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Abstract: Herb–drug interaction (HDI) limits clinical application of herbs and drugs, and inhibition
of herbs towards uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) has gained attention
as one of the important reasons to cause HDIs. Sauchinone, an active lignan isolated from aerial
parts of Saururus chinensis (Saururacease), possesses anti-oxidant, anti-inflammatory, and anti-viral
activities. In pharmacokinetics of sauchinone, sauchinone is highly distributed to the liver, forming
extensive metabolites of sauchinone via UGTs in the liver. Thus, we investigated whether sauchinone
inhibited UGTs to explore potential of sauchinone–drug interactions. In human liver microsomes
(HLMs), sauchinone inhibited activities of UGT1A1, 1A3, 1A6, and 2B7 with IC50 values of 8.83, 43.9,
0.758, and 0.279 µM, respectively. Sauchinone also noncompetitively inhibited UGT1A6 and 2B7
with Ki values of 1.08 and 0.524 µM, respectively. In in vivo interaction study using mice, sauchinone
inhibited UGT2B7-mediated zidovudine metabolism, resulting in increased systemic exposure of
zidovudine when sauchinone and zidovudine were co-administered together. Our results indicated
that there is potential HDI between sauchinone and drugs undergoing UGT2B7-mediated metabolism,
possibly contributing to the safe use of sauchinone and drug combinations.
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1. Introduction

Herb–drug combinations have been steadily increased and encouraged as main medical
treatments by the World Health Organization [1,2]. Since herb–drug interactions (HDIs) can
limit clinical application of herbs and drugs, inhibition of herbs toward uridine diphosphate
(UDP)-glucuronosyltransferases (UGTs) has received attention in association with alternations of
drug efficacy or toxicity [3–5].

UGTs are phase II metabolic enzymes that predominantly catalyze glucuronidation of xenobiotics,
including approximately 35% of drugs and consequently, facilitating elimination of glucuronidated
metabolites through bile and urine [6,7]. Glucuronidation clears drugs because glucuronidated
metabolites have more polarity and water solubility. It also detoxifies drugs because glucuronidated
metabolites possess less activity or toxicity than their parent forms [8]. Many cases of UGT
inhibition-mediated drug interactions have been reported [5,7] including UGT1A1 inhibition by
psoralidin that causes irinotecan’ toxicity [9], UGT1A3 inhibition by gemfibrozil that enhances
susceptibility of statins [10], UGT1A6 inhibition by silybin that attenuates fenofibrate-induced
UGT1A6 [11], UGT1A6 inhibition by phenobarbital and phenytoin that causes hepatotoxicity of
acetamoniphen [12,13], UGT1A9 inhibition by mefenamic acid that changes exposure of dapagliflozin’s
metabolite [14], and UGT2B7 inhibition by valproic acid that changes efficacy and toxicity of
zidovudine [15]. Regulatory agencies have recognized the importance of UGT-mediated drug
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interactions in drug discovery research and patients’ safety [2,16,17]. Moreover, the U.S. FDA strongly
recommends the evaluation of UGT-mediated interactions in HDIs [3,16–18].

Saururus chinensis Hort. ex Loudon (Saururaceae), commonly known as Chinese lizard’s tail or
Sam-baek-cho in Korea, is a plant with a long history of medical use. It has been used to treat hepatitis
in Korea [19,20] and edema, pneumonia, jaundice, gonorrhea and inflammatory disease in North
Asia [21]. Sauchinone is a biologically active lignan isolated from aerial parts of S. chinensis, showing
anti-inflammatory and anti-viral activities [22,23]. In pharmacokinetic studies, sauchinone is highly
distributed to the liver where UGTs can extensively catalyze sauchinone metabolism [24,25]. Thus,
there might be potential of sauchinone–drug interaction through UGT-mediated metabolism. However,
currently there is no information regarding inhibition of UGTs by sauchinone. Therefore, the objective
of this study was to determine the inhibitory effect of sauchinone on UGT1A1, 1A3, 1A4, 1A6, 1A9,
and 2B7 activities. Inhibition kinetics of sauchinone was then investigated in in vitro using human
liver microsomes (HLMs). Pharmacokinetic interaction of sauchinone and zidovudine, a substrate of
UGT2B7, was also evaluated in vivo using mice.

2. Results

2.1. Inhibitory Effects of Sauchinone on UGT Activities

The inhibitory effects of sauchinone on UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 were shown in
Figure 1 and their IC50 values are listed in Table 1. When sauchinone concentrations were increased
to 200 µM, IC50 values of UGT1A1-catalyzed β-estradiol, UGT1A3-catalyzed CDCA, 1A6-catalyzed
serotonin, and 2B7-catalyzed zidovudine (8.83, 43.9, 0.758, and 0.279 µM, respectively) were lower than
those of well-known inhibitors such as chrysin, lithocholic acid, 1-naphthol, and efavirenz (28.3, 69.8,
35.2, and 75.4 µM respectively), indicating that sauchione inhibited metabolic activities of UGT1A1,
1A3, 1A6, and 2B7 in HLM. Sauchinone also showed negligible inhibitory effect on UGT1A4 and 1A9
activities under our study conditions.
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Figure 1. IC50 curves for the direct inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and 
UGT2B7 in HLMs. The ‘●’ represents the remaining percentage of UGT-mediated metabolic activity 
with sauchinone as an inhibitor versus control (without sauchinone). (n = 3 for each group). 

  

Figure 1. IC50 curves for the direct inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and
UGT2B7 in HLMs. The ‘•’ represents the remaining percentage of UGT-mediated metabolic activity
with sauchinone as an inhibitor versus control (without sauchinone). (n = 3 for each group).



Molecules 2018, 23, 366 3 of 13

Table 1. IC50 (µM) values of sauchinone (n = 3 for each UGT isoform) and well-known inhibitors (n = 1
for each UGT isoform) for inhibition of various UGTs in human liver microsomes. Data were expressed
as the mean values. The minimum and maximum values of IC50 were expressed in the parentheses.

UGTs Sauchinone Well-Known Inhibitor

UGT1A1 8.83 (5.40–14.5) Chrysin 28.3
UGT1A3 43.9 (18.9–102) Lithocholic acid 69.8
UGT1A4 391 (253–603) Hecogenin 3.99
UGT1A6 0.758 (0.383–1.50) 1-Naphthol 35.2
UGT1A9 919 (517–1632) Niflumic acid 0.755
UGT2B7 0.279 (0.224–0.347) Efavirenz 75.4

2.2. Ki of Sauchinone on UGT1A6 and 2B7-Mediated Glucuronidation Activities

Based on estimated IC50 values of sauchinone, enzyme kinetic assays of sauchinone on
inhibition of UGT1A6 and 2B7 activities were conducted. Various concentrations of sauchinone
were used and Ki values of sauchinone for UGT1A6 and 2B7 were estimated. Figure 2A,B showed
the activities of UGT1A6-mediated serotonin glucuronidation and UGT2B7-mediated zidovudine
glucuronidation with and without sauchinone as an inhibitor using nonlinear regression analysis.
In Figure 2A, the maximum rate of metabolic activity (Vmax) and Michaelis-Menten constant (Km, the
substrate concentration at which the reaction rate is half of Vmax) for UGT1A6-mediated serotonin
glucuronidation without sauchinone were 174 µM/min/mg protein and 126 µM, respectively.
As increasing sauchinone (as an inhibitor) concentrations from 0 to 50 µM, Vmax tended to decrease
from 174 to 6.36 µM/min/mg protein, but Km represented in the ranges of 103–126 µM for
UGT1A6-mediated serotonin glucuronidation. Also in Figure 2B, Vmax and Km for UGT2B7-mediated
zidovudine glucuronidation without sauchinone were 31.5 µM/min/mg protein and 85 µM,
respectively. With increasing sauchinone concentrations (as an inhibitor) from 0 to 50 µM, Vmax

tended to decrease from 31.5 to 0.495 µM/min/mg protein, but Km represented in the ranges of
70.2–85.0 µM for UGT2B7-mediated zidovudine glucuronidation.

As shown in Figure 2C,D, all Dixon plots for the inhibition of sauchinone on UGT1A6 and
2B7 fitted well with the noncompetitive inhibition mode in visual inspection [25], suggesting that
sauchinone could noncompetitively inhibit UGT1A6 and 2B7. Ki values of sauchinone for UGT1A6
and 2B7 were 1.08 (0.811–1.37) µM and 0.524 (0.442–0.610) µM, respectively.

2.3. Inhibitory Effects of Sauchinone on Ugt Activities Using Mice Liver Microsomes (MLMs)

The inhibitory effects of sauchinone on Ugt1a1, 1a3, 1a6, 1a9, and 2b7 were shown in Figure 3.
When sauchinone concentrations were adjusted until 200 µM, IC50 values of Ugt1a1-catalyzed
β-estradiol, Ugt1a3-catalyzed CDCA, Ugt1a6-catalyzed serotonin, Ugt1a9-catalyzed propofol, and
Ugt2b7-catalyzed zidovudine (152, 79.9, 29.8, and 23.0 µM, respectively) in MLM. Also, sauchinone
showed negligible inhibitory effects on Ugt1a6 in our conditions.
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Figure 3. IC50 curves for the direct inhibition of Ugt1a1, Ugt1a3, Ugt1a6, Ugt1a9, and Ugt2b7 in MLM. 
The ‘●’ represents the remaining percentage of UGT-mediated metabolic activity with sauchinone as 
an inhibitor versus control (without sauchinone). (n = 3 for each group). 
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Figure 2. Inhibition of UGT1A6 and 2B7 by sauchinone. (A) The plot for velocities of UGT1A6-mediated
serotonin glucuronidation versus serotonin concentrations depending on sauchinone concentrations.
The following symbols (•, #, H, 4, �, �) represent sauchinonne (as an inhibitor) concentrations of 0,
1, 3, 15, 30, and 50 µM, respectively; (B) The plot for velocities of UGT2B7-mediated zidovudine
glucuronidation versus zidovudine concentrations depending on sauchinone concentrations.
The following symbols (•, #, H, 4, �, �) represent sauchinonne (as an inhibitor) concentrations
of 0, 1, 3, 15, 30, and 50 µM, respectively; (C) Dixon plot of inhibitory effect of sauchinone on
UGT1A6-mediated serotonin glucuronidation activity. The following symbols (•, #, H, 4, �, �) represent
sauchinonne (as an inhibitor) concentrations of 0, 1, 3, 15, 30, and 50 µM, respectively; (D) Dixon
plot of inhibitory effect of sauchinone on UGT2B7-mediated zidovudine glucuronidation activity.
The following symbols (•, #, H, 4, �, �) represent sauchinonne (as an inhibitor) concentrations of 0, 1, 3,
15, 30, and 50 µM, respectively.
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The ‘•’ represents the remaining percentage of UGT-mediated metabolic activity with sauchinone as an
inhibitor versus control (without sauchinone). (n = 3 for each group).

2.4. Pharmacokinetic Study of Zidovudine with or without Sauchinone

After administration of zidovudine together with sauchinone to mice, mean arterial plasma
concentration–time profiles of zidovudine were obtained. Results are shown in Figure 4 and their
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relevant pharmacokinetic parameters are listed in Table 2. AUC480 min, CL, and CLNR of zidovudine
with sauchinone were increased by 53.1%, and decreased by 29.3% and 29.6%, respectively, compared
to those without sauchinone, indicating that sauchinone inhibited the metabolism of zidovudine
via Ugt2b7.
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Table 2. Means (± standard deviations) of pharmacokinetic parameters of zidovudine after intravenous
administration of 15 mg/kg zidovudine with or without oral administration of 100 mg/kg sauchinone
(n = 11 for each group).

Parameters With Vehicle With Sauchinone

Body weight (g) 30.6 ± 3.74 31.7 ± 3.37
AUC480 min (µg min/mL) 227 ± 61.9 344 ± 142 a

AUC (µg min/mL) 228 ± 60.8 349 ± 140 a

t1/2 (min) 207 ± 133 178 ± 93.1
CL (mL/min/kg) 68.7 ± 18.7 48.6 ± 16.1 a

CLR (mL/min/kg) 34.0 ± 11.2 24.0 ± 8.02 a

CLNR (mL/min/kg) 34.8 ± 10.5 24.5 ± 9.31 a

MRT (min) 55.8 ± 28.2 43.5 ± 16.2
Vss (mL/kg) 3307 ± 1670 2105 ± 1229

Ae0–24 h (% of dose) 50.3 ± 8.01 50.2 ± 8.41
GI24 h (% of dose) 0.672 ± 0.999 0.321 ± 0.646

a Significantly different (p < 0.05) from with vehicle.

AUC480 min, the area under the plasma concentration–time curve from time zero to last sampling
time, 480 min; AUC, the area under the plasma concentration–time curve from time zero to infinity;
t1/2, terminal half-life; CL, total body clearance; CLR, renal clearance; CLNR, non-renal clearance, MRT,
mean residence time; Vss, the apparent volume of distribution, Ae0–24 h, percentage of zidovudine
excreted into urine for 24 h, GI24 h, percentage of zidovudine remaining or excreted in GI at 24 h.
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3. Discussion

Inhibition of drug-metabolic enzymes in drug combination therapies is considered an important
origin of adverse effects. It can lead to withdrawal of several approved drugs from the markets, causing
clinical problems and economic losses [7,26]. Along with the upsurge of herb–drug combinations,
inhibition of herbs towards drug-metabolic enzymes in HDIs has been raised as an important reason
that limits clinical applications of herbs and drugs [17,27]. Currently, evaluating the inhibition
of herbs toward UGT is recommended for safe use of herbs [16–18]. On the other hand, when
a substrate is mainly metabolized through glucuronidation, significant increase of drug exposure
via UGT inhibition has been reported (e.g., zidovudine and lamotrigine) [6,28,29], suggesting that
glucuronidation inhibition can be clinically significant. Moreover, when herbs and drugs are catalyzed
through the same enzymatic pathway, UGTs involved in the metabolism of herbs have the potential to
inhibit drug glucuronidation [18].

As shown in Table 1, sauchinone inhibited activities of UGTs in HLM, showing the following
inhibition order: UGT2B7 >> 1A6 > 1A1 > 1A3. There was negligible change in metabolic rate with
increasing sauchinone concentrations up to 200 µM (our unpublished data). This could be due to
un-saturation of the enzyme at the incubation condition used in this study. To explore how UGTs
interacted with their substrates and inhibitors, inhibition kinetic studies of sauchinone on UGT1A6 and
2B7 were performed. As shown in Figure 2, sauchinone inhibited UGT1A6 and 2B7 in non-competitive
manners. Non-competitive inhibitions of sauchinone on UGT1A6 and 2B7 indicated that sauchinone
might bind different sites of substrates. In other words, sauchinone might be able to reduce UGT1A6
and 2B7 activities by binding to allosteric site of UGT without interfering with the binding of a substrate
to the active site of UGT.

Evaluating the inhibitory effect of herbs on UGTs in in vitro systems has been used to predict
metabolic elimination of co-administered drugs, leading to changes in efficacy and toxicity [9,30].
However, in vitro results referring the inhibitory effects of herbs based on IC50 and Ki values are not
sufficient to provide relevance to in vivo results especially at clinical levels. This is because more
various metabolic pathways and other elimination pathways except metabolism (e.g., urinary excretion
or biliary excretion) can be involved in HDIs in vivo [26,31,32]. For example, discrepancies of HDI for
milk thistle, garlic extract, Panax quinquefolius, and Panax ginseng between in vitro and clinical results
have been reported [18,31,33–35]. Investigation of HDIs in humans can accurately explain changes
in efficacy or adverse reactions of co-administered drugs. However, initial evaluation of HDIs at a
clinical level has been a concern due to serious problems with HDI. Hence, prediction of HDIs at
preclinical level has been utilized as basic evidence to provide the potential of HDIs and its underlying
mechanisms along with in vitro results [18,26].

To predict the magnitude of HDI as described in drug-drug interactions, the most common
equation for HDI prediction is based on in vivo AUC alternation of a drug as a substrate and in vitro
Ki and in vivo concentration of herb as an inhibitor as previously reported [26,31,36]. Parameters used
to explain in vivo and in vitro inhibition potency should dictate the likelihood of pharmacokinetic
drug interactions as Equation (1)

AUCi

AUC0
= 1 +

[I]
Ki

(1)

Assuming that a drug is a substrate and a herb is an inhibitor toward hepatic metabolic enzymes in
HDIs, the following terms are defined: AUCi/AUC0 is the predicted ratio of in vivo exposure of a drug
with a herb (AUCi) versus that in control situation (without a herb; AUC0), [I] is the concentration of an
herb in the liver (as an enzyme active site), and Ki is an inhibition constant of a herb. This calculation
also assumes that metabolic enzyme contributes 100% of a drug metabolism. To determine whether
metabolic inhibition in liver can occurs or not, the ratio of [I] to Ki is calculated because sufficient
concentration of an inhibitor in the liver is a critical factor that causes metabolic inhibition. Occasionally,
Cmax has been used instead of [I], assuming that systemic exposure and tissue exposure of an inhibitor
are similar [37]. In this case, [I] represents the mean steady-state Cmax following administration of the
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highest proposed clinical dose [26,36]. Unfortunately, sauchinone-drug interaction cannot be estimated
in human levels at this time, because hepatic concentration or Cmax of sauchinone in human has not
been reported yet.

With such situation, pharmacokinetic changes of a drug metabolized via Ugt2b7 when
co-administered with sauchinone were evaluated in mice. As shown in Figure 3, sauchinone inhibited
Ugt2b7 > 1a9 > 1a6 in MLM. This result suggested that Ugt2b7 inhibition by sauchinone might
affect UGT2B7-mediated metabolism of drugs such as zidovudine [32,38,39]. Among clinically
relevant drug interactions involving UGTs, UGT2B7 is the most commonly implicated enzyme [40],
contributing to glucuronidation of drugs and endogenous compounds (i.e., bile acids, fatty acids, and
steroids) [41]. Zidovudine has an especially narrow therapeutic index. Slight alternation of zidovudine
concentration or unexpected increase of zidovudine exposure by UGT2B7 inhibition can cause toxicity
(e.g., bone marrow toxicity or genotoxicity) [39,42]. Thus, it is meaningful to predict the potential of
sauchinone–zidovudine interaction through UGT2B7. To predict the inhibitory effect of sauchinone
on UGT2B7-mediated zidovudine metabolism, the following values were adjusted in Equation (1):
AUCi/AUC of zidovudine was 1.52 from Table 2, Cmax of sauchinone in mice plasma after oral
administration of 100 mg/kg sauchinone was 1.53 µM [24] instead of [I], and Ki of sauchinone for
Ugt2b7 in mouse liver microsomes was 3.34 µM (our unpublished data). U.S. FDA (2012) recommends
clinical evaluation of sensitive substrate if AUCi/AUC of a substrate is above 1. Also ‘0.1 < [I]/Ki < 1’
is considered to have median possibility of drug interaction based on [I]/Ki standard [7]. Thus, 1.52 for
AUCi/AUC of zidovudine and 0.458 for [I]/Ki indicated inhibitory effect of sauchinone on UGT2B7
involved zidovudine metabolism. Also the slower CL and CLNR of zidovudine with sauchinone
indicted that sauchinone inhibited metabolic clearance of zidovudine compared to those without
sauchinone. Interestingly, except for the metabolism of zidovudine, other pharmacokinetic profiles
of zidovudine were not changed by co-administration of sauchinone. Distribution and excretion of
zidovudine were not affected by sauchinone, supported by comparable Vss, t1/2, MRT, Ae0–24 h, and
GI24 h of zidovudine between with and without sauchinone.

There are some limitations to our calculations. First, inhibition of sauchinone or zidovudine
metabolites towards UGTs was not investigated. Glucuronidation, oxidation, methylation, and
dehydrogenation are involved in sauchionone metabolism [24]. Glucuronindation and reduction
contribute to zidovudine metabolism [43]. UGT-mediated metabolic pathway of sauchinone or
zidovudine can cause auto-inhibition in the process of their own metabolism as incubation time
goes on. In other words, metabolites of sauchinone or zidovudine can inhibit UGTs. Similarly, it has
been reported that gemfibrozil inhibits repaglinide glucuronidation via UGT1A1, because gemfibrozil
and gemfibrozil glucuronide (a main metabolite of gemfibrozil) inhibit UGT1A1 together [30]. Second,
in vitro and in vivo differences both explain pharmacokinetic interactions. Substrate, inhibitor, and
glucuronidated metabolite(s) can be eliminated in in vivo. However, this does not occur in an in vitro
microsomal incubation system. When the accumulation of metabolites happens in the reaction process,
it inhibits enzyme activity [6]. Also, several other factors such as protein binding, active uptake, and
efflux transporters in tissues may affect the estimation of unbound drug concentrations at interaction
site. In this respect, in vitro data tend to underestimate inhibition of drug glucuronidation compared
to in vivo [44]. Moreover, renal clearance and cytochrome P450-mediated metabolism can be altered by
sauchinone in vivo, which can affect the elimination route of zidovudine [43]. In addition, individual
difference in intestinal bacteria might influence sauchinone absorption in the blood that might influence
in vivo extrapolation results [43]. Thus, extrapolation from in vitro data to in vivo drug interaction
should be taken with caution.
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4. Materials and Methods

4.1. Chemicals and Reagents

Sauchinone was extracted and purified according to a method reported previously [20]. The purity
of sauchinone was determined to be over 98% by using Waters Acquity™ Ultra Performance LC
system (Waters Corp., Milford, MA, USA) equipped with an ACQUITY UPLC®BEH C18 column
(2.1 × 150 mm, 1.7 µm) and detailed information for structure elucidation and purity experiment
were provided in supplementary data. Pooled human liver microsomes from a mixed pool of
50 donors (HLMs; BD Ultra Pool HLM 50, cat. 452156) and human cDNA-expressed UGT enzymes
(UGT1A6 and 2B7) were purchased from Corning Life Sciences (Woburn, MA, USA). Alamethicin,
β-estradiol, β-estradiol-3-glucuronide, chenodeoxy cholic acid, lithocholic acid, chrysin, efavirenz,
niflumic acid, 1-naphthol, serotonin hydrochloride, trifluoperazine dihydrochloride, zidovudine,
chenodeoxycholic acid, lithocholic acid, the reduced form of β-nicotinamide adenine dinucleotide
phosphate (NADPH; as a tetrasodium salt), and uridine 5′-diphosphoglucuronic acid trisodium salt
(UDPGA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Midazolam and propofol
were supplied from Korea Ministry of Food and Drug Safety (Chung-cheong-buk-do, Republic of
Korea). Hecogenin, propofol-O-glucuronide, serotonin-O-glucuronide, trifluoperazine-N-glucuronide,
and zidovudine-5′-glucuronide were purchased from Tokyo Chemical Industry Co. (Tokyo, Japan).
Chenodeoxy cholic acid-24-acyl-β-D-glucuronide was purchased from Carbosynth (Berkshire, UK).
Carbamazepine [an internal standard (IS) of ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS)] was purchased from Wako Co. (Tokyo, Japan). All other chemicals and
reagents used were of analytical grade.

4.2. Animals

To conduct in vitro (mice liver microsomal study) and in vivo (pharmacokinetic study)
investigations using mice, animal studies were approved by the Institute of Laboratory Animal
Resources of Dongguk University, Seoul, Republic of Korea (IACUC-2016-046). Five-week-old (20–25 g)
male Institute of Cancer Research mice were purchased from the Charles River Company of Korea
(Orient, Seoul, Republic of Korea). Upon arrival, mice were randomized and housed at five mice per
cage under strictly controlled environmental conditions (22–25 ◦C and 48–52% relative humidity) with
a 12 h light/dark cycle at 150–300 lx luminous intensity. All mice were provided food and water and
were maintained during this study.

4.3. Inhibitory Effects of Sauchinone on UGT Activities

Inhibitory effects of sauchinone on UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 activities were evaluated
using HLMs. Formations of β-estradiol-3-glucuronide, chenodeoxy cholic acid-24-acyl-β-D-glucuronide,
trifluoperazine-N-glucuronide, serotonin-O-glucuronide, propofol-O-glucuronide, and zidovudine-5′-
glucuronide represented glucuronidation efficacy of UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, respectively,
in HLMs. As UGT selective substrates, β-estradiol, chenodeoxy cholic acid, propofol, and zidovudine
were dissolved in methanol, whereas trifluoperazine and serotonin were dissolved in 50% ethanol.
These dissolved substrate solutions were serially diluted to required concentrations as a UGT cocktail
set containing β-estradiol, chenodeoxy cholic acid, trifluoperazine, serotonin, propofol, and zidovudine.
Spiked volume of UGT cocktail set was 1% (v/v) of total volume of mixture. Concentrations of
UGT selective substrates were used close to their reported Km values [9]: 10 µM β-estradiol, 15 µM
chenodeoxy cholic acid, 40 µM trifluoperazine, 40 µM serotonin, 100 µM propofol, and 100 µM
zidovudine as substrate of UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, respectively. The reaction mixture
containing 0.25 mg/mL protein of HLM, 100 mM Tris buffer (pH 7.6), 5 mM MgCl2, 25 µg/mL
of alamethicin, the UGT selective substrates’ cocktail set and various concentrations of sauchinone
(0–200 µM) or a well-known inhibitor of each UGT isoform were pre-incubated for 30 min on ice to
allow formation of alamethicin pores. The reaction was initiated by adding 5 mM UDPGA to a final
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volume of 150 µL and incubated at 37 ◦C for 15 or 60 min in a thermomixer at 500 rpm. Each reaction
was stopped by adding 150 µL of ice-cold methanol containing 50 ng/mL IS. These mixtures were
then centrifuged (12,000 rpm for 10 min at 4 ◦C) and 5 µL of the supernatant was injected into a
UPLC-MS/MS system. As positive controls, well-known inhibitors such as chrysin, lithocholic acid,
hecogenin, 1-naphthol, niflumic acid, and efavirenz for UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7,
respectively, were used to validate the experiments. Their IC50 values were compared to that of
sauchinone. All inhibitors were dissolved in methanol (except for hecogenin, which was dissolved
in dimethyl sulfoxide) and serially diluted to the required concentrations using the same solutions.
The final concentration of organic solvent of inhibitors was 1% (v/v). All studies were performed in
triplicate and mean values were used in the analysis. The half maximal inhibition constant (IC50) of
sauchinone on UGT isoforms was estimated using GraphPad program.

4.4. Inhibition Constant (Ki) of Sauchinone on UGT1A6 and 2B7-Mediated Glucuronidation Activities

Based on IC50 values, Ki values of sauchinone for UGT1A6 and 2B7 were determined.
Concentrations of 0–200 µM of sauchinone were used. Other procedures were similar to those
mentioned above in the study of reversible inhibitory effects of sauchinone. Inhibitory characteristics
of sauchinone were initially estimated by nonlinear least squares regression analysis and Ki values
were determined by Dixon plots [45].

4.5. Inhibitory Effects of Sauchinone on UGT Activities Using MLM

Inhibitory effects of sauchinone on UGT1A1, 1A3, 1A6, 1A9, and 2B7 activities were evaluated
using MLM. Mice were sacrificed and then livers were removed and rinsed with saline. After weighing
the livers, they were homogenized with a four-fold volume of ice-cold homogenizing buffer
(0.154 M KCl, 50 mM Tris-base, 1 mM EDTA, pH 7.4). After centrifugation for 35 min at 9000× g and
4 ◦C, the supernatants were centrifuged for 95 min at 100,000× g and at 4 ◦C. The supernatants were
discarded and the pellets were homogenized again with ice-cold homogenizing buffer. These aliquots
were stored at −80 ◦C. The subsequent process to evaluate the inhibitory effects of sauchinone on UGT
activities in MLM was the same as those using HLM.

4.6. UPLC-MS/MS Analysis for Metabolites of UGTs Substrates

Metabolites of UGT-selective substrates were detected using an Waters UPLC-XEVO TQ system
(Waters Corporation, Milford, MA, USA) in multiple reaction monitoring (MRM) mode with an ESI
interface for positive ions ([M + H]+) and negative ions ([M − H]−). Separation was performed on
a reversed-phase C18 column (BEH, 1.7 × 100 mm i.d., 2.1 µm particle size; Waters, Dublin, Ireland)
maintained at 30 ◦C. The mobile phase consisted of water containing 0.1% formic acid (A) and
acetonitrile (B) at a ratio of 85:15 (v/v) for 3 min and gradually changed to 10:90 (v/v) for 5.5 min.
This composition was maintained until 6.5 min and then back to initially composition at a flow rate of
0.3 mL/min. The total run time was 9 min.

Turbo ion-spray interface was operated in positive ion mode at an ion capillary voltage of
2500 V and a temperature of 350 ◦C. Operating conditions (gas flow, 650 L/h; cone gas flow, 10 L/h)
were optimized by flow injection of a mixture of all analytes. The m/z value (CE value) for each
metabolite of UGT-selective substrate was as follows: β-estradiol-3-glucuronide (m/z 446.93→270.90,
−40 V of CE), chenodeoxy cholic acid-24-acyl-β-D-glucuronide (m/z 567.33→567.33, −10 V),
trifluoperazine-N-glucuronide (m/z 584.23→408.20, 25 V), serotonin-O-glucuronide (m/z 353.13→177.10,
10 V), propofol-O-glucuronide (m/z 353.13→177.10, −19 V), and zidovudine-5′-glucuronide (m/z
442.13→125.0, −26 V).

4.7. Data Analysis

UGT-mediated activities in the presence of sauchinone as an inhibitor were expressed as
percentages of corresponding control values (in absence of sauchinone). From percentages of control
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activity versus inhibitor concentrations, a sigmoid shaped curve was fitted to the data and IC50 as an
enzyme inhibition parameter was calculated by fitting the Hill equation to the data using GraphPad
Prism 5 (GraphPad Software Inc., San Diego, CA, USA).

4.8. Pharmacokinetic Study of Zidovudine with or without Sauchinone

To investigate the inhibitory effects of sauchinone on UGT2B7-mediated metabolism, zidovudine
was chosen as an example drug mainly metabolized via UGT2B7 [46]. Surgical procedures of mice were
conducted under tiletamine HCl and zolazepam HCl anesthesia by intramuscular injection. Jugular
vein (for zidovudine administration) and carotid artery (for blood sampling) cannulations were carried
out using catheters (BASi, West Lafayette, IN, USA). Five hours after surgery, drug administration
and blood sampling were allowed [24]. Thirty minutes after oral administration of 100 mg/kg
sauchinone, 15 mg/kg of zidovudine was administered intravenously to mice. Blood samples were
collected via the carotid artery at 0, 1, 5, 15, 30, 60, 120, 240, 360, and 480 min after administration of
zidovudine. A 10-µL of blood was collected into a micro-vial with 50-µL of 12.5 units/mL heparinized
saline using micro-sampling system. After centrifugation of each micro-vial, a 50-µL of plasma with
heparinized-saline was collected from the supernatant, which was analyzed by UPLC-MS/MS. Also, at
the end of 24 h, each metabolic cage was flushed with 5 mL of distilled water and urine samples were
collected (Ae0–24 h). The gastrointestinal tract was cut and extracted with 20 mL of methanol, of which
supernatant was collected (GI24 h). Urine and GI samples were then analyzed using UPLC-MS/MS.

After the analysis of zidovudine concentrations in plasma by UPLC-MS/MS, pharmacokinetic
parameters were calculated as follows. The area under the plasma concentration–time curve from
time zero to the last measured time to infinity or last sampling time (480 min) (AUC or AUC480 min)
was calculated using the trapezoidal rule method. Standard methods [47] were used to calculate
pharmacokinetic parameters using a non-compartmental analysis (WinNonlin 2.1; Pharmasight Corp.,
Mountain View, CA, USA). Peak plasma concentration (Cmax) and time to reach Cmax (Tmax) were read
reversibly from the extrapolated data.

5. Conclusions

The present study investigated the inhibitory potential of sauchinone towards UGTs to cause
drug interactions for the first time. In detail, sauchinone inhibited UGT activities in the following
order: UGT2B7 > 1A6 > 1A1. It noncompetitively inhibited UGT1A6 and 2B7 activities in vitro.
Sauchinone also increased systemic exposure of zidovudine, a substrate of UGT2B7, through UGT2B7
inhibition in vivo mice. All these results provide an early warning for the combination between
sauchinone and drugs mainly metabolized by UGT2B7. Due to various contributions of UGT isoforms
toward drug metabolism as well as species and individual differences, further clinical investigations
should be considered.
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