina Bonilla1*, Jacques Gautrais2,3, Simon Thorpe1 and

Timothée Masquelier1

1CERCO UMR5549, CNRS – Université Toulouse III, Toulouse, France, 2Centre de Recherches sur la

Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse,

France, 3CNRS, UPS, Toulouse, France

Spiking neural networks (SNNs) using time-to-first-spike (TTFS) codes, in

which neurons fire at most once, are appealing for rapid and low power

processing. In this theoretical paper, we focus on information coding and

decoding in those networks, and introduce a new unifying mathematical

framework that allows the comparison of various coding schemes. In an early

proposal, called rank-order coding (ROC), neurons are maximally activated

when inputs arrive in the order of their synaptic weights, thanks to a shunting

inhibition mechanism that progressively desensitizes the neurons as spikes

arrive. In another proposal, called NoM coding, only the first N spikes of M

input neurons are propagated, and these “first spike patterns” can be readout by

downstream neurons with homogeneous weights and no desensitization: as a

result, the exact order between the first spikes does not matter. This paper also

introduces a third option—“Ranked-NoM” (R-NoM), which combines features

from both ROC and NoM coding schemes: only the first N input spikes are

propagated, but their order is readout by downstream neurons thanks to

inhomogeneousweights and linear desensitization. The unifyingmathematical

framework allows the three codes to be compared in terms of discriminability,

which measures to what extent a neuron responds more strongly to its

preferred input spike pattern than to random patterns. This discriminability

turns out to be much higher for R-NoM than for the other codes, especially

in the early phase of the responses. We also argue that R-NoM is much more

hardware-friendly than the original ROC proposal, although NoM remains the

easiest to implement in hardware because it only requires binary synapses.

KEYWORDS

spiking neural networks, temporal coding, time-to-first-spike coding, rank-order

coding, N-of-M coding

1. Introduction

The last decade has seen an explosion in the use of neural networks for demanding

AI problems that include computer vision, speech and audio processing, and natural

language processing. Indeed, neural networks trained with Deep Learning are now state

of the art in many domains. All such systems can be thought of as “neuromorphic” in

that they involve large networks of neuron-like elements with connections that resemble
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the synapses of biological brains. However, there is currently an

intense debate about whether future systems will need to include

additional neuromorphic features. One key difference between

these state-of-the-art AI systems and biology is how information

is represented. Artificial systems typically perform calculations

using floating-point variables to represent both the neuronal

activation levels and the strength of synaptic connections. In

contrast, real neurons send information as discrete all or none

pulses—spikes. Is this difference important? Spiking Neural

Networks (SNNs) are becoming increasingly popular, especially

for low-power embedded systems. But many mainstream

researchers consider that this difference is essentially irrelevant.

Many assume that neurons send information using a firing rate

code in which the neuron’s activation level is represented by the

number of spikes emitted in a given time window. If that was

the case, replacing the firing rate with a floating-point number

is a perfectly reasonable strategy. However, it has been argued

that this sort of firing rate code would be intrinsically very

inefficient because you would need a lot of spikes to encode

information with any degree of accuracy (Gautrais and Thorpe,

1998). For example, suppose that we wanted to represent the

activation level with a precision of 8-bits. To do this using a

conventional rate code would mean waiting long enough for

the neuron to emit 255 spikes when maximally activated—

and this would mean waiting for a second or more to make

even the most basic decisions. This very low efficiency has led

some researchers to rule out spike-based coding schemes. They

point out that it is much simpler, and much more accurate, to

represent information as a floating-point number that can be

transmitted in a single clock cycle via a 32-bit bus.

You could argue that there are alternative ways of

implementing a firing rate based code that are much faster. For

example, rather than sending an 8-bit activation level using a

single neuron that emits between 0 and 255 spikes in a given time

window, you could have 255 neurons in parallel, each of which

only needs to emit at most one spike in, say, 10 ms. But this sort

of population rate coding scheme would also be very inefficient

because it would need very large numbers of neurons.

You might also argue that it is possible to estimate the

instantaneous firing rate of a neuron by looking at the interval

between two spikes. An interspike interval of exactly 4.0

ms would correspond to an instantaneous firing rate of 250

spikes/second. And, in such a case, the accuracy with which the

underlying rate can be determined would be limited only by

the temporal precision with which the neuron can emit spikes.

If the precision was 0.1 ms, you could encode many different

activation values in 25 ms. But while possible in principle, such

a scheme would require very complex mechanisms to decode as

well as being unusable until the neuron has emitted 2 spikes.

It would appear that the fundamental problem here is

that researchers have apparently been assuming that spike-

based coding has to be some sort of rate coding scheme.

But this is certainly not the case. Even the simplest neuronal

models have the property that the time taken for a neuron to

reach threshold depends on the intensity of the input. And

this means that the latency of the first spike in response to

a stimulus can be used as a code. Remarkably, variations in

spike latency with input intensity were demonstrated in the

very first recordings of activity in the optic nerve by Lord

Edgar Adrian in Cambridge in the 1920s (Adrian, 1928). But

this basic physiological fact was essentially ignored for several

decades, before being demonstrated again by neurophysiological

studies (Gollisch and Meister, 2008).

Once one accepts the idea that the timing of the first spike

provides an alternative way to encode information—a scheme

known as time-to-first spike coding (TTFS)—, there are a

number of very interesting options that can be considered. In

principle, you could use the latency at which a single neuron fires

in response to an input to derive information about the intensity

of the activation. For example, a neurophysiologist could use an

oscilloscope to determine a neuron’s latency. But this requires

knowing precisely when the stimulus came on. Inside the brain,

there is no way to know this. Hence, in this paper we consider

an alternative strategy: looking across a population of neurons

and determining the order in which they fire. Note that TTFS is

not well-suited for dynamic inputs, since coding changes in the

input requires additional spikes. We thus focus on static inputs,

e.g., flashed images. For simplicity and hardware-friendliness,

we also restrict ourselves to non-leaky neurons. A leak is useful

to process dynamic inputs because the oldest inputs should be

forgotten. Yet it is not required with the static inputs used in

this paper.

Historically, TTFS was first proposed to explain the

phenomenal speed of processing in the brain for certain

tasks, such as object recognition (Thorpe and Imbert, 1989).

More recently, TTFS has attracted much attention from the

AI community (Mostafa, 2017; Rueckauer and Liu, 2018;

Zhou et al., 2019; Kheradpisheh and Masquelier, 2020;

Park et al., 2020; Sakemi et al., 2020; Zhang et al., 2020;

Comsa et al., 2021; Mirsadeghi et al., 2021), because it

can be efficiently implemented on low power event-driven

neuromorphic chips (Abderrahmane et al., 2020; Nair et al.,

2020; Srivatsa et al., 2020; Göltz et al., 2021; Liang et al.,

2021; Oh et al., 2022), leveraging two key features. The

first one is sparsity (Frenkel, 2021). Neurons fire at most

once, but usually most neurons do not fire at all. Processing

thus consumes very few spikes, and thus very little energy,

because usually idle neurons do not consume much (Davies

et al., 2018). The second one is time. If using event-driven

processing, for example, address event representation (AER),

time represents itself (Mead, 1990). Thus one can compute with

time without ever storing timestamps. For example, a decision

can be made based on the first neuron to fire in the readout

layer. And this is possible even if the firing time difference

is infinitesimally small. Conversely, a readout based on the

activation levels requires storing these activation levels with
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high precision to be able to always distinguish the most active

neuron.

It is worth mentioning that neurons are intrinsically

sensitive to the timing of their inputs: shifting the input spike

times obviously shifts the response time. But here, we consider

additional mechanisms that allow neurons to respond selectively

to certain input spike time patterns. For example, Rueckauer and

Liu (2018), Sakemi et al. (2020), Srivatsa et al. (2020), and Zhang

et al. (2020) used linearly increasing excitatory postsynaptic

potentials, such that early spikes contribute more. To obtain a

similar effect, Park et al. (2020) used a decaying dendritic kernel.

Yet in this paper, we focus on spike-based, rather than time-

based mechanisms: the input spikes’ contribution depends on

their arrival ranks rather than on their precise times. The idea

is always that the first input spikes contribute more, while later

input spikes contribute less, or not at all. This is implemented

with a modulation function that decreases with the rank, for

example, linearly or geometrically. The net contribution of each

input spike to the neuron’s potential is then the product of the

modulation function with the synaptic weight. The modulation

function can also have a cut-off so that the last spikes make no

contribution at all.

Our main goal, below, is to lay the foundation of a

mathematical framework in order to assess, from a theoretical

point of view, the potential of such order-based TTFS coding

schemes. As an illustration of this framework, the analysis will

be performed upon three instances of such coding schemes: two

previous proposals (Rank Order Coding and NoM coding) and

a combination of both (Ranked-NoM Coding).

Rank Order Coding (ROC) was an early proposal (Thorpe

and Gautrais, 1998). With ROC, all the M afferents of a neuron

fire a spike (Figure 1). The modulation is a real number which

decreases geometrically with the input spike rank. That means in

particular that it is always strictly positive. The synaptic weights

are M, M − 1, ... 1. The final potential is maximal when input

spikes arrive in the order of the weights: the first spike should

arrive through the synapse with weight M, the second one

through the synapse with weightM − 1, and so on.

N-of-M (NoM) coding is another proposal, in which only

the N first spikes among M afferents are propagated (Furber

et al., 2004; Thorpe et al., 2019). This first spike pattern can

be read out by neurons with binary weights (Figure 2): W =
4 ones, and M − W = 12 zeros. With random inputs,

the final potential has a hypergeometric distribution with N

draws from a population of sizeM containingW successes—or,

equivalently, W draws from a population of size M containing

N successes (Furber et al., 2004).

For this paper, we have also designed a third type of coding

scheme, that we call “Ranked-NoM” (R-NoM) coding, and

which incorporates features of both ROC and NoM coding

(Figure 2): only the N first spikes among M afferents are

propagated, but readout neurons can be selective to a particular

order of the N spikes thanks to inhomogeneous weights, and a

decreasing modulation function. Later on, we came across an

article by Furber et al. (2007) where a similar proposal has been

explored in the context of sparse distributed memory (SDM)

research. Below, both the weights and the modulation decrease

linearly, although other schemes could also be explored using a

similar approach (e.g., geometric series as in Furber et al., 2007).

All these codes have been formalized in our unifying

mathematical framework that involves:

• A set of weights, which can be homogeneous (as in NoM),

or decreasing, either linearly (as in original ROC), or

geometrically. This set containsW non-zero weights.

• A modulation function which can be constant (as in

NoM), or decreasing, either linearly, or geometrically (as

in original ROC). This modulation can also have a cut-off,

i.e., becomes zero after the first N spikes.

Our unifying framework allows comparing these codes in

terms of discriminative power. We introduce a discriminability

measure that quantifies how much more a neuron responds

to its preferred pattern than to random inputs. The unifying

mathematical framework also allows tuning the parameters of

the codes in order to optimize their discriminative power.

We conclude that Ranked-NoM Coding with linearly

decreasing modulation and weights offer a particularly

interesting compromise between discriminative power and

hardware-friendliness.

The paper is organized as follows: the Section 2 briefly

introduces the unifying mathematical framework and the

discriminability measure. Then, it gives the main analytical

formulas for the discriminability of R-NoM, NoM, and

ROC, but not their derivations, which can be found in the

Supplementary material. Next, we report a numerical study in

which we explored the speed-accuracy trade-off for the three

different codes. Finally, a brief Discussion summarizes the main

results and gives some perspectives.

2. Results

2.1. Mathematical translation of the three
coding schemes

The goal is to measure the discriminability power of these

codes. We define a measure of selectivity (Equation 2.7) which

quantifies how much more the neuron responds to its preferred

pattern than to random stimuli.

We first define a random experiment for the spikes generated

by M neurons (see Supplementary Section 1.2). For a given

stationary stimulus, each of the M input neurones emits one

spike. Input patterns will then translate into vectors of size M.

We denote 3 the ascending lexically ordered set of the possible

permutations over the set M = {0, . . . ,M − 1}. Cardinality of
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FIGURE 1

(A) Rank order coding (ROC) with M = 16 a�erents. All the a�erents fire exactly one spike. Here we show a neuron selective to the input spike

order: A, B, ... , P. Its synaptic weights are linearly decreasing: M for input A, M− 1 for input B, and so on, down to 1 for input P. The modulation

decreases geometrically with the input spike rank. In practice, this modulation could be implemented with shunting inhibition, as shown with

the red inhibitory neuron. (B) The increase in activation level depends on the order of firing. Maximal activation occurs when the inputs fire in

the order of the weights (A, B, ... , P). Activation is minimal when the order is reversed. Intermediate lines correspond to 5 randomly selected

input patterns chosen from the 16! = 20, 922, 789, 888, 000 possible input spike orders. The five dotted lines specify the proportion of such

random patterns that will exceed a given final activation level. Modified from Thorpe and Gautrais (1998).

FIGURE 2

Comparison of di�erent codes. On the left, the M = 16 a�erents fire in the order JKCBOAGINHPDMFEL, but a 4-winner-take-all mechanism

only lets the N = 4 first spikes through. NoM coding: the readout neuron uses binary weights: W = 4 ones, and M−W = 12 zeros. The final

potential reaches the maximal value of 4 if the N first spikes correspond to the W non-zero weights. The order of these 4 first spikes does not

matter. Rank Order coding ROC.: the neuron is set up to respond maximally to the order JKCBOAGINHPDMFEL, even though here only the 4

input spikes are propagated. Ranked-NoM coding R-NoM:: we show three readout neurons that are selective to three di�erent orders for the 4

first spikes, among the 4! = 24 possible orders, thanks to graded weights and modulations, both in {1, 2, 3, 4}.

3 is then M!. We define an application R that takes values in

DK = {1, 2, ..,M!} (ranks of input order in 3) and returns a

vector rk = R(k) in 3.

To randomly generate sets of input patterns, we define a

discrete random variable K over DK . We can then consider

X = R(K) as a random vector, and all possible outputs are

collected in DX = 3. We consider that all input orders have

the same probability to occur.

By construction, each component Xi is a discrete random

variable taking values from the set DXi = {0, 1, . . . ,M −
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1} with marginal probability distribution PXi (r) = 1
M , and

multivariate joint probability distribution PX1X2...XM = 1
M! .

Xi are identically distributed and they are not independent

since realizations of X are permutations from a unique set of

values, the one prescribed by the coding scheme, which implies

correlation, so that: Cov(Wi,Wj) 6= 0.

This input order is transformed into a vector of weights. For

this, we transform the random variable X in a deterministic way

by defining the affine transformationW = 8(X):

8(X) = M − X = W (2.1)

The marginal and joint probability distributions of the new

random variable Wi are determined from the probability

distributions of Xi by the change of variables theorem in

multivariate calculus. At this stage, the random experiment is

fully defined by the random variable X, taking values in 3, and

the bijective function 8.

We denote � the set of the weights vectors. � is the base to

establish the support of each coding scheme. For this, we define,

for each scheme C, a vector-value function 8C from � to �C

and we use the term score vector to denote elements in �C .

For ROC (denoted by R), the function 8R is the identity

function and so its cardinality isM!.

For Ranked-NoM Coding (denoted by H), we build the

scores-support �H using a function which depends on the

parameterW :

8H(w) = max(0,w−M +W) (2.2)

Note that8H maps different permutations onto the same vector

permutation. Hence, a subset of vectors that are pure internal

permutations among negative or null values will map to the

same element of �H . Since the cardinality of these subsets is

the number of permutations of the M − W null elements, the

cardinality of �H is:

|�H | =
M!

(M −W)!
(2.3)

For NoM coding (denoted F), we define the scores-support

�F from the scores-support �H by the compositions of the

indicator function 1A with 8H . Thus we have

8F(w) = 1A(8H(w)) = 1A(max(0,w−M +W)) (2.4)

By the indicator function, the vectors in �H get converted into

vectors of ones and zeros. As a consequence, the support �F of

NoM is reduced because the order is no longer important. Then,

we divide by the number of ways you can arrange W numbers,

which isW !. Thus, the cardinality of �F is:

|�F | =
|�H |
W !

=
M!

W !(M −W)!
=

(

M

W

)

(2.5)

Having defined the scores vectors for each coding scheme by

their scores-support; �H ,�F and �R, we can establish the

probability and statistics to get the first two moments of the

weights for each coding scheme (see Supplementary material).

Next, we define, for each scheme, a modulations vector

v1C = 9C[8(R(1))], considering that, for the neuron under

consideration, the preferred pattern corresponds to the first

input pattern in 3. For ROC, it depends on a modulation

parameter m ∈ {1/n : n ∈ Z, n 6= 1}, with v1R =
(m0,m1,m2, ...,mM). For Ranked-NoM, 9H ≡ 8H (2.2), and

for the NoM scheme 9F ≡ 8F (2.4).

Finally, we define an integration function — effectively

equivalent to the membrane potential — which indicates how

well the random scores vector matches the fixed modulations

vector.

To formally translate intermediate states (i.e., before the

propagation is over), we first define the gate functionGI :4C →
R
M which nullifies all components of the modulation vector for

ranks beyond I. Then, over the first I inputs, the integration

function SC(w, I) reads:

SC(w, I) =
〈

GI

(

v1C

)

,8C(w)
〉

(2.6)

Given that Ranked-NoM and NoM are defined for values N <

M, the final potential is obtained when I = N and we would

have intermediate states only for values I < N . For ROC, the

final potential is obtained when I = M and we would have

intermediate states for all values I < M.

2.2. Coding schemes comparison

2.2.1. Comparing discriminability

Since w is a random vector, then SC(w, I) is a random

function. Let SC,I denote the corresponding output random

variable. Its distribution depends on the coding scheme. We

compare the three coding schemes in terms of discriminative

power, characterizing its distribution by the difference between

its best possible value and its expected values, scaled by its

variance.

Definition 2.1. We define discriminability DC(I) as:

DC(I) =
max(SC,I)− E[SC,I]

√

Var[SC,I]
(2.7)

where I ∈ Z and takes values for ROC in the interval [1, M]

and for Ranked-NoM and NoM coding in the interval [1, N ].

This discriminability is also known as the signal-to-noise ratio in

other papers (Masquelier, 2018; Masquelier and Kheradpisheh,

2018; Jordan et al., 2021). Given that for values N < I < M,

Ranked-NoM and NoM are not defined, we set those values to

the final integration corresponding to each scheme.
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TABLE 1 Formulas for the maximum value of integration SC,I for each

scheme.

max(SC,I)

Ranked-NoM(H) WN

(

N + 1

2

)

+
N (1−N 2)

6

NofM(F) N

ROC(R)
(1−m)(1+M)− (1−mM+1)

(1−m)2

The max(SC,I) (see Supplementary Sections 2.6.1, 3.6.1, and

4.6.1), forW > N , are given in Table 1.

The expectation E[SC,I] and variance Var[SC,I] of

integration at intermediate states of each scheme C depend on

the mean µWC , variance VarWC and covariance CovC(Wi,Wj)

of the scores for the corresponding coding scheme C (see

Supplementary Sections for Ranked-NoM 2.7.1, 2.7.7, for NoM

3.7.1, 3.7.2, and for ROC 4.7.1, 4.7.2). Their full expressions are

given in Table 2.

As a general pattern, we have the following non-linear

functions,

E[SC,I] = λC µWC (2.8)

Var[SC,I] = αC VarWC + βC CovC(Wi,Wj) (2.9)

where the constants λC ,αC and βC for each scheme are provided

in Table 3.

2.2.2. Behavior of discriminability for final
potential

Having established the complete expression of

discriminability for the three schemes, we can now compare

how they perform.

We first illustrate how the total number of available inputs

(M) affects discriminability (Figure 3).

Setting N = W = M/2 for Ranked-NoM and

NoM codes, we get the same function for both schemes (see

Supplementary Sections 2.8 and 3.8):

DH(M) =
√
M − 1 (2.10)

For ROC, we found (see Supplementary Section 4.8):

lim
M→∞

DF(M) =
√
3

1−m

√

1−m2 (2.11)

For m = 0.8, the function Y = DF(M) has a horizontal

asymptote in Y ≃ 5.2:

lim
M→∞

DF(M) =
√
3

1− 0.8

√

1− 0.82 ≃ 5.2 (2.12)

In light of these behaviors, we propose that Ranked-NoM and

NoM are to be preferred over ROC.

2.2.3. Behavior of discriminability during
propagation

We now contrast, for a given M = 31, how discriminability

increases as more and more inputs become available (namely,

potential integration, Figure 4).

As shown above, discriminability saturates to the same value

for Ranked-NoM and NoM (here, N = W), while, for ROC, it

saturates at a lower value, which depends on the ROC-parameter

m (herem = 0.8).

We also observe that NoM performs poorly early on since

discriminability increases nearly linearly, while both ROC and

Ranked-NoM increasemore like an exponential relaxation to the

final value.

In contrast to NoM, Ranked-NoM Coding then displays a

much faster increase in discriminability in the early phase of

input integration and reaches a higher value than ROC.

In this regard, Ranked-NoM displays the best performance,

with a high discriminability for the very early inputs.

2.2.4. Exploring the speed-accuracy trade-o�
through simulations

Importantly, our discriminability measure (Equation 2.7)

is based on the unconstrained membrane potential, i.e.,

ignoring the threshold. But of course, in a real scenario, a

threshold is needed, especially for neurons in the hidden layers

(otherwise, they will not fire!). When choosing a threshold, a

high value:

• Ensures that the probability of reaching it with random

input (which may be seen as a false alarm, FA) is low.

• Causes a longer latency even when the preferred pattern is

given as input.

Conversely, a low threshold does the opposite (shorter

latency but higher FA rate). This can be seen as a speed-accuracy

trade-off.

We explored this trade-off through numerical simulations.

We fixed M = 20 and estimated the false alarm probabilities

for ROC (m = 0.8), R-NoM (W = N = 10), and NoM

(also W = N = 10), as a function of the threshold, using

2.105 random input spike patterns. In Figure 5, we plotted

those probabilities as a function of the latency (expressed in

input spike number, not in seconds) for the firing response

to the preferred pattern (latency which in turn depends on

the threshold). This plot confirms the supremacy of R-NoM,

especially in the early stage of the response, in agreement

with Figure 4. For example, here the preferred pattern has

N = 10 spikes. Let’s say we want the receiver neuron to

fire as soon as the fifth input spike is received. For R-NoM,

this means the threshold should be in the [294, 330] range.

Choosing 330 will minimize the FA rate, which will be around

3.10−4. For ROC, the corresponding threshold would be 28.36,
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TABLE 2 Formulas for the expectation, variance and covariance of the scores random variableW for each scheme.

C µWC VarWC CovC(Wi,Wj)

Ranked-NoM(H)
W(W + 1)

2M
µWH

(

2W + 1

3
− µWH

)

µWH

M − 1

(

µWH −
2W + 1

3

)

NofM(F)
W

M
µWF (1− µWF ) µWF

(

W − 1

M − 1
− µWF

)

ROC(R)
M + 1

2
µWR

(

M − 1

6

)

µWR

M − 1

(

µWR −
2M + 1

3

)

TABLE 3 Formulas for the expectation and variance coe�cients of the di�erent Integration schemes.

C λC αC βC

Ranked-NoM(H)
I(2N − I + 1)

2
N I(N − I + 1)+ N I(I − 1)(N − I + 1)+
I(I − 1)(2I − 1)

6

I2(I − 1)2

4
−

I(I − 1)(2I − 1)

6

NofM(F) I I I (I − 1)

ROC(R)
1−mI

1−m

1−m2I

1−m2

(

1−mI

1−m

)2

−
1−m2I

1−m2

FIGURE 3

Behavior of the maximal discriminability as a function of the

total number of inputs M. NoM and Ranked-NoM (set to

W = N = M/2) converge to the same maximal values and so

the two curves overlap. For these two schemes, the maximal

discriminability scales as DH(M) = DF (M) =
√
M− 1 (proof to be

found in Supplementary material). Hence, discriminability is not

limited, and adding inputs will always improve it. By contrast,

maximal discriminability for ROC saturates at an asymptotic

value (Y ≃ 5.2 for m = 0.8 here).

leading to a much higher FA rate of 0.1. Finally, for NoM, the

threshold would be 5, and the FA rate 0.7, which would be

totally unacceptable!

Here again, our attempt to speculate upon how

to combine computation-power of float-based TTFSs

schemes and power-saving integer-based TTFS schemes

offers a promising avenue: FA rate could be cut

by a factor of three orders of magnitude compared

with the former, and four orders compared with

the latter.

FIGURE 4

Comparison of discriminability for the three coding schemes

during propagation. The Discriminability, DC(I) (Equation 2.7) is

reported as the number of inputs I builds up, for each coding

scheme: ROC (black), NoM (blue), and Ranked-NoM (red). For

ROC coding, the inputs I accumulate up to the maximal number

(here, M = 31) while, in the two others, propagation stops

beyond N = 15 (in this case, we retain the value DC(N ) for later

values).

3. Discussion

In this paper, we presented a new mathematical framework

which allows unifying various TTFS codes. This framework

introduces the concept of modulation: a decreasing function

such that the earliest input spikes matter more. This broad

definition of modulation encompasses previous proposals

(ROC, NoM) as well as new ones. The activation is maximal

when the spikes arrive in the order of the weights: the first

spike should arrive through the strongest weight, and so on. This
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FIGURE 5

Speed-accuracy trade-o�. Here, we represented, for the

di�erent codes, the probability of firing to random inputs as a

function of I at threshold crossing for the preferred pattern (both

variables depend on the threshold which is varied, but not

represented on this figure). Solid lines indicate the probabilities

estimated by Monte Carlo simulations (n=2.105 runs for each

value). Dashed lines indicate the probability assuming a

Gaussian distribution for the potential, with the mean and

variance computed from Table 3 formulas. These Gauss-based

values match well the simulations for low latencies. For higher

latencies, they tend to overestimate the FA rate. This suggests

that the potential is roughly normally distributed everywhere

except in the right tail of the distribution.

defines the preferred input spike pattern of a neuron. Then, we

defined discriminability, which measures how much more the

neuron responds to its preferred pattern than to random inputs.

Our framework allows us to compute this discriminability

analytically. Thus various TTFS codes can easily be compared in

terms of discriminability. The framework also allows the design

of new codes that maximize this discriminability. In particular,

we propose a new code that we dubbed “Ranked-NoM” (R-

NoM), which makes use of integer modulation and weights that

both decrease linearly. We demonstrated that R-NoM has much

more discriminative power than ROC and NoM, especially in

the early phase of the response, which is already very selective.

Thus it allows detectors that are both accurate and reactive.

In addition, the fact that R-NoM uses only integers makes it

much more hardware-friendly than ROC, and the geometric

modulation suggested in Furber et al. (2007).

There are however situations where NoM coding can be

particularly interesting for hardware implementations. The

advantages of R-NoM coding described here apply in situations

where incoming spikes are processed one by one. However,

in some designs, it is possible to process spikes as a packet.

For example, you could define an input array with M bits

that are initially all set to zero. As spikes come in, the

corresponding input lines can be flipped on until a fixed

number of bits (N) are set to one. At this point, it is easy

to determine the level of activation of a target neuron by

performing a logical AND operation between the array of

input spikes and a second array of bits corresponding to

the connected weights. Counting the number of “hits” and

comparing the result to the neuron’s threshold can be done in

a single clock cycle with specialized FPGA or ASIC hardware.

Similar results can be obtained using memristor-based cross-

bar arrays.

That said, the current analysis provides a strong argument

for using implementations that process incoming spikes in

order since it is the only way to take advantage of the

remarkable early discriminative power of R-NoM coding.

Such an approach goes a long way toward ensuring that

computations can be done with the minimum number of

spiking events.

One important issue that we did not address in this

paper is learning. We plan to address it in future work.

Only then we will be able to confront the different coding

schemes with real-world data (e.g., CIFAR, ImageNet, Google

Speech Commands) and compare their performance, possibly

using the methodology of Guo et al. (2021). For unsupervised

learning, we think that the STDP-like learning rule that we

proposed in Thorpe et al. (2019) could be adapted for the

integer, non-binary, weights that are required for R-NoM. In

short, part of the weights from unused synapses could be

moved to used but not saturated synapses. For supervised

learning, backpropagation has already been adapted to TTFS

codes (Mostafa, 2017; Zhou et al., 2019; Kheradpisheh and

Masquelier, 2020; Park et al., 2020; Sakemi et al., 2020; Zhang

et al., 2020; Comsa et al., 2021; Mirsadeghi et al., 2021). Yet

none of these approaches included the concept of a spike-

based decreasing modulation. We will explore that possibility in

future work.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

ST and TM designed the project. LB and JG performed

the mathematical derivations. JG and TM did the numerical

simulations. All authors wrote the paper. All authors contributed

to the article and approved the submitted version.

Funding

The authors gratefully acknowledge financial support from

the Colombian non-profit foundation COLFUTURO and the

partial funding of Le Centre de Recherche Cerveau et Cognition

(CerCo).

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.971937
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bonilla et al. 10.3389/fnins.2022.971937

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.971937/full#supplementary-material

References

Abderrahmane, N., Lemaire, E., and Miramond, B. (2020). Design space
exploration of hardware spiking neurons for embedded artificial intelligence.
Neural Netw. 121, 366–386. doi: 10.1016/j.neunet.2019.09.024

Adrian, E. D. (1928). The Basis of Sensation. New York, NY: Christophers.

Comsa, I.-M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and
Alakuijala, J. (2021). Temporal coding in spiking neural networks with alpha
synaptic function: learning with backpropagation. IEEE Trans. Neural Netw. Learn.
Syst. 1–14. doi: 10.1109/TNNLS.2021.3071976

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Joshi, P., Lines, A., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Frenkel, C. (2021). Sparsity provides a competitive advantage. Nat. Mach. Intell.
3, 742–743. doi: 10.1038/s42256-021-00387-y

Furber, S. B., Brown, G., Bose, J., Cumpstey, J. M., Marshall, P., and Shapiro, J.
L. (2007). Sparse distributed memory using rank-order neural codes. IEEE Trans.
Neural Netw. 18, 648–659. doi: 10.1109/TNN.2006.890804

Furber, S. B., John Bainbridge, W., Mike Cumpstey, J., and Temple, S. (2004).
Sparse distributed memory using N-of-M codes. Neural Netw. 17, 1437–1451.
doi: 10.1016/j.neunet.2004.07.003

Gautrais, J., and Thorpe, S. (1998). Rate coding versus temporal order coding: a
theoretical approach. Biosystems 48, 57–65. doi: 10.1016/S0303-2647(98)00050-1

Gollisch, T., and Meister, M. (2008). Rapid neural coding in the retina with
relative spike latencies. Science 319, 1108–1111. doi: 10.1126/science.1149639

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B.,
et al. (2021). Fast and energy-efficient neuromorphic deep learning with first-spike
times. Nat. Mach. Intell. 3, 823–835. doi: 10.1038/s42256-021-00388-x

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding
in spiking neural networks: a comparative study for robust neuromorphic systems.
Front. Neurosci. 15, 638474. doi: 10.3389/fnins.2021.638474

Jordan, J., Schmidt, M., Senn, W., and Petrovici, M. A. (2021).
Evolving interpretable plasticity for spiking networks. eLife 10, 1–33.
doi: 10.7554/eLife.66273

Kheradpisheh, S. R., and Masquelier, T. (2020). Temporal backpropagation for
spiking neural networks with one spike per neuron. Int. J. Neural Syst. 30, 2050027.
doi: 10.1142/S0129065720500276

Liang,M., Zhang, J., and Chen, H. (2021). “A 1.13µJ/classification spiking neural
network accelerator with a single-spike neuron model and sparse weights,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS) (Daegu: IEEE),
1–5.

Masquelier, T. (2018). STDP allows close-to-optimal spatiotemporal spike
pattern detection by single coincidence detector neurons. Neuroscience 389,
133–140. doi: 10.1016/j.neuroscience.2017.06.032

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and distributed
coding of spatiotemporal spike patterns through STDP and coincidence detection.
Front. Comput. Neurosci. 12, 74. doi: 10.3389/fncom.2018.00074

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Mirsadeghi, M., Shalchian, M., Kheradpisheh, S. R., and Masquelier, T.
(2021). STiDi-BP: spike time displacement based error backpropagation
in multilayer spiking neural networks. Neurocomputing 427, 131–140.
doi: 10.1016/j.neucom.2020.11.052

Mostafa, H. (2017). Supervised learning based on temporal coding in
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 1–9.
doi: 10.1109/TNNLS.2017.2726060

Nair, H., Shen, J. P., and Smith, J. E. (2020). Direct CMOS implementation of
neuromorphic temporal neural networks for sensory processing. arXiv preprint
arXiv:2009.00457.

Oh, S., Kwon, D., Yeom, G., Kang, W.-M., Lee, S., Woo, S. Y., et al. (2022).
Hardware implementation of spiking neural networks using time-to-first-spike
encoding. IEEE Access. 10, 24444–24455. doi: 10.1109/access.2022.3149577

Park, S., Kim, S., Na, B., and Yoon, S. (2020). T2FSNN: deep spiking
neural networks with time-to-first-spike coding. arXiv preprint arXiv:2003.11741.
doi: 10.1109/DAC18072.2020.9218689

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS) (Florence: IEEE), 1–5. doi: 10.1109/ISCAS.2018.8
351295

Sakemi, Y., Morino, K., Morie, T., and Aihara, K. (2020). A supervised learning
algorithm for multilayer spiking neural networks based on temporal coding
toward energy-efficient VLSI processor design. arXiv preprint arXiv:2001.05348.
doi: 10.1109/TNNLS.2021.3095068

Srivatsa, P., Timothy, K., Chu, N., Tavva, Y., and Wu, J. (2020). You only spike
once: improving energy-efficient neuromorphic inference to ANN-level accuracy.
arXiv. doi: 10.48550/ARXIV.2006.09982

Thorpe, S. J., and Gautrais, J. (1998). “Rank order coding,” in Computational
Neuroscience: Trends in Research, ed J. M. Bower (New York, NY: Plenum Press),
113–118. doi: 10.1007/978-1-4615-4831-7_19

Thorpe, S. J., and Imbert, M. (1989). “Biological constraints on connectionist
modeling,” inConnectionism in Perspective, eds R. Pfeifer, Z. Schreter, F. Fogelman-
Soulie, and L. Steels (Amsterdam: Elsevier), 63–92.

Thorpe, S. J., Masquelier, T., Martin, J., Yousefzadeh, A., and Linares-
Barranco, B. (2019). Method, digital electronic circuit and system for
unsupervised detection of repeating patterns in a series of events. US2019028
6944A1.

Zhang, M., Wang, J., Amornpaisannon, B., Zhang, Z., Miriyala, V.,
Belatreche, A., et al. (2020). Rectified linear postsynaptic potential function
for backpropagation in deep spiking neural networks. arXiv preprint arXiv:
2003.11837v2.

Zhou, S., LI, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2019).
Temporal-coded deep spiking neural network with easy training and robust
performance. arXiv preprint arXiv:1909.10837. doi: 10.1109/TNNLS.2021.3110991

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.971937
https://www.frontiersin.org/articles/10.3389/fnins.2022.971937/full#supplementary-material
https://doi.org/10.1016/j.neunet.2019.09.024
https://doi.org/10.1109/TNNLS.2021.3071976
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s42256-021-00387-y
https://doi.org/10.1109/TNN.2006.890804
https://doi.org/10.1016/j.neunet.2004.07.003
https://doi.org/10.1016/S0303-2647(98)00050-1
https://doi.org/10.1126/science.1149639
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.7554/eLife.66273
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1016/j.neuroscience.2017.06.032
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1109/5.58356
https://doi.org/10.1016/j.neucom.2020.11.052
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/access.2022.3149577
https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.1109/TNNLS.2021.3095068
https://doi.org/10.48550/ARXIV.2006.09982
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1109/TNNLS.2021.3110991
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Analyzing time-to-first-spike coding schemes: A theoretical approach
	1. Introduction
	2. Results
	2.1. Mathematical translation of the three coding schemes
	2.2. Coding schemes comparison
	2.2.1. Comparing discriminability
	2.2.2. Behavior of discriminability for final potential
	2.2.3. Behavior of discriminability during propagation
	2.2.4. Exploring the speed-accuracy trade-off through simulations


	3. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


