Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 2-[(4-nitrophenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl]malonate

A. Marx,^a S. Saravanan,^b S. Muthusubramanian,^b V. Manivannan^a* and Nigam P. Rath^c

^aDepartment of Physics, Presidency College, Chennai 600 005, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamarajar University, Madurai 625 021, India, and ^cDepartment of Chemistry and Biochemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA Correspondence e-mail: manivan_1999@yahoo.com

Received 29 February 2008; accepted 13 March 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.054; wR factor = 0.162; data-to-parameter ratio = 14.3

In the title compound, $C_{22}H_{21}N_3O_6Se$, the heterocyclic ring makes dihedral angles of 50.03 (11) and 67.75 (11)°, respectively, with the benzene and phenyl rings. The terminal C atoms of the ester groups are disordered over two positions: the site occupancies for the C atoms are 0.62 (3)/0.38 (3) and 0.48 (3)/0.52 (3). In the crystal structure, weak intra- and intermolecular $C-H\cdots O$ interactions are observed.

Related literature

For biological activities, see: El-Kashef et al. (1986); El-Bahaie et al. (1990). For closely related compounds, see: Bertini et al. (1984); Gunasekaran et al. (2007).

Experimental

Crystal data

α β

$C_{22}H_{21}N_3O_6Se$	$\gamma = 67.632 \ (3)^{\circ}$
$M_r = 502.38$	V = 1137.05 (11) Å ³
Triclinic, P1	Z = 2
a = 9.9530 (6) Å	Mo $K\alpha$ radiation
b = 10.5220 (6) Å	$\mu = 1.69 \text{ mm}^{-1}$
c = 12.2305 (7) Å	T = 295 (2) K
$\alpha = 79.350 \ (3)^{\circ}$	$0.23 \times 0.17 \times 0.16 \text{ mm}$
$\beta = 74.632 \ (3)^{\circ}$	

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.697, T_{\max} = 0.773$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.161$ S = 1.044477 reflections 313 parameters

4477 independent reflections 3053 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

30194 measured reflections

4 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.80 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C22A - H22D \cdots O2^{i}$	0.96	2.47	3.38 (4)	159
C11−H11···O6 ⁱⁱ	0.93	2.56	3.410 (6)	152
C18−H18A····O4	0.97	2.29	2.686 (7)	103
$C21-H21C\cdots O6$	0.97	2.17	2.627 (6)	107

Symmetry codes: (i) x - 1, y + 1, z; (ii) -x + 2, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2278).

References

Bertini, V., Dapporto, P., Lucchesini, F., Sega, A. & De Munno, A. (1984). Acta Cryst. C40, 653-655.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793. El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27 - 30

Gunasekaran, B., Manivannan, V., Saravanan, S., Muthusubramanian, S. & Nethaji, M. (2007). Acta Cryst. E63, 04024.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, 0729 [doi:10.1107/S160053680800706X]

Diethyl 2-[(4-nitrophenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl]malonate

A. Marx, S. Saravanan, S. Muthusubramanian, V. Manivannan and N. P. Rath

Comment

Selenium containing compounds like 1,2,3-selenadiazole possess various beneficial activities like antibacterial (El-Kashef *et al.*, 1986), antimicrobial (El-Bahaie *et al.*, 1990) activities. The geometric parameters in the compound, (I) (Fig. 1), agree with the reported values of similar structures (Bertini *et al.*, 1984; Gunasekaran *et al.*, 2007).

The heterocyclic ring makes the dihedral angles of 50.03 (11) and 67.75 (11)° with the benzene and phenyl rings. The terminal C atoms of the ester groups are disordered over two positions; the site occupancies for the C atoms are 0.62/0.38 and 0.48/0.52. The molecular structure is stabilized by weak intramolecular C—H…O interactions and the crystal packing of (I) is stabilized by weak intermolecular C—H…O contacts (Table 1 and Fig. 2).

Experimental

2.22 g (0.02 mol) of powdered selenium dioxide was dissolved in glacial acetic acid by gentle warming. To this warm solution, 0.002 mol of diethyl 2-{3-[2-(aminocarbonyl)hydrazono]-1-(4-nitrophenyl)-3-phenylpropyl} malonate was added at once and the mixture was gently heated on a water bath until gas evolution ceased. The selenium deposited on cooling was removed by filtration and the filtrate poured into crushed ice, extracted with chloroform and purified by column chromatography, using silica gel (60–120 mesh) to yield diethyl 2-[(4-nitrophenyl) (4-phenyl-1,2,3-selenadiazol-5-yl)methyl]malonate. Solvent used for crystallization is ethanol.

Refinement

The site occupancy factors were refined as C19 = 0.62 (3), C19A = 0.38 (3), C22 = 0.48 (3) and C22A = 0.52 (3) during anisotropic refinement. The C21—C22A, C21—C22, C18—C19 and C18—C19A bond distances were restrained to be 1.5 (1) Å. H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the *a* axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

Diethyl 2-[(4-nitrophenyl)(4-phenyl-1,2,3-selenadiazol-5-yl)methyl]malonate

Crystal data	
$C_{22}H_{21}N_3O_6Se$	Z = 2
$M_r = 502.38$	$F_{000} = 512$
Triclinic, PT	$D_{\rm x} = 1.467 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.9530 (6) Å	Cell parameters from 8446 reflections
b = 10.5220 (6) Å	$\theta = 1.7 - 26^{\circ}$
c = 12.2305 (7) Å	$\mu = 1.69 \text{ mm}^{-1}$
$\alpha = 79.350 \ (3)^{\circ}$	T = 295 (2) K
$\beta = 74.632 \ (3)^{\circ}$	Block, colourless
$\gamma = 67.632 \ (3)^{\circ}$	$0.23\times0.17\times0.16~mm$
$V = 1137.05 (11) \text{ Å}^3$	

Data collection

Bruker SMART APEX area-detector diffractometer	4477 independent reflections
Radiation source: fine-focus sealed tube	3053 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 295(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.697, T_{\max} = 0.773$	$k = -12 \rightarrow 12$
30194 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_0^2) + (0.0776P)^2 + 0.9842P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
4477 reflections	$\Delta \rho_{\text{max}} = 0.93 \text{ e} \text{ Å}^{-3}$
313 parameters	$\Delta \rho_{\rm min} = -0.80 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Fractional atomic coordinates and	sotropic or equivalent iso	tropic displacement	parameters (Å ²)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Se1	1.00900 (5)	0.21345 (6)	0.44996 (4)	0.0888 (3)	
O1	1.5749 (5)	0.1019 (4)	-0.0847 (4)	0.1160 (15)	
02	1.6666 (5)	0.0959 (5)	0.0564 (5)	0.1327 (17)	
O4	0.7916 (3)	0.6035 (4)	0.4808 (2)	0.0859 (10)	
O6	1.0425 (4)	0.6499 (3)	0.1149 (2)	0.0859 (10)	
N1	0.8397 (5)	0.1628 (5)	0.5006 (4)	0.0939 (13)	
N2	0.7447 (4)	0.2286 (4)	0.4410 (3)	0.0753 (10)	
N3	1.5628 (6)	0.1283 (4)	0.0109 (5)	0.0929 (14)	
C1	0.7808 (4)	0.3215 (4)	0.3527 (3)	0.0558 (9)	
C2	0.9155 (4)	0.3332 (4)	0.3410 (3)	0.0521 (8)	
C3	0.6670 (4)	0.4007 (4)	0.2854 (3)	0.0542 (9)	
C4	0.5213 (5)	0.4674 (5)	0.3410 (4)	0.0686 (11)	
H4	0.4952	0.4563	0.4201	0.082*	
C5	0.4156 (5)	0.5494 (5)	0.2804 (5)	0.0807 (13)	
Н5	0.3193	0.5953	0.3187	0.097*	
C6	0.4514 (6)	0.5637 (5)	0.1641 (5)	0.0837 (14)	
H6	0.3801	0.6198	0.1231	0.100*	
C7	0.5930 (6)	0.4949 (5)	0.1085 (4)	0.0796 (13)	
H7	0.6168	0.5031	0.0293	0.095*	
C8	0.7013 (5)	0.4133 (5)	0.1679 (3)	0.0640 (10)	
H8	0.7970	0.3671	0.1288	0.077*	
C9	0.9818 (4)	0.4288 (4)	0.2556 (3)	0.0495 (8)	
H9	0.9199	0.4661	0.1987	0.059*	
C10	1.1371 (4)	0.3504 (4)	0.1923 (3)	0.0509 (8)	
C11	1.1559 (5)	0.3109 (4)	0.0853 (3)	0.0627 (10)	
H11	1.0739	0.3346	0.0529	0.075*	
C12	1.2940 (5)	0.2375 (5)	0.0274 (4)	0.0738 (12)	
H12	1.3063	0.2109	-0.0441	0.089*	
C13	1.4136 (5)	0.2034 (4)	0.0754 (4)	0.0696 (12)	
C14	1.4005 (5)	0.2414 (4)	0.1802 (4)	0.0677 (11)	
H14	1.4837	0.2182	0.2110	0.081*	
C15	1.2595 (4)	0.3154 (4)	0.2393 (3)	0.0592 (9)	
H15	1.2477	0.3413	0.3109	0.071*	
C16	0.9754 (4)	0.5531 (4)	0.3084 (3)	0.0529 (9)	
H16	1.0474	0.5205	0.3577	0.064*	
C17	0.8230 (4)	0.6224 (4)	0.3794 (3)	0.0574 (9)	
O3	0.7304 (3)	0.7037 (3)	0.3154 (3)	0.0766 (8)	

C18	0.5803 (5)	0.7789 (5)	0.3722 (6)	0.110 (2)	
H18A	0.5602	0.7413	0.4510	0.132*	0.62 (3)
H18B	0.5088	0.7732	0.3345	0.132*	0.62 (3)
H18C	0.5834	0.7912	0.4481	0.132*	0.38 (3)
H18D	0.5213	0.7210	0.3811	0.132*	0.38 (3)
C19	0.571 (2)	0.9256 (10)	0.366 (2)	0.150 (8)	0.62 (3)
H19A	0.6297	0.9317	0.4139	0.226*	0.62 (3)
H19B	0.4690	0.9830	0.3907	0.226*	0.62 (3)
H19C	0.6074	0.9561	0.2886	0.226*	0.62 (3)
C19A	0.500 (3)	0.917 (2)	0.318 (2)	0.140 (12)	0.38 (3)
H19D	0.5704	0.9573	0.2711	0.209*	0.38 (3)
H19E	0.4360	0.9769	0.3760	0.209*	0.38 (3)
H19F	0.4407	0.9071	0.2717	0.209*	0.38 (3)
C20	1.0180 (4)	0.6576 (4)	0.2149 (3)	0.0580 (10)	
O5	1.0258 (4)	0.7581 (3)	0.2602 (3)	0.0796 (9)	
C21	1.0583 (9)	0.8667 (6)	0.1809 (6)	0.131 (3)	
H21A	1.0011	0.8895	0.1224	0.157*	0.48 (3)
H21B	1.1629	0.8346	0.1442	0.157*	0.48 (3)
H21C	1.0677	0.8480	0.1040	0.157*	0.52 (3)
H21D	1.1521	0.8705	0.1864	0.157*	0.52 (3)
C22	1.022 (4)	0.9937 (15)	0.2377 (14)	0.109 (8)	0.48 (3)
H22A	0.9262	1.0138	0.2880	0.164*	0.48 (3)
H22B	1.0221	1.0702	0.1810	0.164*	0.48 (3)
H22C	1.0961	0.9786	0.2806	0.164*	0.48 (3)
C22A	0.937 (2)	1.0027 (12)	0.205 (2)	0.152 (8)	0.52 (3)
H22D	0.8533	1.0101	0.1765	0.228*	0.52 (3)
H22E	0.9727	1.0763	0.1694	0.228*	0.52 (3)
H22F	0.9072	1.0087	0.2862	0.228*	0.52 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.0812 (4)	0.1012 (4)	0.0863 (4)	-0.0446 (3)	-0.0377 (3)	0.0424 (3)
01	0.116 (3)	0.095 (3)	0.110 (3)	-0.042 (2)	0.047 (3)	-0.035 (2)
O2	0.067 (2)	0.126 (4)	0.170 (5)	-0.014 (2)	0.018 (3)	-0.035 (3)
O4	0.0721 (19)	0.109 (2)	0.0520 (17)	-0.0186 (18)	0.0079 (14)	-0.0072 (16)
O6	0.125 (3)	0.082 (2)	0.0519 (18)	-0.051 (2)	-0.0073 (17)	0.0087 (14)
N1	0.091 (3)	0.103 (3)	0.085 (3)	-0.051 (2)	-0.023 (2)	0.041 (2)
N2	0.070 (2)	0.082 (2)	0.070 (2)	-0.039 (2)	-0.0106 (18)	0.0203 (19)
N3	0.076 (3)	0.067 (3)	0.115 (4)	-0.029 (2)	0.025 (3)	-0.014 (3)
C1	0.059 (2)	0.060 (2)	0.049 (2)	-0.0287 (18)	-0.0026 (16)	-0.0018 (16)
C2	0.056 (2)	0.054 (2)	0.0456 (19)	-0.0232 (17)	-0.0087 (16)	0.0014 (15)
C3	0.054 (2)	0.058 (2)	0.055 (2)	-0.0286 (18)	-0.0118 (17)	0.0014 (17)
C4	0.061 (3)	0.082 (3)	0.066 (3)	-0.033 (2)	-0.004 (2)	-0.011 (2)
C5	0.055 (3)	0.082 (3)	0.109 (4)	-0.022 (2)	-0.021 (3)	-0.018 (3)
C6	0.080 (3)	0.076 (3)	0.108 (4)	-0.035 (3)	-0.047 (3)	0.015 (3)
C7	0.087 (3)	0.100 (3)	0.068 (3)	-0.052 (3)	-0.032 (2)	0.017 (2)
C8	0.060 (2)	0.080 (3)	0.059 (2)	-0.037 (2)	-0.0125 (19)	0.002 (2)

C9	0.0473 (19)	0.054 (2)	0.0480 (19)	-0.0215 (16)	-0.0091 (15)	0.0014 (15)
C10	0.052 (2)	0.0492 (19)	0.049 (2)	-0.0221 (17)	-0.0031 (16)	-0.0016 (15)
C11	0.065 (2)	0.071 (3)	0.053 (2)	-0.030 (2)	-0.0024 (19)	-0.0099 (19)
C12	0.083 (3)	0.077 (3)	0.061 (2)	-0.038 (3)	0.010(2)	-0.018 (2)
C13	0.064 (3)	0.051 (2)	0.080 (3)	-0.025 (2)	0.020 (2)	-0.016 (2)
C14	0.053 (2)	0.057 (2)	0.087 (3)	-0.0197 (19)	-0.009 (2)	0.000 (2)
C15	0.054 (2)	0.057 (2)	0.061 (2)	-0.0173 (18)	-0.0054 (18)	-0.0079 (18)
C16	0.052 (2)	0.051 (2)	0.051 (2)	-0.0203 (17)	-0.0052 (16)	0.0026 (16)
C17	0.054 (2)	0.052 (2)	0.061 (2)	-0.0203 (18)	-0.0008 (18)	-0.0071 (18)
O3	0.0510 (16)	0.0754 (19)	0.0778 (19)	-0.0092 (14)	-0.0015 (14)	0.0076 (15)
C18	0.054 (3)	0.088 (4)	0.148 (5)	-0.004 (3)	0.004 (3)	0.003 (4)
C19	0.089 (11)	0.096 (9)	0.207 (18)	0.014 (7)	0.010 (11)	-0.036 (9)
C19A	0.083 (14)	0.159 (19)	0.119 (16)	-0.017 (14)	-0.001 (11)	0.041 (13)
C20	0.050 (2)	0.053 (2)	0.060 (2)	-0.0169 (17)	-0.0017 (17)	0.0025 (18)
05	0.096 (2)	0.0653 (18)	0.0764 (19)	-0.0450 (17)	0.0138 (16)	-0.0137 (15)
C21	0.165 (6)	0.074 (4)	0.132 (5)	-0.070 (4)	0.049 (5)	-0.015 (3)
C22	0.134 (18)	0.069 (8)	0.116 (11)	-0.042 (9)	-0.006 (10)	0.000 (7)
C22A	0.168 (17)	0.117 (12)	0.181 (18)	-0.080 (13)	-0.056 (15)	0.053 (11)
Geometric pa	arameters (Å, °)					
Se1—C2		1.836 (4)	C14-	-H14	0.93	00
Se1—N1		1.875 (4)	C15-	-H15	0.9300	
O1—N3		1.216 (6)	C16–	C17	1.51	0 (5)
O2—N3		1.208 (7)	C16–	-C20	1.52	.5 (5)
O4—C17		1.195 (5)	C16–	-H16	0.98	:00
O6—C20		1.195 (5)	C17–	-03	1.31	5 (5)
N1—N2		1.260 (5)	03—	C18	1.44	7 (5)
N2 C1		1 286 (5)	C10	C10	1 4001 (10)	

Sel—C2	1.836 (4)	C14—H14	0.9300
Se1—N1	1.875 (4)	С15—Н15	0.9300
O1—N3	1.216 (6)	C16—C17	1.510 (5)
O2—N3	1.208 (7)	C16—C20	1.525 (5)
O4—C17	1.195 (5)	С16—Н16	0.9800
O6—C20	1.195 (5)	C17—O3	1.315 (5)
N1—N2	1.260 (5)	O3—C18	1.447 (5)
N2—C1	1.386 (5)	C18—C19	1.4991 (10)
N3—C13	1.472 (6)	C18—C19A	1.4992 (10)
C1—C2	1.361 (5)	C18—H18A	0.9700
C1—C3	1.476 (5)	C18—H18B	0.9700
С2—С9	1.514 (5)	C18—H18C	0.9700
C3—C8	1.379 (5)	C18—H18D	0.9700
C3—C4	1.392 (5)	С19—Н19А	0.9600
C4—C5	1.374 (6)	С19—Н19В	0.9600
C4—H4	0.9300	С19—Н19С	0.9600
C5—C6	1.366 (7)	C19A—H19D	0.9600
С5—Н5	0.9300	С19А—Н19Е	0.9600
C6—C7	1.368 (7)	C19A—H19F	0.9600
С6—Н6	0.9300	C20—O5	1.316 (5)
С7—С8	1.380 (6)	O5—C21	1.434 (6)
С7—Н7	0.9300	C21—C22	1.4989 (10)
С8—Н8	0.9300	C21—C22A	1.4990 (10)
C9—C10	1.517 (5)	C21—H21A	0.9700
C9—C16	1.535 (5)	C21—H21B	0.9700
С9—Н9	0.9800	C21—H21C	0.9700
C10—C15	1.378 (5)	C21—H21D	0.9700
C10—C11	1.391 (5)	C22—H22A	0.9600

C11—C12	1.366 (6)	C22—H22B	0.9600
C11—H11	0.9300	С22—Н22С	0.9600
C12—C13	1.363 (7)	C22A—H22D	0.9600
C12—H12	0.9300	C22A—H22E	0.9600
C13—C14	1.371 (6)	C22A—H22F	0.9600
C14—C15	1.392 (5)		
C2—Se1—N1	87.20 (17)	C17—C16—C9	111.8 (3)
N2—N1—Se1	110.9 (3)	C20-C16-C9	110.1 (3)
N1—N2—C1	117.2 (4)	С17—С16—Н16	108.4
O2—N3—O1	123.6 (5)	С20—С16—Н16	108.4
O2—N3—C13	117.9 (6)	С9—С16—Н16	108.4
O1—N3—C13	118.5 (6)	O4—C17—O3	124.9 (4)
C2C1N2	115.9 (4)	O4—C17—C16	123.6 (4)
C2—C1—C3	127.3 (3)	O3—C17—C16	111.5 (3)
N2—C1—C3	116.7 (3)	C17—O3—C18	117.6 (4)
C1—C2—C9	127.6 (3)	O3—C18—C19	106.1 (6)
C1—C2—Se1	108.8 (3)	O3—C18—C19A	118.2 (9)
C9—C2—Se1	123.7 (3)	O3—C18—H18A	110.5
C8—C3—C4	118.5 (4)	C19—C18—H18A	110.5
C8—C3—C1	121.9 (3)	O3—C18—H18B	110.5
C4—C3—C1	119.6 (3)	C19—C18—H18B	110.5
C5—C4—C3	120.7 (4)	H18A—C18—H18B	108.7
C5—C4—H4	119.6	O3—C18—H18C	107.7
C3—C4—H4	119.6	C19A—C18—H18C	107.7
C6—C5—C4	120.2 (4)	O3—C18—H18D	107.7
С6—С5—Н5	119.9	C19A—C18—H18D	107.7
С4—С5—Н5	119.9	H18C—C18—H18D	107.1
C5—C6—C7	119.5 (5)	C18—C19—H19A	109.5
С5—С6—Н6	120.3	C18—C19—H19B	109.5
С7—С6—Н6	120.3	C18—C19—H19C	109.5
C6—C7—C8	1211(4)	C18—C19A—H19D	109.5
С6—С7—Н7	119.4	C18—C19A—H19E	109.5
С8—С7—Н7	119.4	H19D—C19A—H19E	109.5
$C_3 - C_8 - C_7$	119.8 (4)	C18 - C19A - H19F	109.5
C3—C8—H8	120.1	H19D-C19A-H19F	109.5
C7—C8—H8	120.1	H19E— $C19A$ — $H19F$	109.5
$C_{2}^{2} - C_{2}^{2} - C_{10}^{10}$	111 3 (3)	06-020-05	124 2 (4)
$C_2 - C_9 - C_{16}$	112.8 (3)	06-020-016	121.2(1) 1256(4)
C10-C9-C16	112.6 (3)	05 - C20 - C16	120.0(1) 110.2(3)
C_{2}^{-} C_{9}^{-} H9	106.5	$C_{20} = 05 = C_{21}$	115.2(3)
C10-C9-H9	106.5	05-021-022	112.0(7)
C16-C9-H9	106.5	05-021-022	112.0(7) 110.3(8)
$C_{15} - C_{10} - C_{11}$	119 3 (3)	05-021-0221	109.2
$C_{15} = C_{10} = C_{9}$	121 5 (3)	$C^{22} - C^{21} - H^{21} \Delta$	109.2
$C_{11} - C_{10} - C_{9}$	119 1 (3)	05-C21-H21B	109.2
C_{12} C_{11} C_{10} C_{10}	120 4 (4)	C22_C21_H21B	109.2
C12_C11_H11	110.8	H21A_C21_H21B	107.9
C10_C11_H11	110.8	05-021-11210	100.5
$C_{10} = C_{11} = C_{11}$	117.0 110 A (A)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
013-012-011	117.4 (4)	$U_{22}A - U_{21} - \Pi_{21}U$	109.0

C13—C12—H12	120.3		O5-C21-H21D		109.6
C11—C12—H12	120.3		C22A—C21—H21D		109.6
C12—C13—C14	122.2 (4)		H21C-C21-H21D		108.1
C12—C13—N3	119.1 (5)		C21—C22—H22A		109.5
C14—C13—N3	118.7 (5)		C21—C22—H22B		109.5
C13—C14—C15	118.3 (4)		C21—C22—H22C		109.5
C13-C14-H14	120.9		C21—C22A—H22D		109.5
C15-C14-H14	120.9		C21—C22A—H22E		109.5
C10-C15-C14	120.4 (4)		H22D—C22A—H22E		109.5
C10-C15-H15	119.8		C21—C22A—H22F		109.5
C14—C15—H15	119.8		H22D—C22A—H22F		109.5
C17—C16—C20	109.6 (3)		H22E—C22A—H22F		109.5
C2—Se1—N1—N2	0.3 (4)		C10-C11-C12-C13		-0.2 (6)
Se1—N1—N2—C1	0.3 (6)		C11—C12—C13—C14		-0.5 (6)
N1—N2—C1—C2	-1.0 (6)		C11—C12—C13—N3		-178.0 (4)
N1—N2—C1—C3	-178.4 (4)		O2—N3—C13—C12		-178.0 (5)
N2-C1-C2-C9	-177.9 (4)		O1—N3—C13—C12		1.8 (6)
C3—C1—C2—C9	-0.8 (6)		O2-N3-C13-C14		4.4 (6)
N2-C1-C2-Se1	1.1 (4)		O1—N3—C13—C14		-175.8 (4)
C3—C1—C2—Se1	178.2 (3)		C12—C13—C14—C15		0.9 (6)
N1—Se1—C2—C1	-0.8 (3)		N3-C13-C14-C15		178.4 (4)
N1—Se1—C2—C9	178.3 (3)		C11—C10—C15—C14		0.1 (5)
C2—C1—C3—C8	50.7 (6)		C9-C10-C15-C14		178.9 (3)
N2—C1—C3—C8	-132.2 (4)		C13—C14—C15—C10		-0.7 (6)
C2—C1—C3—C4	-127.9 (4)		C2-C9-C16-C17		-48.0 (4)
N2—C1—C3—C4	49.2 (5)		C10-C9-C16-C17		-175.1 (3)
C8—C3—C4—C5	-3.1 (6)		C2-C9-C16-C20		-170.0 (3)
C1—C3—C4—C5	175.6 (4)		C10-C9-C16-C20		62.9 (4)
C3—C4—C5—C6	1.7 (7)		C20—C16—C17—O4		-138.2 (4)
C4—C5—C6—C7	0.5 (7)		C9—C16—C17—O4		99.5 (5)
C5—C6—C7—C8	-1.3 (7)		C20—C16—C17—O3		42.6 (4)
C4—C3—C8—C7	2.3 (6)		C9—C16—C17—O3		-79.7 (4)
C1—C3—C8—C7	-176.4 (4)		O4—C17—O3—C18		1.7 (6)
C6—C7—C8—C3	-0.1 (7)		C16—C17—O3—C18		-179.0 (4)
C1—C2—C9—C10	-128.4 (4)		C17—O3—C18—C19		105.5 (15)
Se1—C2—C9—C10	52.8 (4)		C17—O3—C18—C19A		149 (2)
C1—C2—C9—C16	103.8 (4)		C17—C16—C20—O6		-118.3 (4)
Se1—C2—C9—C16	-75.0 (4)		C9—C16—C20—O6		5.1 (6)
C2—C9—C10—C15	-81.3 (4)		C17—C16—C20—O5		62.4 (4)
C16—C9—C10—C15	46.6 (4)		C9—C16—C20—O5		-174.3 (3)
C2—C9—C10—C11	97.5 (4)		O6—C20—O5—C21		3.5 (7)
C16—C9—C10—C11	-134.6 (3)		C16—C20—O5—C21		-177.2 (5)
C15—C10—C11—C12	0.3 (6)		C20—O5—C21—C22		163.5 (15)
C9—C10—C11—C12	-178.5 (4)		C20—O5—C21—C22A		121.8 (17)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C22A—H22D····O2 ⁱ		0.96	2.47	3.38 (4)	159

C11—H11…O6 ⁱⁱ	0.93	2.56	3.410 (6)	152
C18—H18A…O4	0.97	2.29	2.686 (7)	103
С21—Н21С…Об	0.97	2.17	2.627 (6)	107
Symmetry codes: (i) <i>x</i> -1, <i>y</i> +1, <i>z</i> ; (ii) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> .				

Fig. 1

