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Abstract

As the world experiences rapid urban expansion, natural landscapes are being transformed

into cities at an alarming rate. Consequently, urbanization is identified as one of the biggest

environmental challenges of our time, yet we lack a clear understanding of how urbaniza-

tion affects free-living organisms. Urbanization leads to habitat fragmentation and

increased impervious surfaces affecting for example availability and quality of food. Urbani-

zation is also associated with increased pollution levels that can affect organisms directly,

via ecophysiological constraints and indirectly by disrupting trophic interactions in multi-

species networks. Birds are highly mobile, while an individual is not necessarily exposed to

urban stressors around the clock, but nestlings of altricial birds are. Such a city-dwelling

species with a long nestling phase is the Eurasian kestrel (Falco tinnunculus) in Vienna,

Austria, which forage on a diverse diet differing in composition from rural habitats. Further-

more, prey items vary in nutritional value and contents of micronutrients like carotenoids,

which might impact the nestlings’ health. Carotenoids are pigments that are incorporated

into integument tissues but also have antioxidant and immunostimulatory capacity, result-

ing in a trade-off between these functions. In nestlings these pigments function in parent-

offspring communication or sibling competition by advertising an individual’s physical or

physiological condition. Anthropogenic disturbance and pollutants could have disruptive

effects on the coloration of these traits. In this study, we measured carotenoid based colora-

tion and other indicators of individual health (body condition and susceptibility to the ecto-

parasite Carnus hemapterus) of 154 nestling kestrels (n = 91 nests) along an urban

gradient from 2010 to 2015. We found skin yellowness of nestlings from nest-sites in the

city-center to be least pronounced. This result might indicate that inner-city nestlings are

strongly affected by urban stressors and depleted their stores of dietary carotenoids for

health-related functions rather than coloration. In addition, skin yellowness intensified with

age and was stronger pronounced in earlier nests. Since the immune system of nestlings is

still developing, younger chicks might need more antioxidants to combat environmental

stress. Additionally, parasite infection intensity was highest in nestlings with less intense

skin yellowness (paler or less yellow pigmented integuments) and in earlier nests of the

season. In combination with results from previous studies, our findings provide further
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support for the low quality of the inner-city habitat, both in terms of productivity and individ-

ual health.

Introduction

Wildlife around the globe faces the dangers of a novel, quickly spreading habitat infiltrating

the natural environment: urban areas, i.e. cities and other human settlements. Through the

drastic changes imposed by cities, such as increased impervious surfaces, habitat loss and frag-

mentation, noise, light and chemical pollution, introduced alien species and predators, and

diet alteration, urbanization acts as a filter for species communities [1–3]. This leads to biodi-

versity loss through both random processes and mal-adaption of some species [4]. Thus,

urbanization is a novel and strong evolutionary force [5, 6]. In avian research, species are cate-

gorized according to their adaptability to urban landscapes in urban avoiders, adapters or

exploiters [1, 7], reflecting their ability to cope with this novel habitat. Some species seem to

cope well with urban environments and react with rapid evolutionary adaptations to city life

[8–10]. Other species, however, show negative responses to anthropogenic stressors in terms

of productivity and individual health. Furthermore, urbanization influences host susceptibility

to parasites and infectious diseases and can intensify the detrimental effects of pathogens by

weakening the immune system [11].

Birds are highly mobile, but the nestlings of altricial species might be especially exposed to

urban landscapes since they are bound to their nest and fully dependent on parental care for

most of their early development. Thus, they must endure variation in food availability, sibling

competition, exposure to parasites and predators, adverse weather and other environmental

stressors, with some buffer by their parents [12].

Raptors are particularly interesting to study in an urban context. As umbrella species, their

loss can have cascading effects on ecosystem levels [13–15]. Yet, raptors depend on large suit-

able habitats with stable prey populations and might be vulnerable in urban areas [16]. In spite

of this, the trend of raptors colonizing cities is on the rise, with more species moving into

urbanized areas, for example American kestrel (Falco sparverius, [17]), Black sparrowhawk

(Accipiter melanoleucus, [18]), Cooper’s hawk (Accipiter cooperii [19]), Crowned eagle (Stepha-
noaetus coronatus, [20, 21]), Mississippi kite (Ictinia mississippiensis, [22]), Merlin (Falco
columbiarus, [23]), Northern goshawk (Accipiter gentilis, [24]), Peregrine falcon (Falco peregri-
nus, [25]), and the focus of this study, the Eurasian kestrel (Falco tinnunculus), or hereafter

simply kestrel. Kestrels breed in many European cities (e.g. [26–33]), and the diet of urban kes-

trels can heavily differ from their rural counterparts [34]. In Vienna, kestrels breeding in

highly urbanized areas increasingly feed on birds, reptiles and insects compared to kestrels

breeding in the outskirts of the city, which primarily feed on voles [35, 36]. For raptors living

in urban landscapes, the altered availability of prey species might be challenging, but could

also be beneficial specifically for raptors that feed on avian prey or have smaller home range

sizes [37]. However, cities may pose subtler physiological risks to raptors, even to those species

which appear to do well in urban areas in terms of number of breeding pairs. Examining the

mechanisms behind the perceived success of raptors in urban areas can thus help to establish

whether these species might be affected by an ecological trap mechanism or whether they are

true urban-adapters.

Stress leads to higher glucocorticoid levels; prolonged stress might result in lower body

condition [38–42]. To cope with a stressful environment and prevent cell damage, living
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organisms need to produce or ingest molecules with antioxidant properties. One class of anti-

oxidants are carotenoids [43], yellow to red pigments which are strictly dietary for vertebrates

[44, 45]. The total amount of carotenoid pigments available for an individual will depend on

the quantity and the quality, in terms of carotenoid content, of the ingested food [46–48]. Rap-

tors feed on a variety of prey species that might thus differ in their carotenoid content, with

birds having higher carotenoid content than mammals [49]. Kestrels might face a trade-off to

meet their dietary needs: voles (Microtus spp.) are potentially more efficient to hunt [34], if

sufficiently available, and have high calorie but low carotenoid content, whereas their alterna-

tive prey (small birds or larger insects) might be more difficult to catch for a specialized vole

hunter, and is comparably less calorific, but higher in its carotenoid content [50, 51]. Caroten-

oids serve many functions in animals, most visibly the coloration of nearly all vertebrate integ-

umentary tissues like skin, eyes, reptilian scales, bird feathers and beaks [52], but also other

physiological functions, e.g. antioxidant capacity and immunomodulatory properties [44, 53–

55]; but see [43, 56, 57]. Due to the diverse functions of carotenoids, trade-offs in the allocation

of these important micronutrients have been proposed [51]. Carotenoid-based coloration of

birds’ bare skin and beaks has been identified as a dynamic, condition-dependent trait [58] in

adults [59] and nestlings [49, 60], including kestrels. Additionally, a strong correlation between

carotenoid-based integument coloration and circulating carotenoids is known [49]. This sug-

gests that the expression of the trait is an honest indicator of individual quality [61, 62] and

thus play a key role in social communication [63–65].

Especially nestlings need carotenoids, since their immune system is not yet fully developed,

and hatching asynchrony or insufficient parental care can lead to undernourishment [66–68].

It is known from other raptor species that the intake of carotenoid-rich food sources can

improve individual health, specifically during the nestling phase [63, 69, 70]. Additionally,

these traits function in parent-offspring communication or sibling competition by advertising

an individual’s physical or physiological condition [71, 72]. In this regard, anthropogenic dis-

turbance or environmental pollutants could have disruptive effects on the coloration of these

traits [49, 73], thereby interfering with communication processes.

Living in urban environments, the exposure to anthropogenic stressors might not only lead

to immediate health problems, like lower body conditions of adults [74, 75] and juveniles [76],

but also to reduced reproductive performance and survival (review in [77]). The change in

individual densities probably also alters the interactions between hosts and pathogens. This

can lead to more abundant parasites or vectors and thereby facilitates the rise of pathogens and

multiplies the transmission of infectious diseases in urban environments [78, 79]. Together

with increased physiological stress, the severity of diseases might increase, including higher

infection prevalence with haemo-, endo-, and ecto-parasites [80]. The parasitic fly Carnus
hemapterus is a common ectoparasite of many bird species, including kestrels [30, 81]. They

mainly infest nestlings, with the highest infection rates in last-hatched chicks, i.e. junior sib-

lings [82]. Infections with parasites have been connected to reduced expression of carotenoid-

based signals, reflecting the strong immune response against parasites [54, 83].

We propose two competing hypotheses regarding integument coloration: (i) dietary antiox-

idants are supposedly restricted in vole hunters; since kestrels in the city center increasingly

feed on alternative prey (mainly insectivores), inner-city nestlings should show more intense

carotenoid (i.e. yellow) coloration or alternatively, (ii) because environmental stress is

increased in the city, carotenoids are used for antioxidant defense rather than coloration why

inner-city nestlings should show less intense carotenoid coloration despite their potential

higher availability.

At the same time breeding performance is known to be lower in inner-city kestrel pairs

and malnutrition was named as one of the main factors leading to the high nestling mortality
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[34,79]. Hence, high physiological stress could lead to a measurable drop in health-related

traits. On the other hand, already smaller clutches and lower fledged brood size could result in

reduced sibling competition for limited food, resulting in an overall higher quality of surviving

fledglings (along the offspring size-number trade-off; [80]). Both of these competing hypothe-

ses predict a significant correlation between the urban gradient and individual nestlings’

health, measured as (1) carotenoid-based integument coloration, (2) body condition, and (3)

susceptibility to the ectoparasite Carnus hemapterus.

Material and methods

Study system

The Eurasian kestrel is one of the most common birds of prey of the Palearctic region. It is

widespread throughout its range, occupying a wide range of open natural habitats to human

modified landscapes [26, 34]. In Vienna, kestrels are the most common aerial predators, reach-

ing densities of 89–122 breeding pairs/100 km2 [32], which is higher than in other European

cities or rural areas [28, 84]. Kestrels are specialized in hunting voles, but also feed on other

small vertebrates and large invertebrates [35, 36, 85]. All data for this study were gathered in

the city of Vienna, Austria (48˚12’N, 16˚22’E; 415 km2; 150–500 m a.s.l.; 1.8 million inhabi-

tants). We defined the urban gradient by the percentage of sealed soil and excluded rural areas

with<1% sealed soil, thus comprising an urban study area of 243 km2 (Fig 1). The proportion

of impervious surfaces was calculated using ESRI ArcGIS 10 based on coverage by buildings

and traffic areas for r = 500 m around the nest [32, 33]. Kestrel nesting sites used in this study

were found from 19% soil sealing in suburban areas to 97% in the inner city.

Field procedure: Morphometric measurement and ectoparasite counts

Kestrel nesting sites in the city of Vienna were located by sight during systematic search and

with the help of the general public from 2010 to 2015 and regularly checked for occupation

during the nesting season [32, 33, 35, 36]. For this study, we used data from 91 kestrel nest-

sites from all six years. When occupied, nests were visited two to three times if accessible

through the attic, by tree and façade climbing or with help from the Viennese fire-fighters to

assess the number of eggs, number of hatched nestlings and number of fledged chicks. The

nestlings were ringed, weighed and measured: length of the fourth primary (numbered from

the outermost towards the inside, and length of the first rectrix to the nearest 0.1 mm (with cal-

ipers) and wing length to the nearest mm (with a zero-stop ruler; [86]; n = 556 nestlings). One

randomly chosen nestling per brood was screened for ectoparasites (n = 154). The most signif-

icant arthropod ectoparasite in kestrels is the blood-sucking fly Carnus hemapterus [87]. Para-

site infestation decreases with age of the nestlings, and the youngest chick of a clutch usually

has most parasites [82, 88]. The number of all ectoparasites was counted in each nestling on

the day they were ringed (aged six to 33 days, supplementary material S1 Fig for age distribu-

tion of sampled kestrel nestlings), and parasite load was defined as an ordinal score (see [89]

for a similar approach): 0 (no C. hemapterus visible), 1 (one to three C. hemapterus), 2 (four to

nine C. hemapterus), 3 (more than 10 C. hemapterus on the nestling’s skin). Blood from nest-

lings was collected for genetic sex determination, by puncturing the brachial vein with a

sterilized 21 Gauge needle and extraction of the blood through capillary action with 75μl hepa-

rinized capillary tubes after disinfection of the skin with alcohol swabs. In the following lab

procedure we extracted DNA from full blood using the standard protocol of QIAGEN DNeasy

Blood & Tissue kit. PCR products of the sex specific primers 2718R and 2550F [90] were visu-

alized on 2% agarose gels. See details in [33].
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Color measurement

Similarly to the ectoparasite count was skin yellowness measured in one randomly chosen nes-

tling per brood. This resulted in a reduced dataset for both variables of n = 154 nestlings from

6 breeding seasons and 91 different nest locations. The colors of the unfeathered skin covering

tarsus, cere and eye ring (orbital ring) were scored by comparing the bird under natural light

conditions to a reference color charts booklet [91]. Scoring colors by visual matching with

color charts has been widely used in studies on avian coloration [49, 50, 63, 69, 70, 83, 92–94].

The color chart method was preferred to other methods, such as spectrophotometry, because

of fieldwork constrains and because it is better suited to quantify the coloration of irregular

surfaces such as ceres and tarsi [95]. However, to validate our method we compared the results

using color charts with spectrophotometry in one study year on a smaller sample size (see

color validation study below). Since there were no colorimetrics available for the color charts

used in this study, we used an image scanner (Canon imageRUNNER Advance C5235i) to

extract high resolution digital photographs of the color charts in standardized lighting condi-

tions. The images of the color charts were then analysed with GIMP [96]. For each color chart

we measured the average red, green and blue components (RGB color space). The three com-

ponents have equal values in white (high values) and black (zero values) colors, respectively.

Fig 1. Urban study area (243 km2) in Vienna, Austria. The urban gradient is displayed from black to light grey (white areas (<1%) are outside the

study area), and locations of kestrel nest-sites are indicated in yellow.

https://doi.org/10.1371/journal.pone.0191956.g001
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The relative difference of the three-color components determines the hue of the color. For

example, the bright and saturated yellows have high values in the red and green component

and very low values in the blue component. We calculated a “yellowness score” for each color

chart by subtracting the ratio of red and green values from the blue value (essentially using the

blue value, correcting for red and green; [63, 83, 93, 97]). We used this RGB-derived color

chart score as a continuous variable in subsequent analyses [95, 98, 99] calling it “skin yellow-

ness” hereafter.

Since cere skin yellowness and skin yellowness of the orbital ring were highly correlated

(cor = 0.93; p< 0.001), but tarsus skin yellowness not as strongly, we ran a Principal Compo-

nent Analysis (PCA) on the measurements. The PCA resulted in two principal components,

explaining 97.3% of the variation in the data, with PC1 consisting mainly of cere color and eye

ring color and PC2 consisting mainly of tarsus color (S1 Table). PC1 was used as “face skin yel-

lowness” and PC2 as “tarsus skin yellowness” in subsequent analyses. Note that the values of

PC1 and PC2 are antipodal: low values of PC1 represent more intense yellow colors and vice

versa, low values of PC2 represent dull/whitish shades of yellow.

Spectral reflectance with spectrophotometry

To estimate the reliability of the color chart method used in this study, photospectrometral

color measurement was carried out in the field season of 2015, measuring both tarsus and cere

coloration of 25 kestrel nestlings. Measurements were all taken by the same person (MA)

using a portable JAZ photospectrometer (Ocean Optics, Inc.) with a pulsed xenon light source

(190–1000 nm optical range) and an optical fiber with a self-made probe pointer, firmly

attached to the optical fiber. The handheld probe pointer was cut in a 45˚ angle and could then

be placed firmly on the animals’ skin (coincident oblique technique; [100]) to avoid distortions

of the measurements due to the glossy surface of the skin. Reflectance of each body patch was

measured three times, removing the probe pointer in between measurements. The raw data

files were analyzed with the package pavo [101].

To compare the two different color measurements, color charts and spectral reflectance, we

extracted three colorimetric from the reflectance curves within the 400–700 nm spectral range:

(a) carotenoid chroma (the difference between the reflectance at 700 nm and 450 nm divided

by the reflectance at 450 nm, i.e. relative reflectance in the region of highest reflectance in

carotenoid-based colors), a measure of carotenoid concentration [100], (b) carotenoid satura-

tion (after [94, 95]), the ratio between total brightness (area under the curve) and the reflec-

tance in the region of interest (from 550 nm to 700 nm, corresponding to yellow, orange and

red wavelengths [95]); and (c) spectral saturation of the yellow segment (S1y), calculated as the

sum of the reflectance values in the wavelength range 550–625 nm (associated with yellow col-

ors) divided by the total reflectance [95, 101].

Age determination and lay date

Age of the nestlings was determined from plumage development, as the exact age (in days) was

seldom known from direct observation [26]. Another method, developed by BirdLife Finland

(http://netti.nic.fi/~mattisj/petopull_ika_index.html), estimates the age of nestlings only from

wing length. These two methods resulted in differing nestling ages, the finish formula making

the Viennese nestlings on average 2.36 ± 0.06 (standard error) days younger than the method

by [26], which is based on kestrel populations in Germany. Since both methods for age deter-

mination are based on European kestrel populations outside our study area, the average of

both values was used in statistical analyses.
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If not known from direct observation, the laying date of the first egg of the clutch was

inferred by subtracting 30 days, the average breeding time of kestrels (median 29 days [102];

about 30 days [26]) from the hatching day, calculated from the age of the nestling at the time

of ringing. The lay date is used as Julian day throughout (1 = Jan 1). To correct for the size dif-

ference of nestlings due to hatching asynchrony [103–105], we ranked the nestlings within the

brood as senior (“1”, first-hatched/largest, 1–3 chicks per brood) sibling, junior (“3”, last-

hatched/smallest) sibling and “2”, all the other nestlings in between.

Statistical analysis

To validate the color chart measurements with spectral reflectance values we used Pearson’s

correlation and report the according r and p-values. Color chart measurements were done

every year by a different person (2010–2012 PS, 2013 Tomislav Gaspar, 2014 Anna Kreiderits,

2015 MA). To ensure no observer bias we run another validation by fitting “year” as a fixed

effect—with no significant relationship: χ2
(n = 154, df = 5) = 8.04, p = 0.154. However, the year is

fitted as random term throughout to account for a potential year/observer effect.

Nestlings were not all measured at the same age; hence, to model body mass as response

variable we controlled for their age by fitting the wing length (linear and quadratic since body

mass gain declines before nestlings fledge [106]) together with other predictor variables we

were interested in (see below). However, when fitting body condition as explanatory variable,

we used residuals to fulfil the assumption of non-correlated fixed effects following the method

described by Roulin et al. [106]: First we extracted residuals from a second-order curve of

body mass on wing length (with each kestrel nestling appearing only once in the analysis,

n = 531), and then removed variation in these residuals explained by sex (two-way ANOVA;

females are heavier than males). The latter residuals were our body condition index used as

fixed-effect in statistical analyses (see [49] for a similar approach).

Each of the four health parameters used in this study (body condition index, ectoparasite

infection, face skin yellowness and tarsus skin yellowness) was used as a response variable in

generalized linear mixed models (GLMM) with age, sex, rank of the nestlings and the egg-lay-

ing date as explanatory variables, together with the urban gradient as additive factor and in

interaction with the respective other health measurements. A global model was fitted with

non-correlated explanatory variables, where all quantitative variables (including the response

if applicable) were centred and scaled to ensure that effect sizes were on a comparable scale

[107]. A model set was generated using the Anova (type = “III”) function (car package [108]),

and candidate models were ranked in relation to each other using AICc values [109]. The

GLMMs for body mass, face skin yellowness and tarsus skin yellowness followed a Gaussian

error structure. Ectoparasite infection was analyzed as count data with Poisson. The year

(breeding season) and nest ID (location where the nestlings were sampled) were included as

random terms, to account for pseudoreplication due to the lack of independence of several

individuals produced within years or the same nest between different years [110]. All analyses

were conducted in R [111] using Rstudio [112] and the lme4 [113], car [108], MASS [114],

MuMIn [115], effects [116, 117], lattice [118] and RVAideMemoire [119] packages. Post-hoc

comparisons between factor variables were performed using the package lsmeans [120].

Pseudo-R2 for GLMMs was calculated after [121] using the function “r.squaredGLMM” imple-

mented in the package MuMIn, for GLMMs with Gaussian and Poisson error distributions.

Ethical statement

The study was performed under license from the Environmental Protection Bureau of Vienna

(MA22/1263/2010/3), the Ministry for Science and Research (BM.WF– 66.006/0021-II/3b/
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2013) and the ethics committee of the University of Veterinary Medicine, Vienna (BGBI.

Nr.501/1989i.d.g.F.). All data were acquired strictly following current Austrian and EU law as

well as the Weatherall Report and the guidelines for treatment of animals in behavioural

research and teaching (ASAB 2015).

Results

Color validation study

Photospectrometral color measurement was successfully carried out on 25 kestrel nestlings

from 25 different nest sites in the breeding season of 2015. Correlations of kestrel nestlings’

skin yellowness from visual classification using reference color charts (RGB) and photospec-

trometral color measurements were strongly correlated using the birds’ tarsi: S1y (Pearson’s

product-moment correlation: r = -0.81, p< 0.001), carotenoid chroma (r = 0.73, p< 0.001)

and carotenoid saturation (r = -0.72, p< 0.001); and the birds’ ceres: S1y (r = -0.63,

p< 0.001), carotenoid chroma (r = 0.41, p = 0.043) and carotenoid saturation (r = -0.43,

p = 0.033); and when combining both: S1y (r = -0.69, p< 0.001), carotenoid chroma (r = 0.48,

p< 0.001) and carotenoid saturation (r = -0.32, p = 0.029).

Carotenoid coloration and health status

Kestrel nesting sites were distributed across the city within a wide range of degree of urbaniza-

tion (19.4–96.8%, Fig 2). We found no significant relationship between the degree of

Fig 2. Frequency plot showing the distribution of kestrel nest sites (N = 154) along the urban gradient in 10% slots.

https://doi.org/10.1371/journal.pone.0191956.g002
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urbanization around kestrels’ nesting sites and the body mass of nestlings Body mass could

not be explained by any other explanatory variables than wing length and sex (Table 1, supple-

mentary material S2a and S2b Fig).

Ectoparasites Carnus hemapterus were found on 41 of 154 nestlings (26.6% infection preva-

lence; 154 broods between 2010–2016 at 91 different nest sites), the infection intensity ranged

from one to 50 individuals of C. hemapterus per kestrel nestling (mean = 1.4±0.09SE). Infec-

tion intensity with C. hemapterus was not directly related to the urban gradient (the most

parsimonious model did not include the urban gradient or any of the interaction terms consid-

ered). Ectoparasite infection intensity was higher in nestlings with less intense face skin yellow-

ness (GLMM ‘face skin yellowness’ term: χ2
(152) = 6.62, p = 0.01; Fig 3a) and also in nestlings

hatching earlier in the breeding season (GLMM ‘egg-laying date’ term: χ2
(152) = 5.80,

p = 0.016; Fig 3b). The model with face skin yellowness and laying date explained 13% of the

variation in ectoparasite infection intensity.

In terms of carotenoid based coloration (RGB-values from color chart classification; Fig 4),

the most parsimonious model for tarsus skin yellowness was the null model (Table 1. Face skin

yellowness intensity decreased with an increasing degree of urbanization (GLMM ‘urban gradi-

ent’ term: χ2
(149) = 6.10, p = 0.014; Fig 5), increased with age (GLMM ‘age’ term: χ2

(149) = 11.56,

p<0.001; S3a Fig), and differed between sexes (GLMM ‘sex’ term: χ2
(149) = 5.03, p = 0.025; S3b

Fig), with males being more intensely colored than females (post-hoc pairwise comparison,

least-squares means: t-ratio = -2.20, p = 0.029). Additionally, nestlings from earlier broods

showed slightly more intense face yellowness (GLMM ‘egg-laying date’ term: χ2
(149) = 2.93,

p = 0.087, S3c Fig). The best model explained 24% of variation in face skin yellowness.

Discussion

Along the urban gradient, we found skin yellowness of nestlings from nest-sites in the city-

center to be least pronounced, indicating that they are stronger affected by novel urban

Table 1. Results of best models explaining health parameters (body mass, ectoparasite infection intensity, tarsus skin yellowness, face skin yellowness) of urban kes-

trel nestlings. Significant values in bold (n = 154 individuals, 91 different nest sites between 2010–2015).

Response variable Estimate SE Chi2 Df P(>Chi2) R2 for GLMM AICc

Body mass 54.13 355.90

(Intercept) 0.12 0.10 0.224

Wing length 0.74 0.06 147.41 1 <0.001

Wing length^2 -0.30 0.04 44.90 1 <0.001

Sex a 0.31 0.12 7.20 1 0.007

Ecto-parasite infection 12.86 243.60

(Intercept) -1.25 0.26 <0.001

Laying date -0.37 0.15 5.80 1 0.016

Face skin yellowness 0.40 0.15 6.62 1 0.010

Tarsus skin yellowness 228.60

(Intercept) -1.89 5.05 -0.38 0.708

Face skin yellowness 24.05 226.60

(Intercept) -0.21 0.13 0.101

Sex a 0.34 0.15 5.03 1 0.025

Age -0.26 0.08 11.56 1 <0.001

Laying date 0.13 0.08 2.93 1 0.087

Urban gradient 0.19 0.08 6.10 1 0.014

a: Sex(male) was the reference category.

https://doi.org/10.1371/journal.pone.0191956.t001
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stressors than nestlings from more rural areas, and indeed allocate these carotenoids as impor-

tant micronutrients to antioxidant defense instead of coloration. In addition, skin yellowness

intensified with age and was stronger pronounced in male nestlings. The other health indica-

tors used, i.e. body condition and parasite infection intensity were not directly linked to the

urban gradient, but one could argue some indirect effects (see Fig 6).

Carotenoid-based coloration of birds’ bare parts is a dynamic, condition-dependent signal,

and supposedly an honest signal that reflects an individual’s health status [58, 60]. Previous

findings in our system have shown that kestrels nesting in the inner-city (of Vienna and other

European cities, e.g. [27, 28, 122] feed their chicks on a higher proportion of carotenoid-rich

prey (i.e. birds, lizards and insects [64, 123, 124]); than their suburban conspecifics [32, 33, 35,

36]. Additionally, there is a known difference in brood sizes due to a high nestling mortality

that might reflect a poorer health condition along the urban gradient [33]. Following these

findings we hypothesized that either (i) the intensity of integument carotenoid coloration is

highest in nestlings from more urbanized areas due to their carotenoid rich diet; or (ii) the

opposite, since the exposure to urban stressors could result in a depletion of carotenoids for

antioxidant defense. In line with hypothesis (ii), we found nestlings from the city center to

have least intense yellow coloration, despite their supposedly higher carotenoid intake through

their urban diet.

There are several non-exclusive explanations for this finding: (1) urban stressors, e.g. chem-

ical, noise and light pollution, heavy metals and direct disturbance might result in oxidative

stress [125], hence city kestrels need to use all dietary antioxidants available to reduce oxidative

damage. Furthermore, inflammations and parasite infections might be more frequent in

urbanized areas (see for example [126]), which further activates the immune system that

requires more circulating carotenoids. Thus, carotenoids are allocated to physiological needs

and cannot be used for integument pigmentation anymore [43]. (2) urbanization changes

whole ecosystems and the species networks [127], thus, increased oxidative stress will act on all

Fig 3. Result of the best model for ectoparasite infection intensity of urban kestrel nestlings. GLMM effect sizes of (a) face skin yellowness and (b)

the egg-laying date. The model explains 13% of the variance in ectoparasite infection intensity.

https://doi.org/10.1371/journal.pone.0191956.g003
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trophic levels from primary producers to apex consumers. For example, carotenoid content of

urban prey species such as Great tits (Parus major) might be lower than that of rural prey

[128], since urban passerines mainly forage on low-quality food resources themselves (i.e. cat-

erpillars with low carotenoid contents, [129]), due to lower carotenoid levels in inner-city trees

Fig 4. Photographs of kestrel (a-g) nestlings, (h) adult male and (j) adult female from Vienna, showing great variation in coloration of cere and

eye ring skin. Color intensity usually increases from (d, e, g) young to (a, c) older chicks until (b. f) fledgling. Adults have very intensely yellow colored

skin, specifically the males.

https://doi.org/10.1371/journal.pone.0191956.g004
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[130]. Thus, the entire urban food chain might be affected by a limited availability of dietary

antioxidants and strong environmental stress. As a result, there might be an overall lower

carotenoid content of biota in urban areas, just as evidence from plants [131] and passerines

[132–135] does.

If explanation (1) would hold true and urban stressors indeed create a health challenge for

city kestrel nestlings and all carotenoids are used for antioxidant defense, we would expect a

direct link between coloration and parasite infection intensity. Indeed, we find higher infection

intensities with the ectoparasite Canus hemapterus in nestlings with paler face skin yellowness.

Since face skin yellowness also decreased with the degree of urbanization, the combination of

these results would lead to the conclusion that nestlings from inner-city nest sites tend to have

more ectoparasites. However, we did not find an interaction between coloration and the urban

gradient explaining parasite infection intensity. We are confident that our result is not due to

Fig 5. GLMM effect sizes of the urban gradient on face skin yellowness of kestrel nestlings from GLMM (see Table 1) fitted with

sex, age and the laying date as additional co-variates (note: smaller values are more intense shades of yellow, and more suburban

areas). The model explains 24% of the variance in face skin yellowness.

https://doi.org/10.1371/journal.pone.0191956.g005
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age, with less intensively yellow colored nestlings having more parasites because they might be

younger (in line with the tasty chick hypothesis [82, 136]), since ectoparasite infection was not

correlated with age, but mainly with yellowness. Finally, parasite infection intensity was also

highest in nestlings from early nests, decreasing over the course of the breeding season. A sea-

sonal trend of infection with ectoparasites is known from raptor studies, but usually parasite

numbers increased during the season [106], although Sumasgutner et al. [88] found a seasonal

decline of parasite infection intensity specifically in kestrel nestlings, limited to nest boxes that

were left un-cleaned and consecutively used for breeding over several years. In Vienna, we

basically have the same situation, since kestrels mainly breed in roof openings with pellets and

other prey remains from earlier breeding attempts, where C. hemapterus can overwinter.

The potential link between carotenoid-coloration and the urban gradient described above

was found in the facial integuments (i.e. cere and orbital ring) of kestrel chicks, but not for

their tarsal skin. Cere and orbital ring color scores in our kestrel nestlings were often identical

(62% of all 454 measurements) or closely related. Overall, there was less variation in tarsus

Fig 6. Schematic diagram showing interrelations of health-related variables in urban kestrel nestlings. Variables in solid-lined boxes have been used

as response and explanatory variables in GLMMs, variables in dashed boxes only as explanatory variables. The arrow for the urban gradient is displayed

in bold to underline its importance in the main hypotheses.

https://doi.org/10.1371/journal.pone.0191956.g006
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color scores than in facial coloration scores (the legs being more intensely yellow whereas facial

coloration ranged between greenish-yellow and bluish-yellow colors; see Fig 4). The intensity

of yellow integument coloration of kestrel nestlings increased with age for the facial coloration

(but not for the tarsal skin), as known from other raptor nestlings [63], including kestrels [68].

This positive age-dependence of carotenoid-based coloration might reflect the condition of

the nestlings which usually increases with age and the maturation of the immune system. Fur-

thermore, carotenoids had more time to accumulate in the integuments of older nestlings,

and the absorption and deposition processes are more mature [68]. To account for this known

correlation, we controlled for “age” by fitting it as additional co-variable throughout which

seemed especially important since we measured the study broods in a rather large age window

due to the limited accessibility of many nest sites. Additionally, in our study, male nestlings

were more intensely colored (face skin yellowness) than females, which is in line with a study

on Marsh harrier (Circus aeruginosus) nestlings [69], but not with other kestrel nestlings [68].

Possibly males and females have different carotenoid allocation strategies, resulting in differ-

ential maturation of traits important for sexual selection. This trait may already be present in

nestlings but does not acquire its signaling function until adulthood [69]. Another possible

explanation is that sexes follow different growth strategies. Females, the larger sex in size-

dimorphic raptors [137], invest more in growth and require more carotenoids as antioxidants

against growth-related free radical production [138]. This explanation would lead to less

intense skin yellowness in females, as well as the possibility that female nestlings are larger and

stronger and could therefore, to some extent, control the distribution of prey items among sib-

lings. Possibly, they thus consume larger prey which is a poorer source of carotenoids (mam-

mals) and leave the smaller prey (birds and insects, with higher carotenoid contents) to their

brothers [70].

Conclusion

The results from this study are further support for the hypothesis that kestrels breeding

in Vienna don’t choose nest-sites according to the habitat quality and are somewhat unable

to assess the true quality of the surrounding hunting territory [32, 33]. Together with our

new the findings on carotenoid coloration as an indicator for individual health status, kes-

trels breeding in Vienna’s city center could indeed be in danger of falling into an ‘ecological

trap’. All data used in this manuscript are available in the supporting information S1 Data

file.

Supporting information

S1 Table. Results of a Principal Components Analysis (PCA) on the colour chart measure-

ments of 3 body parts of kestrel nestlings: tarsus, cere and orbital ring. PCs 1 and 2 were

used as "face skin yellowness" and "tarsus skin yellowness", respectively, throughout the manu-

script.

(PDF)

S1 Fig. Age distribution of kestrel nestlings considered for the analyses. We randomly

selected one nestling per brood (n = 154 individuals, 154 broods, 91 different nest sites

between 2010–2016) with an age range of six to 33 days.

(PDF)

S2 Fig. Result of the best model of a GLMM on body mass of urban kestrel nestlings (see

Table 1): Effects of (a) wing length, and (b) sex contribute significantly to the best model.
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The model explains 51% of the variance in body mass (note: inward ticks on the x-axis show

sample sizes).

(PDF)

S3 Fig. Result of the best model of a GLMM on face skin yellowness of urban kestrel nest-

lings (see Table 1). Effects of (a) age of nestlings, (b) nestling sex, (c) egg-laying date and

urban gradient contribute significantly to the best model. The model explains 24% of the vari-

ance in face skin yellowness.

(PDF)

S1 Data. All data used in this manuscript for 154 kestrel nestlings from 91 different nest

sites collected between 2010–2016 including a comprehensive legend explaining the vari-

ables (details of nest site and location along the urban gradient, breeding stage, morpho-

metric measurements, parasite infection and color assessment).

(XLSX)
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exposure influences the melanin and carotenoid-based colorations in great tits. Sci Total Environ.

2015; 532:512–6. https://doi.org/10.1016/j.scitotenv.2015.06.021 PMID: 26100730

136. Roulin A, Gasparini J, Froissart L. Pre-hatching maternal effects and the tasty chick hypothesis. Evol

Ecol Res. 2008; 10:463–73.
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