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ABSTRACT Advances in genome sequencing technologies and lower costs have
enabled the exploration of a multitude of known and novel environments and
microbiomes. This has led to an exponential growth in the raw sequence data that
are deposited in online repositories. Metagenomic and metatranscriptomic data sets
are typically analysed with regard to a specific biological question. However, it is
widely acknowledged that these data sets are comprised of a proportion of sequen-
ces that bear no similarity to any currently known biological sequence, and this so-
called “dark matter” is often excluded from downstream analyses. In this study, a sys-
tematic framework was developed to assemble, identify, and measure the proportion
of unknown sequences present in distinct human microbiomes. This framework was
applied to 40 distinct studies, comprising 963 samples, and covering 10 different
human microbiomes including fecal, oral, lung, skin, and circulatory system micro-
biomes. We found that while the human microbiome is one of the most extensively
studied, on average 2% of assembled sequences have not yet been taxonomically
defined. However, this proportion varied extensively among different microbiomes
and was as high as 25% for skin and oral microbiomes that have more interactions
with the environment. A rate of taxonomic characterization of 1.64% of unknown
sequences being characterized per month was calculated from these taxonomically
unknown sequences discovered in this study. A cross-study comparison led to the iden-
tification of similar unknown sequences in different samples and/or microbiomes. Both
our computational framework and the novel unknown sequences produced are pub-
licly available for future cross-referencing. Our approach led to the discovery of several
novel viral genomes that bear no similarity to sequences in the public databases. Some
of these are widespread as they have been found in different microbiomes and studies.
Hence, our study illustrates how the systematic characterization of unknown sequences
can help the discovery of novel microbes, and we call on the research community to
systematically collate and share the unknown sequences from metagenomic studies to
increase the rate at which the unknown sequence space can be classified.

KEYWORDS dark matter, genome assembly, human microbiome, metagenomics,
microbial dark matter, novel sequences, unknown sequences, virus

Metagenomics has become an increasingly mainstream tool to catalogue the mi-
crobial makeup of any given habitat (1–4). It has been applied to a diverse range

of environments from human body sites (5–8) to the depths of vast oceans (9–11).
Metagenomics, compared to culture-based methods, provides a relatively unbiased
approach to observe, measure, and understand the interactions of the microbes within
communities as well as with their hosts (3). Underpinned by relatively low sequencing
costs and providing powerful insights, metagenomics has become a routine technique
to study the microbial content of any environment (2).
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These advances in sequencing technologies and the importance of data sharing for
reproducible research have led to the rapid expansion of publicly available sequence
data. This has led to rapid growth in online sequence databases such as GenBank,
which store nucleotide and protein sequence data from various organisms (12, 13).
However, although the raw sequences generated as part of metagenomic experiments
are made publicly available through the Short Read Archive (SRA) or European
Nucleotide Archive (ENA) repositories, the complete set of assembled contigs from a
study is rarely submitted to online databases (14). The reason for the absence of this
type of data can be associated with the sheer number of contigs generated and the
requirement for sequences to be annotated before their submission, which is difficult
when the organism the sequence came from is unknown, and when the number of
contigs is large. Additionally, taxonomically unidentifiable contigs are typically dis-
carded and excluded from downstream analyses (Fig. 1a), but such sequences repre-
sent novel and potentially widespread biological entities, and cataloguing their
sequences and where they are found will aid taxonomic classification and our under-
standing of their biological nature in the future.

The raw data in public databases are typically analyzed using metagenomic proto-
cols designed to address specific biological questions. There is a range of different
tools and pipelines available for metagenomic sequence analysis, but there are limited
comparisons of these pipelines as they are usually developed to address specific
research questions. For example, there are approximately 50 workflows available for vi-
rus metagenomic analysis that were used in different publications with primarily differ-
ent aims (15). As part of the routine metagenomic analysis, only the contigs that can
be classified using a specific workflow and that are of interest to the scientific study
are typically submitted to sequence repositories such as GenBank. The current
approaches used for metagenomics extensively rely on similarity searches to known
organisms and proteins; thus, research suffers from the streetlight effect, i.e., observa-
tional bias which occurs when people search for something only where it is easier to
look. However, in a typical metagenomic data set, a range of assembled contigs cannot
be functionally or taxonomically classified, a large proportion of which, even after
excluding spurious contigs, bear no functional or sequence similarity to any known
sequences and are often referred to as unknown or “dark” sequence matter (16–19).
Although the terminology itself has been controversial (19, 20), it typically refers to the
sequences of unidentified taxonomic and/or functional origin (Fig. 1b). Generally, these
unknown contigs (UCs) are excluded from downstream analyses. However, a number
of recent studies have highlighted the importance of identification and categorization
of such unknown sequences (17, 19, 21, 22).

Characterization of metagenomically assembled genomes (MAGs) as microbial origin
has strengthened the hypothesis that uncharacterized biological sequence matter is
highly likely to belong to uncultured or unculturable bacteria, archaea, and viruses pres-
ent in the microbiome sampled (4, 17, 19, 23). A study by Almeida et al. (24) mined over
11,850 human gut microbiome data sets and identified nearly 2,000 novel uncultured
bacterial species from 92,143 genomes assembled from metagenomics data sets.
Similarly, another study focusing on multiple human biomes assembled 150,000 micro-
bial genomes from 9,428 metagenomic data sets (25). The MAGs generated from these
studies were consolidated to create a unified catalogue of 204,938 gut microbiome refer-
ence genomes (26). A range of different data mining studies has led to the identification
of novel microbes, including the identification of novel bacterial and archaeal phyla and
superphyla (17, 27).

Previous studies have shown that sequences of unknown lineage and unknown
functions tend to be of viral origin (16). For example, a computationally identified
phage, crAssphage, has been shown to constitute approximately 1.7% of all fecal meta-
genomic sequences (28). A study by Roux et al. (21) mined 14,977 publicly available
bacterial and archaeal genomes and identified 12,498 completely novel viral genomes
linked to their hosts. Kowarsky et al. (29) found that 1% of cell-free DNA sequences
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appear to be of nonhuman origin in human blood samples and only a small fraction of
them can be mapped to currently known microbial sequences. Despite this, the charac-
terization of unknown sequences in publicly available data repositories remains an
ongoing challenge in microbiome research (4), and the identification of viruses in such
UCs remain an even greater challenge due to the absence of universal gene signatures
and the high diversity in virus genome content (30). Overall, this highlights the wide-
spread existence of potentially novel viruses and bacteria in the currently available
sequence data sets and that a systematic method to identify and catalogue them,
especially in human data sets, would be extremely useful. The European Bioinformatic
Institute (EBI) has developed MGnify, which enables researchers to analyze their data
using a standard metagenomic workflow (31, 32). Similarly, there have been other

FIG 1 Typical metagenomic analysis and data submission to public repositories. Overview of existing metagenomic
analytical workflow and the definition of unknown sequence matter. (a) Typical metagenomic analytical workflow
with data submission steps. (b) A schematic representation of known, partially known, and unknown sequence
matter in the metagenomic data sets. HTS, high-throughput sequencing; WGS, whole-genome sequencing.
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community initiatives developed to forward this field of research (31, 33–38). Here, we
have focused on the development of a robust, portable, and reproducible analysis
framework that aims to identify and quantify the UCs in different microbiome samples
(Fig. 2).

In this study, (i) we develop a framework to quantify the unknown sequence matter
in human metagenomic data sets; (ii) we compare the unknown sequences between
samples, studies, and microbiomes to determine whether these sequences are likely to
be of biological origin and whether they are broadly distributed; and (iii) we compare
the unknown contigs to currently known sequences in GenBank over the period of the
study to determine the rate at which these unknown contig sequences are being taxo-
nomically classified. All unknown sequences and associated metadata have been made
publicly available for the research community and the original submitter.

RESULTS

To quantify the presence of unknown sequences in human metagenomes, data sets
included in the EBI MGnify were filtered to select for metagenomic data sets sequenced
on the Illumina platform (see Materials and Methods). A set of 963 samples from 40 studies
covering 10 different microbiomes were downloaded from SRA repositories and analyzed
using the framework described in Materials and Methods in order to characterize and
quantify the unknown sequences in these samples. The studies included a total of
2.08 � 1012 bases of raw sequence data that were derived from a range of human micro-
biome studies including the following microbiomes (Fig. 3a): 1, circulatory system (n = 2);
2, fecal (n = 20); 3, lung (n = 1); 4, oral (n = 5); 5, pulmonary system (n = 1); 6, saliva (n = 3);
7, skin (n = 2); 8, sputum (n = 2); 9, vagina (n = 1); and 10, human (n = 3; miscellaneous).
Geolocation information available for 861 of these samples shows that the data sets are
globally distributed but skewed toward western Europe (Fig. 3b and Fig. 4). All samples
were individually processed through the metagenomic analysis framework designed in

FIG 2 UnXplore workflow designed to identify unknown sequences in metagenomic data sets. Detailed workflow of the metagenomic analysis and unknown
sequence identification pipeline.
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this study (see Materials and Methods). The framework included an individual sample-
based de novo assembly step resulting in a total of 44,238,374 de novo-assembled contigs,
28,505,777 of them longer than 300 nucleotides. Out of this set, 7,155,624 contigs were at
least 1 kb long, 970,507 were at least 5 kb long, and 415,719 were at least 10 kb long. The
largest assembled contig was 1,380,230 bases long and was found in the human gut
microbiome sample ERR505090. These contigs were then systematically processed by our
metagenomic framework for BLASTX sequence similarity classification against the

FIG 3 An overview of the human microbiome data set included in this study. (a) Distribution of samples
included in this study for each microbiome (n = 963). (b) Overview of the geographical distribution of the
samples included in the study (n = 861) colored according to the distinct microbiome. The size of the slice
represents the number and the proportion of samples. Note that as Russia spans two continents, Asia and
Europe, samples from Russia were included in Europe to simplify the illustration in this figure.
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FIG 4 The geographical distribution of human microbiome samples included in this study. Geographic locations are colored according to the number
of samples (n = 861) with darker shades representing a higher number of samples analyzed. Samples originating from each location are represented by
a doughnut chart. Each doughnut is colored according to the microbiome, and its proportion is represented by the slice of the doughnut.
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GenBank nonredundant protein database. Sequence similarity thresholds were used to
sort the contigs into three classes: known (.80% similarity to a known protein sequence),
partially known (.0 and,80% similarity to a known protein sequence), and unknown (no
similarity to any existing sequence).

In total, 25,148,829 (88.22%) contigs were classified as known contigs while 2,517,700
(8.83%) of all analyzed contigs were classified as partially known. The remaining sequen-
ces, referred to as unknown contigs (UC), are sequences that did not bear significant simi-
larity to known sequences in the databases. Overall, 651,529 (2.29%) contigs did not match
any currently known sequences using our approach and were categorized as UCs. On aver-
age, 1.3% of assembled bases per sample were found to be unknown. The proportion of
unknown varied significantly between different assembled metagenomes as shown in
Fig. 5a. Samples from some microbiomes such as the circulatory system did not contain
any unknown sequences, in contrast to the skin microbiome, where this proportion was
up to 25.85% for some samples.

The UCs varied largely in length, and most of the UCs were 300 to 1,000 nucleotides
long (Fig. 5b). Of all UCs, 95.36% (n = 621,302) were shorter than 1 kb, and 4.59%
(n = 29,879) of UCs were between 1 and 5 kb long. A set of 320 UCs fell within the 5- to
10-kb length category, and 28 UCs were .10 kb long. The largest UC was 42.3 kb long,
and the second largest UC was 21.3 kb long. A complete distribution of UCs across dif-
ferent microbiomes is shown in Fig. S1 in the supplemental material, and it shows that
the largest UCs were assembled from fecal, oral, and saliva microbiomes.

To understand the coding potential of the unknown sequences, open reading frames
(ORFs) were predicted. A total of 273,590 ORFs that were at least 100 amino acids (aa) in
length were generated using the standard genetic code. A threshold of 100 aa was
selected, which is similar to that used in the taxonomic classification tool GRAViTy, which
demonstrated only a 5 to 10% gene loss at this cutoff for viral sequences (39). These
ORFs originated from 215,985 distinct UCs, showing that 33.15% of all UCs contained
large ORFs. On average, ORFs were 157 aa long with a standard deviation of 87 amino
acid residues. The longest ORF was 6,898 aa. This set also included 2,713 ORFs with
lengths of at least 500 aa and 256 that were at least 1,000 aa long.

A detailed protein domain analysis for these ORFs was carried out using the
InterProScan (40) protein analysis software. This tool searches the domain and functional
signature of amino acid sequences against a range of distinct domain databases includ-
ing Pfam (41), CDD (42), and SUPERFAMILY (43). A total of 36,354 ORFs originating from
35,760 UCs could be functionally annotated using the InterProScan analyses; this num-
ber excludes hits to MobiDBLite and Coils databases as they predict disordered regions
and coil structure of predicted ORFs as opposed to the domain signatures. An overview
of the number of hits found to various InterProScan databases for each microbiome is
shown in Fig. S2a. The highest number of hits was found in MobiDBlite (44), a database
that can predict the intrinsic disorder regions in the proteins. Overall, 5.49% of UCs
(n = 35,760) contained ORFs (n = 36,354) with at least one identifiable domain. The func-
tional classification of the ORFs was prominently centered around the Pfam database
resource (41). Pfam databases facilitate domain-based searches against the set of protein
sequences using hidden Markov model profiles. These types of searches can identify dis-
tantly related protein sequences. A total of 16,839 ORFs originating from 16,705 UCs
were found to match at least one Pfam entry, and in total, 27,025 Pfam hits were derived
(Fig. S2a) All Pfam entries were collapsed down to their corresponding protein clans
(grouping of related protein families) by mapping the Pfam identifiers (IDs) back to their
clan membership. Figure S2b shows a heatmap of the top 50 Pfam clans with hits to UC
ORFs predicted in different metagenomes. The most abundant hits were identified to
clans tetratricopeptide repeat superfamily and leucin-rich repeats. The largest number of
hits was found in the fecal microbiome due to the high number of fecal microbiomes
included in this study. Additionally, a range of other protein clans including those that
represent helix-turn-helix, beta-strands, polymerase, and nuclease proteins was also
found in this set. These results illustrate that the UC sequences have known protein
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domains, suggesting that these unknown sequences are functional and belong to organ-
isms that are not yet fully sequenced or taxonomically classified.

Unknown sequence clustering. To investigate the extent of sequence diversity
and to identify UC sequences present in multiple samples and microbiomes, sequence
clustering was performed. MMSeqs2 (45) generated 464,181 clusters of which 377,855
were singletons, i.e., they did not cluster with any other sequences. These singletons
were excluded from the cluster analysis described below. A total of 86,326 clusters
comprised two or more sequences with a mean cluster size of 5.7 contigs and a stand-
ard deviation of 8.1. Cluster representatives which were the longest sequences in the
cluster were extracted from MMSeq’s clustering output. The largest cluster contained

FIG 5 Quantification of unknown sequences in different human microbiomes. (a) The proportion of unknown
bases in different human microbiomes. The proportion of unknown bases was calculated from the unknown
contigs for each microbiome. The secondary y axis shows the number of samples analyzed in each category.
Each individual sample is overlaid on the boxplot and is represented by small yellow circles. (b) The
distribution of all unknown contigs in 11 distinct length categories. Each bar represents the proportion of UCs
on the y axis with the number of contigs in the given category annotated at the top of the bar. Bin sizes are
shown in the interval format, which means that sizes are exclusive on start values and inclusive on end values.
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153 sequences which originated from the fecal microbiome from 8 distinct BioProjects
(Fig. S5c). A cluster size distribution across different microbiomes is shown in Fig. 6,
and a detailed cluster size distribution with cluster representative length is shown in
Fig. S3. Of 273,674 UCs, 89.42% (n = 244,730) were clustered into single microbiome
clusters, and 10.58% of UCs (n = 28,944) were found in clusters that contained sequen-
ces from two or more microbiomes. To compare that with specific studies, 39.4% of
UCs were clustered into BioProject specific clusters and the remaining 60.6% of UCs
(n = 165,851) were grouped into clusters originating from two or more BioProjects. A
total of 78,139 (90.52%) clusters contained sequences from a single microbiome, and
7,645 (8.86%) clusters included sequences from two microbiomes. Only a few clusters
were comprised of members from 3 (n = 512) or 4 (n = 30) microbiomes. The largest
multimicrobiome cluster contained 57 sequences (304 to 9,080 bases long) from 4 dis-
tinct microbiomes and BioProjects and contigs assembled from 12 samples. The largest
single microbiome cluster contained 153 sequences (6,640 to 300 bases long) from
fecal microbiomes with contigs assembled from 46 distinct samples covering 8 differ-
ent studies. Overall, this clustering method produced very small, study-specific clusters.
A set of 464,181 UCs was obtained by combining the cluster representative sequences
with the unclustered singleton UCs and used to determine the rate at which UCs are
classified.

Classification of unknown sequences over time. In this framework, the unknown
sequence identification is dependent on the publicly available nucleotide or protein

FIG 6 Distribution of cluster sizes on the x axis and their proportion on the y axis. The marginal box plot
shows the distribution of cluster sizes for each category. The plots are grouped and colored according to the
number of distinct bodily sites in which the clusters are found: e.g., number of bodily sites = 2 in green means
that members of each cluster are found in data sets from two distinct bodily sites (e.g., gut, skin, fecal, oral),
and all clusters from this plot come from 2 distinct bodily sites but may (or may not) come from different
bodily sites compared to other clusters within the plot, with one cluster coming from gut and skin, for
example, and another from skin and fecal matter, etc.

Exploring Unknowns within Human Microbiomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01468-21 9

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01468-21


sequence databases. These data repositories are updated regularly with new sequence
data being deposited from around the world. However, typically, the sequence searches
are carried out against static versions of the databases. Our analysis conducted against
the databases downloaded on 18 April 2019 identified 651,529 UCs that were collapsed
down to a set of 464,181 UCs following the cluster analysis. Subsequent analyses on 31
October 2019 and 5 March 2020 produced a set of 613,726 and 558,711 UCs, respec-
tively. The final number of sequences that still lacked a taxonomy label was down to
459,147 after the most recent analysis carried out against the databases downloaded on
14 October 2020. A total of 29.5% (n = 192,382) of the sequences compared to the initial
set of unknown sequences matched at least one sequence from the updated databases
in the BLASTX and the BLASTN steps of the analysis. Similarly, 27.6% (n = 128,288) of the
representative set sequences could be labeled taxonomically with the updated data-
bases. A rate of taxonomic characterization of 1.64% of unknown sequences being char-
acterized per month was calculated from the complete set. This rate was estimated to
be 1.54% for the representative set. Moreover, as shown in Fig. S4, a range of long UCs
still remained unknown even after the similarity sequence-based analysis carried out on
14 October 2020.

From a set of 192,382 contigs that were labeled taxonomically after the most recent anal-
yses carried out on 14 October 2020, 167,864 were identified using BLASTX and 24,518 were
identified using BLASTN. A total of 106,739 UCs from the BLASTX-classified set were catego-
rized as known, and 61,125 contigs were categorized as partially known. A large majority of
these contigs (97.11%, n = 162,987) were also deemed to be bacterial. The remaining contigs
were divided between cellular organisms (n = 2,104), archaea (n = 930), viruses (n = 858),
root (n = 827), and Eukaryota (n = 140). Of all BLASTN hits, 76.55% matched bacteria
(n = 18,768), 17.88% matched viruses (n = 4,383), 1.99% matched Eukaryota (n = 487), and
0.03% matched archaea (n = 7). The hits that could not be mapped to a superkingdom were
divided between unidentified plasmid (n = 544), root (n = 294), cellular organisms (n = 20),
uncultured organisms (n = 14), and synthetic construct (n = 1). These results reiterate our ini-
tial hypothesis that the majority of UCs represent currently unknown microbial genomes.

Viral domain signature identification. One hundred ninety-five UCs were shown
to contain a virus-specific functional domain which was parsed using the term “virus”
or “viral” in the InterProScan analysis signature description column. Results with the
term “phage” were not included in this subset as a range of phage domains is also
present in the host bacterial genomes. These domains were predominantly identified
using the Pfam (n = 125) analysis. The most abundant virus-specific domain was vacci-
nia virus protein VP39, and it was found in 53 UCs derived from fecal (n = 23), saliva
(n = 14), oral (n = 12), sputum (n = 1), and human (n = 3) microbiomes and was identi-
fied by Gene3D analysis. The largest UC containing this domain was 3,661 bases long
and was found in sample ERR1474567. Another frequently found domain in the UCs
was podovirus DNA encapsidation protein Gp16 domain. It was found in 25 UCs; out of
this set, 23 UCs were assembled from fecal microbiome. The largest UC containing this
virus-specific domain was a 9-kb-long contig (see Fig. 8a below), assembled from
PRJEB18265. This UC was clustered with 24 other sequences (see “Unknown sequence
clustering” above) that were assembled from 11 samples representing 5 distinct fecal
microbiome studies. These results indicate that these UCs represents a completely
novel genome of a virus that is likely related to currently known podoviruses.

The largest UC containing a viral RNA-dependent RNA polymerase (Pfam: PF00680)
domain was found in the sputum microbiome sample ERR1022511. This UC was 5,894
bases long and contained seven ORFs that were at least 100 aa long (Fig. 7). A 269-aa-
long ORF contained ATPase P4 of the double-stranded RNA (dsRNA) bacteriophage
phi-12 (Pfam: PF11602) domain, suggesting that this UC represents the large segment
of a novel double-stranded RNA phage which is usually categorized in the virus family
Cystoviridae. The genomes of these phages are composed of three linear dsRNA seg-
ments with a total genome length of 12.7 to 15 kb, and all segments code for various
proteins (46). Although several other UCs were found in the same sample, none of
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them displayed any sequence or functional similarity to the other two segments, i.e.,
small and medium segments of cystoviruses. However, UCs that could potentially
belong to novel cystovirus-like genomes were extracted based on the sequence
length, GC content, and sequencing depth criteria. Moreover, this UC representing a
potentially novel relative of cystoviruses did not match any known protein or nucleo-
tide sequences even in the most recent analyses, confirming the discovery of a novel
virus.

Virus prediction and comparisons to uncultured virus databases. From the com-
plete set of the UCs, 323,395 (49.64%) UCs were predicted as viruses by DeepVirFinder
(see Fig. S7a). This set included 300,271 UCs that were under 1 kb long, which repre-
sent 48.33% of UCs identified in this length category. A number of larger contigs were
also predicted as viruses: 76.27% (n = 22,788) of UCs in the 1- to 5-kb length category
and 96.55% (n = 336) of UCs in the 5- to 50-kb category. These results strongly support
our hypothesis that the large majority of the UCs are of virus origin, albeit a large pro-
portion of short UCs are likely to be fragments of unknown viruses.

These predicted virus sequences (n = 323,395) were clustered with other known
and partially known sequences using MMSeqs with 90% sequence similarity across
80% of the sequence. Of UCs, 50.18% (162,271) either were singletons or were clus-
tered with other UCs, while the remaining 49.82% (161,124) of UCs were clustered with
known and partially known. However, a large proportion (n = 152,295; 94.52%) of the
UCs that clustered with these were shorter than 1 kb. A total of 8,829 UCs (out of
22,788; 38.74%) were at least 1 kb long, among which 1,402 UCs (out of 4,419; 31.73%)
were at least 2 kb long, 75 UCs (out of 336; 22.32%) were at least 5 kb long, and 5 UCs
(out of 28; 17.86%) were at least 10 kb long. Moreover, 47.52% of sequences that
match the UCs were deemed partially known (i.e., had a protein sequence hit with
,80% sequence similarity) in this analysis, suggesting that these known and partially
known sequences are still significantly divergent from those present in the databases.

To identify the “known unknowns,” i.e., uncultured viruses categorized as UCs in
this study and also observed in previous meta-analyses, the IMG/VR databases were
used as a reference and the UCs were searched against the nucleotide and protein
repositories. A total of 182,293 (27.98% of all UCs) UCs had at least one hit to unculti-
vated viral genomes (UViGs) included in the IMG/VR databases using BLASTN, and
175,372 (26.92%) UCs were found to match at least one UViGs using the BLASTX
approach (Fig. S7b). Out of the set of 273,590 predicted ORFs, 85,852 ORFs were found
to match protein sequences included in IMG/VR. A total of 64,779 (9.94%) UCs were
found to match the uncultured viruses in IMG/VR using all three approaches.

The large unknown contigs. All UCs described in this section were predicted to be
viruses by DeepVirFinder and did not cluster with known and partially known sequen-
ces. The largest UC was assembled from the saliva sample ERR1474583 and was 42,357

FIG 7 The genome diagrams of a potentially novel dsRNA phage segment found among the UC set that is hypothesized to be related to currently known
cystoviruses. The open reading frames (ORFs) are highlighted in the light pink shade with the ORF lengths as their corresponding labels and the green
boxes illustrating the InterProScan-computed presence of domain signature.
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bases long. This contig did not cluster with any other contigs and has 23 ORFs that
were over 100 aa long. One of the ORFs that is 434 aa long comprised the cysteine pro-
teinase domain (SUPERFAMILY: SSF54001) according to the InterProScan analysis. This
contig still remained unknown after searches against the most recent version of the
databases, suggesting that the organism to which this genomic sequence belongs is
still to be identified and fully sequenced. A snapshot of the ORFs and domain is shown
in Fig. 8b, highlighting the presence of coding regions across the entire length of the
UC sequence. Based on the results we have obtained here, we predict that this UC
sequence is likely to be of microbial origin as it lacks a noncoding region. CheckV anal-
ysis predicted it to be a viral genome fragment with the presence of two identifiable vi-
ral genes, albeit with low quality per the MIUVIG (47) standards due to the lack of simi-
larity to any known sequences. This strongly suggests that this UC can potentially be a
representative or partial genome sequence of a currently unknown and completely
novel virus.

A 20,309-nucleotide-long contig from saliva sample ERR1474612 clustered with two
very short contigs from the same study. As shown in Fig. 8c, long ORFs were predicted
across the whole sequence. Some of the predicted ORFs were found to have interest-
ing domain signatures (Fig. 8c) such as enzymes for nucleic acid replication, e.g., poly-
merases. An ORF that is 655 aa long shows the presence of the DNA-dependent RNA
polymerase domain (SUPERFAMILY: SSF64484). A CheckV (48) analysis of the contig
also predicted it to be of viral genomic origin; however, it was predicted to be an
incomplete genome. This UC was shown to have a very low identity (,30% sequence
identity with 2% of query coverage) to a hypothetical protein of a Firmicutes bacterium
(HAB66316.1) and an AAA-family ATPase from Sharpea azabuensis (23% sequence simi-
larity). When the E value threshold was removed, a total of 8 BLAST hits were obtained
and 3 out of 8 hits were to a range of phages including Bacillus phage vB_BpuM-BpSp,
Vibrio phage 2 TSL-2019, and Ralstonia phage RP12. These hits range from hypothetical
to putative proteins. All these matches were localized to a short region between posi-
tions 8217 and 8915 which was shown to contain ATPase and P-loop-containing nucle-
otide triphosphate hydrolase domains (Fig. 8c). Notably, no nucleotide sequence hits
were identified for this UC. Although these results have bacterial hits, it is likely that
this UC represents a complete or partial genome of a novel phage that infects the host
bacteria, e.g., Firmicutes.

Short circular contigs. A range of circular contigs with direct terminal repeat (DTR)
and inverted terminal repeat (ITR) signatures was identified using CheckV in the UC
data set. A total of 1,839 UCs containing repeat signatures were predicted of which
1,771 contained DTR signatures and 68 contained ITR signatures. Ninety-four of these
UCs were at least 1 kb long, suggesting circular genomes, and 48 of them contained a
range of 55-base-long terminal repeats. A cluster of 8 sequences from 2 different
microbiomes and studies were identified to contain similar sequences (71 to 100% sim-
ilarity) assembled from different samples (Table 1). Four cluster members were 2,110
bases long, one sequence was 1,983 nucleotides long, and the cluster representative
was 3,165 nucleotides long. The cluster representative sequence contained multiple
copies of the same ORFs, suggesting the presence of multiple genome copies,
sequencing error, or misassembly. Most of these sequences contained a 50-bp-long
DTR sequence signature, GTGCATTTTTTTTGTGCACTTTTTCAAAAAAACCGTGAAAAAAAT
TCATT. These contigs contained two distinct ORFs, which were 125 aa and 144 aa long.
Similarly, another 50-base-long DTR signature, AATGAATTTTTTTCACGGTTTTTTTGAA
AAAGTGCACAAAAAAAATGCAC, was observed in another cluster that had 7 member
sequences ranging in similarity from 31 to 100% and assembled from 7 distinct sam-
ples. All but one member were 1,770 to 1,771 bases long. These contigs also contained
two ORFs that were 102 aa and 106 aa long. These ORFs did not match any existing
protein sequences in the databases. These circular contigs were assembled from a
range of oral microbiome samples from study PRJNA230363. Similarly, a range of con-
tigs (n = 9) that contained inverted terminal repeats (ITRs) were also identified in this
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data set. A cluster of 5 distinct circular contigs was assembled from distinct samples
from the fecal microbiome (PRJEB7949). Four out of five of these circular contigs con-
tained the ITR sequence CGAAACGATTGCCCAGAGAGATGACTGTCAATCCGCCCGA
TTATTGGGCGCTTAC. They also contained a 138-aa-long ORF. These short circular UCs
did not bear any sequence or functional similarity to known sequences or domains, so
their biological origin is difficult to predict. However, based on their genome organiza-
tion and size distribution, we predict that they are likely to represent either novel circu-
lar replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus
groups or novel satellite virus-like groups. Sixteen out of 20 UCs described in Table 1
were predicted to be viruses by DeepVirFinder (see “Virus prediction and comparisons
to uncultured virus databases”).

Control samples. The Human Microbiome Project (HMP) mock community samples
(n = 9) were downloaded for study PRJNA298489 and were analyzed for quality control

FIG 8 The genome diagrams of large unknown contigs show the open reading frames (ORFs) in the light pink shade with the ORF lengths as their
corresponding labels and the green boxes illustrating the InterProScan-computed presence of domain signature. (a) The largest contig with podovirus
DNA encapsidation protein Gp16 domain. (b) The largest unknown contig assembled in the set is categorized as unknown even after the most recent
similarity-based search on 14 October 2020. (c) An unknown contig of 20,309 bases in length was described to contain a range of domains including a
potential virus-specific RNA polymerase domain.
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and workflow assessment. These are control samples that are not expected to yield
UCs, but if they did, those UCs could be due to sequencing/assembly error or common
lab contaminants. Out of the complete set, four HMP samples did not contain any UCs
as expected, whereas SRR2726666, SRR2726669, and SRR2726672 contained one UC
each, but their lengths were short, varying from 323 to 449 bases. The remaining two
samples, SRR2726670 and SRR2726671, contained 28 and 18 UCs each, respectively.
The largest UC assembled in the mock sample was 3,965 bases long and was found in
SRR2726670; only 3 UCs were$1 kb. These UCs were searched against the most recent
version of the databases downloaded on 14 October 2020, and only 8 short contigs—4
from SRR2726670, 2 from SRR2726671, and one each from SRR2726666 and SRR2726669—
remained in the UC category. These remaining UCs were only 330 to 513 bases long. These
results validate the UC analysis framework developed here and highlight that even in con-
trol samples, there is a very minor number of short UCs to be found. New sequence data
get uploaded to public repositories daily, and these updated databases contain a greater
diversity of sequences, most of which are taxonomically classified. Therefore, UCs identi-
fied in the initial analysis of these mock samples were subsequently found to match a
known sequence in the updated version of the database as more sequence data were
available and classified.

Resources. We have developed a modular metagenomic and unknown sequence
analysis framework using the sophisticated pipeline management tool Snakemake. Our
analysis pipeline takes advantage of portability and flexibility offered by Python,
BioPython, and Snakemake tools which allow reproducible analysis of large meta-omic
data on any processing servers and clusters. The framework developed here is capable
of utilizing multiple cores, enabling users to analyze large data sets in a parallel fash-
ion. This allows the UC data to be properly linked to their original samples and studies.
A consistent data labeling scheme is utilized across all studies and samples. For trace-
ability, all UC FASTA identifiers start with SRA sample identifier. All ORFs contain the
exact same naming scheme with the suffix “_” and an ORF number starting with 1. A
complete metadata table is provided to link any new sequence data to their corre-
sponding BioProject and sample. Functional domain predictions and clustering results
are annotated with relevant metadata and provided in a tabular format.

DISCUSSION

In this study, we have developed an automated framework that can systematically
quantify the proportion of unknown contigs (UCs) in meta-omics samples. While the
presence of UCs is well recognized, this is the first study that addresses the question of
UCs comprehensively and quantifies it across different human microbiomes. Our
approach utilizes sequence similarity-based taxonomic categorization to identify the
sequences that cannot be categorized. We define these UCs as the sequences that do
not match known sequences in the databases with a predefined sequence similarity
threshold of E value 0.001, which is a very lenient threshold; anything with an E value
higher than this is unlikely to truly be related to the database sequence hit. We show
that on average 2.29% of assembled contigs are categorized as unknown in different
human microbiome studies. Moreover, a subset of those with unknown sequences
could be translated and contained protein domains; thus, we were able to find

TABLE 1 Circular contig clusters with direct and inverted terminal repeats

Study ID(s)
Cluster
size (n)

Typical contig
length (nt)

Repeat
type

Sample
type

Sequence similarity (%)
(minimum–maximum)

PRJEB14383; PRJNA230363 8 2,110 DTR Saliva;
oral

71–100

PRJNA230363 7 1,771 DTR Oral 31–100
PRJEB7949 5 1,337 ITR Fecal 67–100
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functional similarity to 5.49% of taxonomically unknown contigs. We have generated a
comprehensive catalogue of 651,529 UCs that do not bear any sequence similarity to
sequences present in the widely used GenBank protein and nucleotide databases.
Although sequence similarity-based approaches are dependent on the databases, the
protein sequence-based approach implemented here is highly effective in fishing out
distantly related homologues of known sequences available in the databases (49) and
thus provides better resolution for sequence classification than those solely based on
the genomic signature-based binning (50). This study highlights the importance of
avoiding the “streetlight” effect, i.e., observational bias arising from classifying metage-
nomic sequences on the basis of related sequences that already exist in the databases.
Here, we have aimed to eliminate such observational bias by performing comprehen-
sive data mining of the human microbiome data and cataloguing the UCs, their fre-
quency in different human microbiomes, and their overlap between different samples.

This study has enabled the identification of a range of genomic sequences that are
hypothesized to belong to currently uncharacterized organisms that are often found in
similar samples and/or microbiomes. A range of large UCs with and without known pro-
tein domains is presented here. However, the complete set includes a large number of
UCs that still remain unknown and can be mined further to study their biological origin.
A third of all UCs (n = 215,985) contained large predicted open reading frames (at least
100 amino acids long) that were predicted using the standard genetic code. Using alter-
native genetic codes may expand this set further by revealing novel, potentially different
open reading frames generated from the UCs. A small proportion of these open reading
frames contained domain signatures confirming the presence of currently unidentified
organisms. Moreover, a comprehensive clustering analysis has led to the identification of
UCs that were present across different human microbiomes (as well as from different
samples/studies investigating the same human microbiome), indicating that we have
discovered potentially widespread and as-yet-unclassified novel biological organisms
within the human microbiome. The multimicrobiome clustering approach applied here
provides an interesting way to understand the diversity and the distribution of the UCs
across different microbiomes and geographical sites. For example, this approach led to
the identification of 30 clusters that spanned 4 distinct microbiomes. The largest multi-
microbiome cluster comprised 57 UCs recovered from saliva, sputum, oral, and lung
microbiomes and was assembled from 12 different samples. Although it is impossible to
identify the true clusters present in the data due to the novelty of the UCs, the clustering
approach helps to identify obvious patterns of sequence similarity between micro-
biomes and studies. This approach provides an additional dimension by capturing
unknown sequences that are shared between different projects or human microbiomes.

Virus predictions carried out by DeepVirFinder—a machine-learning-based virus
prediction tool for identifying viruses from metagenomic data sets—have shown that
approximately 50% of all UCs are likely to be of virus origin. Additionally, nearly 30% of
all UCs identified in this study have an overlap with uncultivated viral genomes cur-
rently catalogued in IMG/VR databases. As with most similarity-based approaches, we
used an arbitrary threshold for determining a match to the IMG/VR database, and thus,
a match does not mean the sequences are closely related. Interestingly, this study pro-
vides an added dimension to these matching uncultivated viral genomes (UViGs) by
providing information on the type of microbiome in which they have been found. It is
anticipated that UCs catalogued in this study may have some overlap with other viral
genome databases such as the Gut Phage Database (51) and Gut Virome Database
(52). Short contigs, i.e., those less than 1 to 5 kb, are often ignored in most data mining,
and exploration research typically in studies that employ a contig binning step as bin-
ning has been shown to be less sensitive for short contigs (50, 53, 54). The clustering
and time point analyses carried out on short UCs have shown that these short UCs are
originating from biological entities and predominantly represent the novel microbial
sequences that are currently uncatalogued. This has been demonstrated with the
example of short circular sequences with terminal repeats. Short contigs are typically
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excluded from large microbiome mining studies employing the metagenomic binning
approach but were studied in detail here. These short UCs are found across multiple
human microbiomes and samples; we speculate that these are of viral origin and could
potentially represent novel CRESS DNA or satellite viruses, although the ORFs originat-
ing from these genomes do not bear any sequence of functional similarity to the
typical rep and cap genes. Moreover, a number of large contigs were found to contain
various functional ORFs and domains often originating from virus or phages, indicating
that a proportion of UCs are very likely to be novel viruses that infect currently unchar-
acterized microbes. In our approach, we have implemented a protein sequence similar-
ity-based identification that enables the identification of distantly related sequence
homologues (49). This approach can potentially “classify” contigs of viruses or phages
as their corresponding host with very low sequence similarity. Indeed, viruses are well
known to mimic their host genomic signatures by incorporating genomic sequences
from their host into their genome. We anticipate that the virus diversity described in
this work is reasonably underestimated due to this specific characteristic of viruses and
speculate that a range of assembled contigs classified as bacterial with very low
sequence similarity across a short genomic coverage is likely to be of virus origin. This
hypothesis will need to be tested further by mining the “known” and “partially known”
contigs systematically. We note that a range of UCs matching known and partially
known sequences could be taxonomically uncharacterized in GenBank databases such
as unclassified viruses. Assembled contigs matching these sequences are categorized
as known (protein sequence similarity .80%) or partially known (protein sequence
similarity ,80%) in this study. Those contigs would need to be investigated further to
identify potentially novel and divergent sequences assembled in this study. The HMP
control sample analyses resulted in only a few UCs, validating the UC identification
approach implemented in our framework. The results generated from this study can
be extended to identify the organisms that cooccur in different microbiomes, which in
turn can help to inform the interactions between these organisms and how they affect their
hosts—humans. Despite our having sequenced human microbiomes extensively, our
understanding about how these microbes interact with humans remains limited. These
large-scale explorations can help to understand the human holobionts and the interactions
of macro- and microorganisms. Based on these results, we do not know whether the
microbes identified in different studies are consistently associated with humans or whether
they are just passing associations captured at the time of sampling; the latter would make
it even harder to make comparisons between samples and microbiomes.

The UC landscape changes over time as more sequences get characterized and
added to the ever-expanding sequence repositories. This was demonstrated by com-
paring the UCs to different GenBank databases over the course of 18 months. We have
estimated that 1.64% of the UCs identified in this study are getting characterized each
month. However, this number would be highly dependent on the types of data depos-
ited in the International Nucleotide Sequence Database Collaboration (INSDC) resour-
ces. This study provides a strong foundation of preliminary estimation of this rate, and
UCs would need to be analyzed at multiple future time points to determine how the
rate at which the UCs are being classified changes over time. Additionally, the time
point analysis also provides strong evidence of the real biological entities being
assembled and characterized in our study. Indeed, a proportion of the UCs was taxo-
nomically classified during the period of the study. This delineation of the UCs demon-
strates that the unknown matter that surrounds us largely belongs to currently uncul-
tured, unidentified microbes that we interact with on a daily basis. The technological
advances have accelerated the speed at which genomic sequences belonging to novel
uncultured organisms are being deposited in INSDC databases. This sharp increase of
metagenomically assembled microbial genomes has led to the scientific community
driving the development of genomic data and metadata standards such as MIMAG (for
bacteria and archaea) (55) and MIUVIG (for viruses) (47) for consistency and compari-
son purposes. The taxonomic classification landscape has also faced a tectonic shift
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whereby it is moving from phenotype-based classification to more holistic sequence-cen-
tric phylogenetic classification, e.g., GTDB (bacteria and archaea) (56) and ICTV (viruses)
(57). These changes enable the incorporation of the uncultured sequence diversity into
the microbial taxonomy and will provide a more comprehensive understanding of the
complex phylogenetic relationships and interactions between different microbes.

The metagenomics analysis framework developed here works as a proof of concept
for overcoming the challenge of the quantification of the unknown in already “ana-
lyzed” data sets. The pipeline developed here is flexible and can be applied to any
microbiome. To get a cross section of different human microbiomes and geographical
locations while keeping the overall data set size manageable, large studies involving
.100 samples were discounted. This framework can readily be applied to routine
metagenomic exploration, which can help to gain further understanding of the land-
scape of sequences of unknown origins. However, the framework applied here is easily
portable to metatranscriptomics data. In fact, a couple of the BioProjects (PRJEB10919
and PRJEB21446) analyzed in this study were indeed from a metatranscriptomic study.
It is important to note that, unlike other studies that often focus on the cross-assembly
of different samples, each sample was assembled individually here. This is regarded as
best practice when a cocktail of samples from unrelated studies is analyzed in bulk. The
coassembly would often lead to fragmented assembly as the complexity of sequences
originating from multiple samples would be much higher than for a single sample (58).
In contrast, independent assembly is expected to capture better diversity across each
sample with high-quality genomes assembled from each sample (58). Typically, the
sequence similarity-based approach is less reliable for unrelated sequences as the simi-
larity search tools heavily rely on the databases used in the analysis. Like most other
pipelines, this framework classifies the sequences with respect to a static version of the
reference sequence databases. The search results are as good as the data in the ever-
expanding repositories that are often too large to be hosted on a local computer. In
order to improve this, an alignment-free approach could be explored. The development
of a general-purpose alignment-free prediction method that can categorize the sequen-
ces based on the genomic composition would be suitable for the downstream analysis
of the UCs. The UC classification is highly dependent on the methods employed to iden-
tify and quantify the unknown. Moving away from the sequence similarity-based meth-
ods would help to categorize and classify the currently unknown sequences better.
Machine-learning-based approaches might be deemed suitable in certain circumstances
to overcome the similarity threshold-based approaches. In the case of completely novel
sequences that bear no similarity to currently known sequences, significantly rigorous
training sets and features would need to be identified and be built into the models in
order to make accurate predictions, as machine learning approaches are highly reliant
on the training data with which the models have been developed. Moreover, a recent
study by Krishnamurthy and Wang (59) made predictions for picobirnaviruses to be bac-
teriophages rather than eukaryotic viruses based on the presence of bacterial ribosome-
binding sites in front of the coding sequences. This approach could potentially be applied
to check whether viral UCs are bacteriophages.

Conclusion. This study demonstrates that there is a large diversity of unknown
sequences embedded within various human meta-omic samples available in public
repositories. It is clear that the unknown sequence landscape observed in this study is
likely to be the tip of the iceberg, and as we scan more microbiomes and extend this
to less-studied environments, e.g., insect metagenomes, we are likely to gather a better
understanding of the unknown sequence space. As more species and environments
are sequenced more readily, the rate at which the unknown sequences become known
would also change. Our results of novel viruses indicate that the unknown microbes
and their genomic signatures are likely to be more divergent from those currently pres-
ent in widely used sequence databases; however, it should be noted that many of the
short contigs found in our study are likely to represent fragments of larger viral
genomes rather than being short but complete viral genomes. Our study also shows
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that at least some of these unknown microorganisms are prevalent in nature. To over-
come this, more comprehensive resources including searchable databases such as
those enabled using BIGSI (60) and federated indexes (61) could be created for the
unknown sequence data and metadata. This would allow researchers to explore the
human metagenomic sequence space in a more holistic manner and, in turn, provide a
better understanding of microbial diversity interacting with and within human hosts. It
would enable researchers to search, link, and explore the unknown sequences present
in different microbiomes, studies, and samples. Such resources could help in speeding
up the pace at which unknown sequences can be “classified” and make it easier for
researchers to determine the functional and/or ecological importance of the organisms
from which the sequence comes. A concerted effort could help to pin down human-
microbial interactions in a broader context such as linking unknown microbes to
human diseases and disorders of unknown etiologies.

MATERIALS ANDMETHODS
This study includes the data sets available within the EBI MGnify resource. All human microbiome

studies submitted to ENA which were included in the MGnify databases were downloaded with the cor-
responding metadata on 19 April 2019. In order to obtain detailed metadata, each study was linked to
the corresponding SRA repository using NCBI E-utilities (62). As the focus was on shotgun metagenomic
data sets, studies targeting metabarcoding-based sequencing methods such as 16S and amplicon
sequencing were excluded as well as studies that solely focused on third-party annotation, i.e., analysis
of previously published data, and lacked primary data. In order to reduce sequencing technology-related
bias, the studies that utilized sequencing platforms other than Illumina were excluded. Very large studies
involving.100 samples were discounted in order to get a cross section of different human microbiomes
and geographical locations while keeping the overall data set size manageable. The filtered set initially
comprised 44 distinct studies with 1,130 samples of which 1,121 were available to download. A script
that uses parallel-fastq-dump (63) was developed to download reads in fastq format. In total, 1,121 sam-
ples (789 paired-end [PE], 332 single-end [SE]) from 43 distinct studies were successfully downloaded
and submitted to the pipeline. Out of 1,121 samples, 158 could not be assembled due to insufficient
reads and were excluded from downstream analysis (see Text S1 in the supplemental material). In sum-
mary, 963 (784 PE, 179 SE) samples from 40 distinct studies were included and were processed using the
complete metagenomic analyses pipeline described below (Fig. 2).

This study set included a range of different sample types as described in Fig. 3. It is important to
note that this set is highly skewed toward the human gut metagenome that is normally sampled
through fecal material, and the oral microbiome was the second most common sample type included in
the study. Although other metagenomes were underrepresented, our study covered a wide range of
samples from various human body sites and bodily fluids. A miscellaneous metagenome labeled only as
“Human” was included in this data set that represents 3 distinct studies including PRJEB14301 (cerebro-
spinal fluid [CSF], n = 1), PRJEB21827 (A/B testing for colon model, n = 12), and PRJEB6045 (metagenom-
ics of medieval human remains from Sardinia, n = 1).

In order to assess the quality of the samples and remove sequencing adaptors, all samples were
processed through BBDuk from BBTools package (64). BBDuk autodetected the presence of the relevant
adaptor sequences from the input files specified and trimmed them. Additionally, commonly known
sequencing contamination and spike-in sequences were also removed as part of this quality control
(QC) step. All reads that passed QC were retained and mapped to the human genome sequence build
GRCh38 using the Burrows-Wheeler aligner (BWA) (65), and unmapped reads were subsequently
extracted using SAMtools (66). BBNorm (64) was used to normalize reads based on the kmer coverage com-
position with a kmer threshold of 3 (mindepth = 3). This step also enabled the acceleration of the assembly
process as only a subset of reads was used to build the de novo assembly and resulted in better assembly
quality overall (67). The read lengths varied widely between the samples and the studies; thus, it was not
possible to compare the quality metrics using the read-based measures as it would be misleading. To ena-
ble a comparison, quality assessment metrics were carried out for a number of bases.

De novo assembly and taxonomy label assignment. The normalized reads were de novo assembled
using the SPAdes (68) assembly pipeline, with the default parameters. A script was developed to extract
contigs that were longer than 300 bases as short contigs do not contain a lot of information and they
were excluded from downstream analysis as a precautionary measure. Although the normalized subset
of reads was used to generate assemblies, these reads cannot be used to assess the assembly quality as
they represent a small subset of the actual reads. To assess the assembly quality, the complete set of reads
that did not map to the human genome was mapped onto the de novo-assembled contigs with BWA (65)
using the default parameters. The assembly quality statistics such as coverage, length, and number of
mapped reads were generated for each contig using pileup.sh from the BBTools package (64).

Contigs were searched against the GenBank nonredundant (nr) protein databases using the BLASTX
algorithm implemented in DIAMOND (69). It carries out a six-frame translation of the nucleotide sequen-
ces and then searches those translated sequences against the nr protein databases. This step enables
the identification of distantly related homologues of the currently known sequences. The default
DIAMOND tabular output format with additional columns ‘qframe, staxids, stitle’ was generated for
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aligned sequences. The top 25 hits for each contig were extracted and analyzed downstream
(2E value = 0.001). The lowest common ancestor (LCA) of these hits was computed, and superkingdom
was assigned based on the LCA using the Python ete3 package (70). The contigs that did not have any
protein match were extracted and searched against the GenBank comprehensive nucleotide database
(nt) using BLASTN (2E value = 0.001); BLAST output format 7 with additional columns ‘qframe, staxids,
stitle’ was generated. This step helped to identify and remove noncoding sequences such as rRNA and
untranslated regions of currently sequenced organisms included in the databases.

To identify the geographical distribution of the raw data, location data were mined from the SRA
metadata resources using pysradb (71) for each study. Geolocation information was available for 861
samples as shown in Fig. 4. A complete list of study location is shown in Table S1 in the supplemental
material. These samples were sequenced in various sequencing facilities across the world, and the com-
plete distribution of the sequencing centers is shown in Fig. S6a.

Unassembled sequences. “Unassembled” bases are defined as bases from reads that did not map
to the human genome and could not be assembled into contigs. These were calculated from reads that
did not map to assembled contigs. These bases/reads could not be classified as part of this project but
were quantified as shown in Fig. S6c (gray bars). Our quantification suggests that almost all microbiome
samples have a proportion of unassembled sequences, and on the sample, the average value for this is
around 23.91% (standard deviation [std], 26.59%). This unassembled sequence proportion was very high
for samples originating from PRJEB15334 (mean, 51.17%; maximum, 97.67%; std, 24.30%) and
PRJEB17784 (mean, 82.59%; maximum, 98.83%; std, 17.84%). Overall, 8.18% of all data fell into this cate-
gory as described in Fig. S6b. A range of possibilities from degraded nucleic acid to sequencing proto-
cols could lead to poor-quality data that cannot be used for de novo assembly.

Control samples. The Human Microbiome Project mock community samples (n = 9) were down-
loaded for study PRJNA298489 and were analyzed using the metagenomic framework described above
for quality control and workflow assessment. This would also allow us to validate the metagenomic anal-
yses pipeline for this study.

Postmetagenomic analysis. All unknown contigs (UCs) were analyzed further to get insights into
the coding potential of those sequences. The getorf tool from the EMBOSS (72) suite was used to gener-
ate open reading frames (ORFs) from contigs (-find 1, -minsize 300) using the standard genetic code.
These ORFs were searched against a range of different domains and functional identification databases
included in the InterProScan.

To explore the sequence similarity between samples and the diversity of the unknown sequences, a
nucleotide-based sequence similarity clustering which also used coverage was carried out using
MMSeqs2 (45, 73). All sequences with at least 90% sequence identity and at least 80% overlap were clus-
tered using the MMSeqs2 easy-cluster pipeline (45). All UCs were processed through the CheckV (48)
pipeline to identify the UCs that were likely to belong to viruses.

The most widely applied sequence similarity-based approaches rely on static versions of the data-
bases to carry out the classification step of the analysis. In this study, the sequence databases utilized
were downloaded on 18 April 2019. All results included in the study are based on the searches against
this static version of the databases. However, the sequence database is ever-expanding with new
sequences being added to the databases each day. With newer sequences being added to these data-
bases, it is very likely that unknown sequences transition into the “known sequence space” over time. In
order to identify the proportion of the unknown sequences classified over the period of the study, 4 dis-
tinct time points were considered. Static versions of the databases were downloaded on 31 October
2019, 5 March 2020, and 14 October 2020.

To predict the proportion of UCs that are likely to be viruses, the virus prediction tool DeepVirFinder
was used. DeepVirFinder has been demonstrated to accurately predict viruses from metagenomic data
sets and has been shown to work well even with short contigs (74). It was deemed suitable for UCs as a
large proportion of UCs identified in this study are under 1 kb long. DeepVirFinder was run on all UCs
with default parameters, and q values (false-discovery rate) were computed for the predictions using the
R library q value as recommended in the DeepVirFinder tutorial. The q value output was rounded to 3
decimal points, and a cutoff q value of ,0.05 was applied.

In order to identify if the UCs captured in this study have any overlap with other uncultured virus
databases such as IMG/VR (36), initial nucleotide (BLASTN) and protein sequence-based (BLASTX and
BLASTP in DIAMOND) searches were carried out against nucleotide and protein sequence data down-
loaded for the latest IMG/VR version, 2020-10-12_5.1. BLASTN searches were carried out with default pa-
rameters, except for the E value, which was set to 0.0001, and the output was generated in standard tab-
ular format. For BLASTP searches, predicted ORFs were used.

Data availability. All assembled unknown sequences generated here were submitted to ENA as
third-party annotations and are accessible through BioProject PRJEB41812. Results and code generated
in this study are available on Zenodo (https://zenodo.org/record/5907223) and GitHub (https://github
.com/sejmodha/UnXplore).
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Exploring Unknowns within Human Microbiomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01468-21 19

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB15334
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB17784
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA298489
https://www.ebi.ac.uk/ena/browser/view/PRJEB41812?show=analyses
https://zenodo.org/record/5907223
https://github.com/sejmodha/UnXplore
https://github.com/sejmodha/UnXplore
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01468-21


FIG S2, EPS file, 4.5 MB.
FIG S3, EPS file, 2.8 MB.
FIG S4, EPS file, 0.3 MB.
FIG S5, EPS file, 0.8 MB.
FIG S6, EPS file, 2.0 MB.
FIG S7, EPS file, 0.3 MB.
TABLE S1, CSV file, 0.005 MB.
TABLE S2, CSV file, 0.001 MB.

ACKNOWLEDGMENTS
We thank Quan Gu, Maha Maabar, Sreenu Vattipally, Josh Singer, Hilary Fawcett, and

Andrew Davison for contributing to an internal hackathon organized in 2016 where the
idea of mining metagenomic data sets for identification of “dark matter”was developed.

S.M. is funded by an MRC Precision Medicine PhD studentship (MR/S502479/1).
D.L.R., J.H., and R.J.O. are funded by the MRC (MC_UU_1201412).

We declare that we have no competing interests.
Conceptualization, S.M., J.H., R.J.O. Data curation, formal analysis, project administration,

investigation, resources, software, validation, visualization and writing—original draft, S.M.
Funding acquisition, S.M., D.L.R., J.H., R.J.O. Methodology, S.M., J.H., R.J.O. Supervision, D.L.R.,
J.H., R.J.O. Writing—review & editing, S.M., J.H., R.J.O.

REFERENCES
1. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K,

Narasimhan G. 2016. Metagenomics, metatranscriptomics, and metabolo-
mics approaches for microbiome analysis. Evol Bioinform Online 12:5–16.
https://doi.org/10.4137/EBO.S36436.

2. Koonin EV. 2018. Environmental microbiology and metagenomics: the
Brave New World is here, what’s next? Environ Microbiol 20:4210–4212.
https://doi.org/10.1111/1462-2920.14403.

3. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun
metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844.
https://doi.org/10.1038/nbt.3935.

4. Thomas AM, Segata N. 2019. Multiple levels of the unknown in microbiome
research. BMC Biol 17:48. https://doi.org/10.1186/s12915-019-0667-z.

5. Foulongne V, Sauvage V, Hebert C, Dereure O, Cheval J, Gouilh MA,
Pariente K, Segondy M, Burguière A, Manuguerra J-C, Caro V, Eloit M.
2012. Human skin microbiota: high diversity of DNA viruses identified on
the human skin by high throughput sequencing. PLoS One 7:e38499.
https://doi.org/10.1371/journal.pone.0038499.

6. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson
KE, White O, Methé BA, Huttenhower C. 2012. The Human Microbiome
Project: a community resource for the healthy human microbiome. PLoS
Biol 10:e1001377. https://doi.org/10.1371/journal.pbio.1001377.

7. Human Microbiome Project Consortium. 2012. Structure, function and di-
versity of the healthy human microbiome. Nature 486:207–214. https://
doi.org/10.1038/nature11234.

8. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang
B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen
T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-
Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S,
Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K,
Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P,
Ehrlich SD, Wang J. 2010. A human gut microbial gene catalogue estab-
lished by metagenomic sequencing. Nature 464:59–65. https://doi.org/10
.1038/nature08821.

9. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D,
Azam F, Rohwer F. 2002. Genomic analysis of uncultured marine viral
communities. Proc Natl Acad Sci U S A 99:14250–14255. https://doi.org/
10.1073/pnas.202488399.

10. Hurwitz BL, Sullivan MB. 2013. The Pacific Ocean Virome (POV): a marine
viral metagenomic dataset and associated protein clusters for quantita-
tive viral ecology. PLoS One 8:e57355. https://doi.org/10.1371/journal
.pone.0057355.

11. Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. 2013. Expanding the
marine virosphere using metagenomics. PLoS Genet 9:e1003987. https://
doi.org/10.1371/journal.pgen.1003987.

12. Cochrane G, Karsch-Mizrachi I, Takagi T, International Nucleotide Sequence
Database Collaboration. 2016. The International Nucleotide Sequence
Database Collaboration. Nucleic Acids Res 44:D48–D50. https://doi.org/10
.1093/nar/gkv1323.

13. Karsch-Mizrachi I, Takagi T, Cochrane G, International Nucleotide Sequence
Database Collaboration. 2018. The international nucleotide sequence data-
base collaboration. Nucleic Acids Res 46:D48–D51. https://doi.org/10.1093/
nar/gkx1097.

14. Connor R, Brister R, Buchmann J, Deboutte W, Edwards R, Martí-Carreras
J, Tisza M, Zalunin V, Andrade-Martínez J, Cantu A, D’Amour M, Efremov
A, Fleischmann L, Forero-Junco L, Garmaeva S, Giluso M, Glickman C,
Henderson M, Kellman B, Kristensen D, Leubsdorf C, Levi K, Levi S, Pakala
S, Peddu V, Ponsero A, Ribeiro E, Roy F, Rutter L, Saha S, Shakya M, Shean
R, Miller M, Tully B, Turkington C, Youens-Clark K, Vanmechelen B, Busby
B. 2019. NCBI’s virus discovery hackathon: engaging research commun-
ities to identify cloud infrastructure requirements. Genes 10:714. https://
doi.org/10.3390/genes10090714.

15. Nooij S, Schmitz D, Vennema H, Kroneman A, Koopmans MPG. 2018.
Overview of virus metagenomic classification methods and their biologi-
cal applications. Front Microbiol 9:749. https://doi.org/10.3389/fmicb
.2018.00749.

16. Youle M, Haynes M, Rohwer F. 2012. Scratching the surface of biology’s
dark matter, p 61–81. In Witzany G (ed), Viruses: essential agents of life.
Springer, Dordrecht, Netherlands.

17. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F,
Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis
G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R,
Rubin EM, Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and
coding potential of microbial dark matter. Nature 499:431–437. https://doi
.org/10.1038/nature12352.

18. Krishnamurthy SR, Wang D. 2017. Origins and challenges of viral dark
matter. Virus Res 239:136–142. https://doi.org/10.1016/j.virusres.2017.02
.002.

19. Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. 2018. Micro-
bial dark matter investigations: how microbial studies transform biologi-
cal knowledge and empirically sketch a logic of scientific discovery. Ge-
nome Biol Evol 10:707–715. https://doi.org/10.1093/gbe/evy031.

20. Murat A. 2017. Microbial dark matter: the mullet of microbial ecology.
Meren Lab. http://merenlab.org/2017/06/22/microbial-dark-matter/.

Exploring Unknowns within Human Microbiomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01468-21 20

https://doi.org/10.4137/EBO.S36436
https://doi.org/10.1111/1462-2920.14403
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1186/s12915-019-0667-z
https://doi.org/10.1371/journal.pone.0038499
https://doi.org/10.1371/journal.pbio.1001377
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nature08821
https://doi.org/10.1073/pnas.202488399
https://doi.org/10.1073/pnas.202488399
https://doi.org/10.1371/journal.pone.0057355
https://doi.org/10.1371/journal.pone.0057355
https://doi.org/10.1371/journal.pgen.1003987
https://doi.org/10.1371/journal.pgen.1003987
https://doi.org/10.1093/nar/gkv1323
https://doi.org/10.1093/nar/gkv1323
https://doi.org/10.1093/nar/gkx1097
https://doi.org/10.1093/nar/gkx1097
https://doi.org/10.3390/genes10090714
https://doi.org/10.3390/genes10090714
https://doi.org/10.3389/fmicb.2018.00749
https://doi.org/10.3389/fmicb.2018.00749
https://doi.org/10.1038/nature12352
https://doi.org/10.1038/nature12352
https://doi.org/10.1016/j.virusres.2017.02.002
https://doi.org/10.1016/j.virusres.2017.02.002
https://doi.org/10.1093/gbe/evy031
http://merenlab.org/2017/06/22/microbial-dark-matter/
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01468-21


21. Roux S, Hallam SJ, Woyke T, Sullivan MB. 2015. Viral dark matter and vi-
rus-host interactions resolved from publicly available microbial genomes.
Elife 4:e08490. https://doi.org/10.7554/eLife.08490.

22. Solden L, Lloyd K, Wrighton K. 2016. The bright side of microbial dark
matter: lessons learned from the uncultivated majority. Curr Opin Micro-
biol 31:217–226. https://doi.org/10.1016/j.mib.2016.04.020.

23. Woyke T, Doud DFR, Eloe-Fadrosh EA. 2019. Genomes from uncultivated
microorganisms, p 437–442. In Schmidt T (ed), Encyclopedia of microbiol-
ogy, 4th ed. Elsevier, Amsterdam, Netherlands.

24. Almeida A, Mitchell AL, BolandM, Forster SC, Gloor GB, Tarkowska A, Lawley
TD, Finn RD. 2019. A new genomic blueprint of the human gut microbiota.
Nature 568:499–504. https://doi.org/10.1038/s41586-019-0965-1.

25. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F,
Manghi P, Tett A, Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC,
Golden CD, Quince C, Huttenhower C, Segata N. 2019. Extensive unex-
plored human microbiome diversity revealed by over 150,000 genomes
from metagenomes spanning age, geography, and lifestyle. Cell 176:
649–662.e20. https://doi.org/10.1016/j.cell.2019.01.001.

26. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard
KS, Sakharova E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD.
2021. A unified catalog of 204,938 reference genomes from the human
gut microbiome. Nat Biotechnol 39:105–110. https://doi.org/10.1038/
s41587-020-0603-3.

27. Saw JH, Spang A, Zaremba-Niedzwiedzka K, Juzokaite L, Dodsworth JA,
Murugapiran SK, Colman DR, Takacs-Vesbach C, Hedlund BP, Guy L,
Ettema TJG. 2015. Exploring microbial dark matter to resolve the deep
archaeal ancestry of eukaryotes. Philos Trans R Soc Lond B Biol Sci 370:
20140328. https://doi.org/10.1098/rstb.2014.0328.

28. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, Barr JJ,
Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards
RA. 2014. A highly abundant bacteriophage discovered in the unknown
sequences of human faecal metagenomes. Nat Commun 5:4498. https://
doi.org/10.1038/ncomms5498.

29. Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W,
Martin L, Neff NF, Okamoto J, Wong RJ, Kharbanda S, El-Sayed Y, Blumenfeld
Y, Stevenson DK, Shaw GM, Wolfe ND, Quake SR. 2017. Numerous uncharac-
terized and highly divergent microbes which colonize humans are revealed
by circulating cell-free DNA. Proc Natl Acad Sci U S A 114:9623–9628. https://
doi.org/10.1073/pnas.1707009114.

30. Wang D. 2020. 5 challenges in understanding the role of the virome in
health and disease. PLoS Pathog 16:e1008318. https://doi.org/10.1371/
journal.ppat.1008318.

31. Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M,
Salazar GA, Pesseat S, Boland MA, Hunter FMI, Ten Hoopen P, Alako B,
Amid C, Wilkinson DJ, Curtis TP, Cochrane G, Finn RD. 2018. EBI metage-
nomics in 2017: enriching the analysis of microbial communities, from
sequence reads to assemblies. Nucleic Acids Res 46:D726–D735. https://
doi.org/10.1093/nar/gkx967.

32. Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G,
Crusoe MR, Kale V, Potter SC, Richardson LJ, Sakharova E, Scheremetjew
M, Korobeynikov A, Shlemov A, Kunyavskaya O, Lapidus A, Finn RD. 2020.
MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48:
D570–D578. https://doi.org/10.1093/nar/gkz1035.

33. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, Beghini
F, Malik F, Ramos M, Dowd JB, Huttenhower C, Morgan M, Segata N,
Waldron L. 2017. Accessible, curated metagenomic data through Experi-
mentHub. Nat Methods 14:1023–1024. https://doi.org/10.1038/nmeth
.4468.

34. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,
Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen
TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi
R, Nagarajan N, Quince C, Meyer F, Balvo�ciūtėM, Hansen LH, Sørensen SJ,
Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel
C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W,
Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD,
Lingner T, Lin H-H, Liao Y-C, Silva GGZ, Cuevas DA, Edwards RA, Saha S,
Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T,
Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC.
2017. Critical assessment of metagenome interpretation—a benchmark
of metagenomics software. Nat Methods 14:1063–1071. https://doi.org/
10.1038/nmeth.4458.

35. Bastiaan Von Meijenfeldt FA, Arkhipova K, Cambuy DD, Coutinho FH,
Dutilh BE. 2019. Robust taxonomic classification of uncharted microbial

sequences and bins with CAT and BAT. Genome Biol 20:217. https://doi
.org/10.1186/s13059-019-1817-x.

36. Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K,
Huntemann M, Reddy TBK, Pons JC, Llabrés M, Eloe-Fadrosh EA, Ivanova
NN, Kyrpides NC. 2019. IMG/VRv.2.0: an integrated data management and
analysis system for cultivated and environmental viral genomes. Nucleic
Acids Res 47:D678–D686. https://doi.org/10.1093/nar/gky1127.

37. Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, Pang Y-
YS, Krishnamurthy SR, Pesavento PA, McDermott DH, Murphy PM, Whited
JL, Miller B, Brenchley J, Rosshart SP, Rehermann B, Doorbar J, Ta’ala BA,
Pletnikova O, Troncoso JC, Resnick SM, Bolduc B, Sullivan MB, Varsani A,
Segall AM, Buck CB. 2020. Discovery of several thousand highly diverse
circular DNA viruses. Elife 9:e51971. https://doi.org/10.7554/eLife.51971.

38. Galloway-Peña J, Hanson B. 2020. Tools for analysis of the microbiome.
Dig Dis Sci 65:674–685. https://doi.org/10.1007/s10620-020-06091-y.

39. Aiewsakun P, Simmonds P. 2018. The genomic underpinnings of eukaryo-
tic virus taxonomy: creating a sequence-based framework for family-level
virus classification. Microbiome 6:38. https://doi.org/10.1186/s40168-018
-0422-7.

40. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD,
Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I,
Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M,
Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter
SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C,
Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N,
Thomas PD, Tosatto SCE, Yong S-Y, Finn RD. 2019. InterPro in 2019:
improving coverage, classification and access to protein sequence anno-
tations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/
gky1100.

41. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M,
Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L,
Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam protein families data-
base in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/
nar/gky995.

42. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M,
Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang
D, Zheng C, Lanczycki CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the con-
served domain database in 2020. Nucleic Acids Res 48:D265–D268. https://
doi.org/10.1093/nar/gkz991.

43. Gough J, Karplus K, Hughey R, Chothia C. 2001. Assignment of homology
to genome sequences using a library of hidden Markov models that rep-
resent all proteins of known structure. J Mol Biol 313:903–919. https://doi
.org/10.1006/jmbi.2001.5080.

44. Necci M, Piovesan D, Dosztanyi Z, Tosatto SCE. 2017. MobiDB-lite: fast and
highly specific consensus prediction of intrinsic disorder in proteins. Bioin-
formatics 33:1402–1404. https://doi.org/10.1093/bioinformatics/btx015.

45. Steinegger M, Söding J. 2018. Clustering huge protein sequence sets in
linear time. Nat Commun 9:2542. https://doi.org/10.1038/s41467-018
-04964-5.

46. Poranen MM, Mäntynen S. 2017. ICTV virus taxonomy profile: Cystoviri-
dae. J Gen Virol 98:2423–2424. https://doi.org/10.1099/jgv.0.000928.

47. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M,
Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR,
Bork P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB,
Emerson JB, Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL,
Ivanova NN, Labonté JM, Lee K-B, Malmstrom RR, Martinez-Garcia M,
Mizrachi IK, Ogata H, Páez-Espino D, Petit M-A, Putonti C, Rattei T, Reyes
A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F, Steward GF, Sullivan
MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber RV, Webster
NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC,
Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloe-
Fadrosh EA. 2019. Minimum information about an uncultivated virus ge-
nome (MIUVIG). Nat Biotechnol 37:29–37. https://doi.org/10.1038/nbt
.4306.

48. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC.
2021. CheckV assesses the quality and completeness of metagenome-
assembled viral genomes. Nat Biotechnol 39:578–585. https://doi.org/10
.1038/s41587-020-00774-7.

49. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/
S0022-2836(05)80360-2.

50. Chen LX, Anantharaman K, Shaiber A, Murat Eren A, Banfield JF. 2020.
Accurate and complete genomes from metagenomes. Genome Res 30:
315–333. https://doi.org/10.1101/gr.258640.119.

Exploring Unknowns within Human Microbiomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01468-21 21

https://doi.org/10.7554/eLife.08490
https://doi.org/10.1016/j.mib.2016.04.020
https://doi.org/10.1038/s41586-019-0965-1
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1098/rstb.2014.0328
https://doi.org/10.1038/ncomms5498
https://doi.org/10.1038/ncomms5498
https://doi.org/10.1073/pnas.1707009114
https://doi.org/10.1073/pnas.1707009114
https://doi.org/10.1371/journal.ppat.1008318
https://doi.org/10.1371/journal.ppat.1008318
https://doi.org/10.1093/nar/gkx967
https://doi.org/10.1093/nar/gkx967
https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1038/nmeth.4468
https://doi.org/10.1038/nmeth.4468
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1093/nar/gky1127
https://doi.org/10.7554/eLife.51971
https://doi.org/10.1007/s10620-020-06091-y
https://doi.org/10.1186/s40168-018-0422-7
https://doi.org/10.1186/s40168-018-0422-7
https://doi.org/10.1093/nar/gky1100
https://doi.org/10.1093/nar/gky1100
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gkz991
https://doi.org/10.1093/nar/gkz991
https://doi.org/10.1006/jmbi.2001.5080
https://doi.org/10.1006/jmbi.2001.5080
https://doi.org/10.1093/bioinformatics/btx015
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1099/jgv.0.000928
https://doi.org/10.1038/nbt.4306
https://doi.org/10.1038/nbt.4306
https://doi.org/10.1038/s41587-020-00774-7
https://doi.org/10.1038/s41587-020-00774-7
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1101/gr.258640.119
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01468-21


51. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD.
2021. Massive expansion of human gut bacteriophage diversity. Cell 184:
1098–1109.e9. https://doi.org/10.1016/j.cell.2021.01.029.

52. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. 2020.
The gut virome database reveals age-dependent patterns of virome di-
versity in the human gut. Cell Host Microbe 28:724–740.e8. https://doi
.org/10.1016/j.chom.2020.08.003.

53. Breitwieser FP, Lu J, Salzberg SL. 2019. A review of methods and data-
bases for metagenomic classification and assembly. Brief Bioinform 20:
1125–1139. https://doi.org/10.1093/bib/bbx120.

54. Mallawaarachchi V, Wickramarachchi A, Lin Y. 2020. GraphBin: refined
binning of metagenomic contigs using assembly graphs. Bioinformatics
36:3307–3313. https://doi.org/10.1093/bioinformatics/btaa180.

55. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D,
Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG,
Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B,
Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S,
Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP,
Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen
JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G,
Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium,
Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF,
Hugenholtz P, Woyke T. 2017. Minimum information about a single
amplified genome (MISAG) and a metagenome-assembled genome
(MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731. https://doi
.org/10.1038/nbt.3893.

56. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,
Hugenholtz P. 2018. A standardized bacterial taxonomy based on ge-
nome phylogeny substantially revises the tree of life. Nat Biotechnol 36:
996–1004. https://doi.org/10.1038/nbt.4229.

57. Simmonds P, Adams MJ, Benko† M, Breitbart M, Brister JR, Carstens EB,
Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AMQ,
Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R,
Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der
Vlugt RA, Varsani A, Zerbini FM. 2017. Consensus statement: virus taxon-
omy in the age of metagenomics. Nat Rev Microbiol 15:161–168. https://
doi.org/10.1038/nrmicro.2016.177.

58. Olm MR, Brown CT, Brooks B, Banfield JF. 2017. DRep: a tool for fast and
accurate genomic comparisons that enables improved genome recovery
frommetagenomes through de-replication. ISME J 11:2864–2868. https://
doi.org/10.1038/ismej.2017.126.

59. Krishnamurthy SR, Wang D. 2018. Extensive conservation of prokaryotic
ribosomal binding sites in known and novel picobirnaviruses. Virology
516:108–114. https://doi.org/10.1016/j.virol.2018.01.006.

60. Bradley P, den Bakker HC, Rocha EPCC, McVean G, Iqbal Z. 2019. Ultrafast
search of all deposited bacterial and viral genomic data. Nat Biotechnol
37:152–159. https://doi.org/10.1038/s41587-018-0010-1.

61. Martí-Carreras J, Gener AR, Miller SD, Brito AF, Camacho CE, Connor R,
Deboutte W, Glickman C, Kristensen DM, Meyer WK, Modha S, Norris AL,
Saha S, Belford AK, Biederstedt E, Brister JR, Buchmann JP, Cooley NP,
Edwards RA, Javkar K, Muchow M, Muralidharan HS, Pepe-Ranney C, Shah
N, Shakya M, Tisza MJ, Tully BJ, Vanmechelen B, Virta VC, Weissman JL,

Zalunin V, Efremov A, Busby B. 2020. NCBI’s virus discovery codeathon:
building “FIVE”—The Federated Index of Viral Experiments API index.
Viruses 12:1424. https://doi.org/10.3390/v12121424.

62. Sayers E. 2018. E-utilities quick start. National Center for Biotechnology In-
formation, Bethesda, MD.

63. Valieris R. Accessed 19 June 2020. parallel fastq-dump wrapper. https://
github.com/rvalieris/parallel-fastq-dump.

64. Bushnell B. 2014. BBMap: A Fast, Accurate, Splice-Aware Aligner. United
States. https://www.osti.gov/servlets/purl/1241166.

65. Li H, Durbin R. 2009. Fast and accurate short read alignment with Bur-
rows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10
.1093/bioinformatics/btp324.

66. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

67. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J,
Garcia-Gutierrez L, Garland P, Gluck J, González I, Guermond S, Guo J, Gupta
A, Herr JR, Howe A, Hyer A, Härpfer A, Irber L, Kidd R, Lin D, Lippi J, Mansour T,
McA’Nulty P, McDonald E, Mizzi J, Murray KD, Nahum JR, Nanlohy K,
Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J, Pepe-Ranney C, Russ ZN,
Schwarz E, Scott C, Seaman J, Sievert S, Simpson J, Skennerton CT, Spencer J,
Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein J, Taylor B, Trimble
W, Wiencko HL, Wright M, Wyss B, Zhang Q, Zyme E, Brown CT. 2015. The
khmer software package: enabling efficient nucleotide sequence analysis.
F1000Res 4:900. https://doi.org/10.12688/f1000research.6924.1.

68. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A,
Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, McLean J,
Lasken R, Clingenpeel SR, Woyke T, Tesler G, Alekseyev MA, Pevzner PA.
2013. Assembling genomes and mini-metagenomes from highly chimeric
reads, p 158–170. In DengM, Jiang R, Sun F, Zhang X (ed), Research in com-
putational molecular biology. RECOMB 2013. Springer, Berlin, Germany.

69. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth
.3176.

70. Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and
visualization of phylogenomic data. Mol Biol Evol 33:1635–1638. https://
doi.org/10.1093/molbev/msw046.

71. Choudhary S. 2019. Pysradb: a Python package to query next-generation
sequencing metadata and data from NCBI sequence read archive. F1000Res
8:532. https://doi.org/10.12688/f1000research.18676.1.

72. Rice P, Longden I, Bleasby A. 2000. EMBOSS: The European Molecular Biol-
ogy Open Software Suite. Trends Genet 16:276–277. https://doi.org/10
.1016/S0168-9525(00)02024-2.

73. Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat Biotechnol
35:1026–1028. https://doi.org/10.1038/nbt.3988.

74. Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, Xie X, Poplin R, Sun
F. 2020. Identifying viruses from metagenomic data using deep learning.
Quant Biol 8:64–77. https://doi.org/10.1007/s40484-019-0187-4.

Exploring Unknowns within Human Microbiomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01468-21 22

https://doi.org/10.1016/j.cell.2021.01.029
https://doi.org/10.1016/j.chom.2020.08.003
https://doi.org/10.1016/j.chom.2020.08.003
https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1093/bioinformatics/btaa180
https://doi.org/10.1038/nbt.3893
https://doi.org/10.1038/nbt.3893
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/nrmicro.2016.177
https://doi.org/10.1038/nrmicro.2016.177
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1016/j.virol.2018.01.006
https://doi.org/10.1038/s41587-018-0010-1
https://doi.org/10.3390/v12121424
https://github.com/rvalieris/parallel-fastq-dump
https://github.com/rvalieris/parallel-fastq-dump
https://www.osti.gov/servlets/purl/1241166
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.12688/f1000research.6924.1
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.12688/f1000research.18676.1
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1007/s40484-019-0187-4
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01468-21

	RESULTS
	Unknown sequence clustering.
	Classification of unknown sequences over time.
	Viral domain signature identification.
	Virus prediction and comparisons to uncultured virus databases.
	The large unknown contigs.
	Short circular contigs.
	Control samples.
	Resources.

	DISCUSSION
	Conclusion.

	MATERIALS AND METHODS
	De novo assembly and taxonomy label assignment.
	Unassembled sequences.
	Control samples.
	Postmetagenomic analysis.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

