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Abstract

Following recent findings linking the human gut microbiota to gastrointestinal cancer and its

treatment, the plausible relationship between lung microbiota and pulmonary cancer is

explored. This study aims at characterizing the intratumoral and adjacent healthy tissue

microbiota by applying a 16S rRNA gene amplicon sequencing protocol to tissue samples of

29 non-small cancer patients. Emphasis was put on contaminant management and a com-

prehensive comparison of bacterial composition between cancerous and healthy adjacent

tissues of lung adenocarcinoma and squamous cell carcinoma is provided. A variable

degree of similarity between the two tissues of a same patient was observed. Each patient

seems to possess its own bacterial signature. The two types of cancer tissue do not have a

distinct bacterial profile that is shared by every patient. In addition, enteric, potentially patho-

genic and pro-inflammatory bacteria were more frequently found in cancer than healthy tis-

sue. This work brings insights into the dynamic of bacterial communities in lung cancer and

provides prospective data for more targeted studies.

Introduction

The pulmonary microbiota is altered in many cases of lung pathologies such as in COPD

(Chronic Obstructive Pulmonary Disease) [1,2], idiopathic pulmonary fibrosis and cystic

fibrosis [3]. The lung cancer tissue is also colonized by specific bacterial communities [4,5].

Composition of the local microbiota have a significant impact on the initiation, the develop-

ment, the migration, and the treatment of different types of cancer, including colorectal [6,7]

and pancreatic cancer [8–10]. Such observations on the influence of the lung microbiota in

pulmonary cancer as yet to be confirmed but are plausible. Bacteria in the digestive tract can

induce a chronic inflammatory state that is favorable to cancerogenesis and cancer growth by
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the production of toxins, reactive oxygen species (ROS) or the modulation of human metabolic

pathways [11–14]. The direct production of genotoxic toxins by bacteria can also induce can-

cer [15,16]. The microbiota composition stability observed between paired primary and meta-

static tumors also suggest a role in cancer migration. In renal cell carcinoma, small cell lung

cancer and melanoma, the microbiota can alter the response to immunotherapy via antibodies

targeting programmed cell death protein-1 (PD-1) or its ligand (PDL-1) [17–19]. Bacteria are

also believed to participate in chemoresistance through the modulation of autophagy and the

enzymatic degradation of the antineoplastic drugs such as gemcitabine [7,20]. Therefore, the

pulmonary microbiota can potentially influence the carcinogenesis and treatment of lung can-

cer [21].

This study aimed at deploying a newly validated methodology to identify the bacterial com-

ponents of the lung microbiota in cancer patients [22]. Tumoral and healthy tissue samples

obtained from patients diagnosed with squamous cell carcinoma or adenocarcinoma that

underwent lung resection were characterized. The bacterial signature of cancerous and healthy

tissue of a same patient (intra-patient) or different patients (inter-patient) were compared. The

taxonomic identification of bacteria frequently found in cancerous and healthy tissue were

also contrasted. Enteric and potentially pathogen genera were found more frequently in

cancerous tissues. Understanding the composition of the human lung microbiota and the way

it is shaped will provide insights into the relationship between bacteria and the development of

lung cancer. Such knowledge could further our ability to establish appropriate preventive mea-

sures and correctly treat cancer patients, therefore improving their prognosis.

Materials and methods

Patient enrollment and sampling

Twenty-nine patients that underwent a lobectomy for pulmonary squamous cell carcinoma or

adenocarcinoma were enrolled by written consent under the biobank approbation framework

of the Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ) (number

1200). This study was approved by the IUCPQ ethic committee and regulations were followed.

The patients needed to be free of antibiotics or neoadjuvant therapy 3 months prior the sur-

gery and have a tumor larger than 2 cm in diameter. Clinical data are presented in Table 1.

Samples treatment

The sampling, sample treatment, bacterial DNA extraction, sequencing and bioinformatics

analyses were performed as we described Dumont-Leblond et al. [22]. Briefly, a whole section

of tumors of 5 mm thickness, 8 cm3 of healthy tissue located 5 cm from tumors in the same

pulmonary region, and a methodological control accounting for every step of the protocol

were extracted and sequenced for each patient. The samples were enzymatically and mechani-

cally homogenized using the Liberase™ TM enzyme cocktail (Roche, Bâle, Switzerland) and

the Fisherbrand™ 150 homogenizer with plastic probes (Thermo Fisher Scientific, Waltham,

USA). Then, bacterial DNA was extracted using an adapted protocol of the QIAamp1DNA

Blood Maxi Kit (QIAGEN, Hilden, Germany). The Illumina MiSeq platform was used to

sequenced V3-V4 16S amplicons prepared in a dual-indexed fashion with the primers

Bakt_805R-long and Bakt_341F-long described by Klindworth et al. [23].

Contaminants management

The protocol used encompasses many features to ensure the detected microbiota would not be

modified by contaminants incorporated experimentally. The risks of contamination were
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minimized during sampling by selecting only laparoscopic lobectomy procedures, by optimiz-

ing the organ transportation, by using sterile sampling equipment only and assuring quick

sampling and storage. A single experimental control was implemented for each patient that

accounts for every step of the experimental protocol, from sampling to sequencing. The DNA

extraction method is also designed to be completed in a single tube and by the addition of

reagent, which allows us to obtain representative no-template control for each pair on healthy

and cancerous tissue. The presence of contaminants was accounted for through bioinformatics

by removing Operational Taxonomic Unit (OTU) found in controls from the corresponding

samples on a relative abundance basis [22,24].

Sequences processing

The sequencing data was cleaned and clustered into OTUs following Mothur SOP version

1.40.5 with the SILVA 16s rRNA gene database release 132 [25–30]. A custom contaminants

Table 1. Patient’s clinical data.

Identification number (ID) Age Sex Smoking status�� Lobe/Localization� Tumor size, width/length (mm) Histologic type� Pathological stage

1 80 F Ex-smoker (2015, 31) RUL 31/22 AC 1B

2 62 F Non-smoker RLL 45/40 SqCC 2A

3 77 F Non-smoker LLL 25/20 AC 1A3

4 70 M Ex-smoker (2016, 58) LLL 28/25 SqCC 1B

5 78 M Ex-smoker (1984, 54) RLL/RML 70/70 SqCC 3B

6 63 F Ex-smoker (2013, 22.5) RUL 32/28 SqCC 1B

7 64 F Ex-smoker (2000, 3.3) RLL 28/24 SqCC 1B

8 62 M Ex-smoker (2019, ND) RML 36/25 SqCC 1B

9 73 M Ex-smoker (1975, 51) RUL 35/35 SqCC 1B

10 77 M Ex-smoker (1973, 19) RUL 35/28 AC 1B

11 54 M Ex-smoker (2019, 86) RML 38/28 AC 3A

12 65 F Ex-smoker (1983, 52.5) LUL 23/21 AC 1A3

13 58 M Active smoker (33.75) LUL 26/24 SqCC 1A3

14 66 F Ex-smoker (2018, ND) RUL 30/17 AC 1A3

15 65 F Ex-smoker (2019, 51) RLL 75/35 AC 3A

16 80 F Ex-smoker (2018, 32.5) RUL 32/22 SqCC 1B

17 67 M Active smoker (50) RUL 45/35 AC 2B

18 62 F Ex-smoker (1975, 5) RUL 35/25 AC 3A

19 74 M Ex-smoker (2018, 56) LUL 44/40 AC 2B

20 66 M Active smoker (106) LUL 21/21 SqCC 1A3

21 66 M Ex-smoker (1996, 30) LLL 37/37 AC 1B

22 68 F Ex-smoker (2013, 57.5) RUL 20/20 SqCC 1A2

23 50 M Active smoker (38) RUL 56/45 AC 2B

24 70 F Active smoker (8.1) RUL 27/27 AC 1B

25 58 F Ex-smoker (2019, 44) RUL 43/32 AC 1A2

26 73 F Ex-smoker (1999,18) LLL 23/20 AC 3A

27 70 F Ex-smoker (2015, 50) RLL 63/63 AC 2B

28 70 F Ex-smoker (2003, 35) LUL 32/32 AC 1A3

29 71 F Ex-smoker (1986, 23) LUL 32/22 AC 2B

�F = female, M = male, A = adenocarcinoma, SqCC = squamous cell carcinoma, LLL = left lower lobe, RLL = right lower lobe, RUL = right upper lobe, RML = right

middle lobe.

�� Year they quit smoking and/or number cigarette pack-year (estimation of the total number of packs smoked in one’s life).

https://doi.org/10.1371/journal.pone.0249832.t001
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removal method [24] was applied before or after diversity and differential abundance analyses

were performed in RStudio [31]. Plots were created using ggplot2 and ggpubr, versions 3.2.0

and 0.2.1 [32,33].

Statistics and reproducibility

Alpha and beta diversity (Bray-Curtis distances on relative abundances) computations were

performed using the Vegan package, version 2.5–5, as well as analyses of variance (ADONIS)

at 5000 permutations [34]. Stratification or pairing in the statistical tests were performed when

necessary accounting for the patient variable. Differential abundance tests for microbial abun-

dance at OTU levels were done using the DESeq2 package [35] with modified models for

individuals nested within groups as described by Love et al. when needed [36]. OTUs not iden-

tified at the specific taxonomic level were removed and the rest was agglomerated by name.

OTUs or taxonomic units with fewer than 4 reads in at least 3 samples and with a variance

across the whole data set lower than 10−4 were removed to limit the amount of abundance test

ran and statistical correction applied to the output. Pearson’s correlations were performed on

relative OTU abundances between tissue samples from a same patient using the metagenome-

Seq package version 1.24.1 [37]. The relative abundance values used were zero-inflated and

not normally distributed (p<0.05, Shapiro-Wilk). In the absence of appropriate alternative,

this test has still been proven serviceable in these conditions [38]. The significance threshold of

every statistical test was set at 0.05. Venn diagrams were obtained using ampvis2 package, ver-

sion 2.5.8 [39]. Only OTUs with abundance of at least 0.001% were considered and singletons

were removed. Only OTUs found in a minimum of 30% of samples in each category were con-

sidered as “Core”.

Results

Twenty-nine patients with non-small cell lung cancer undergoing lobectomy were recruited

(Table 1). For each patient, the resected pulmonary lobe was subsamples to collect tumoral tis-

sue and adjacent healthy tissue. A single negative control, accounting for every step of the pro-

tocol, was included with each pair of tissues.

Contamination and controls

The bacterial profiles of the tissue samples were compared to the corresponding methodologi-

cal controls in order to assess the influence of contaminants on the lung microbiota detected.

The Principal Coordinates Analysis (PCoA) computed from weighted (presence and propor-

tion of OTUs) and unweighted (only absence or presence of OTUs) Bray-Curtis distances dis-

played in Fig 1 shows great disparity in bacterial profiles between tissue samples and controls.

This observation is confirmed by a highly significant analysis of variance tests performed strat-

ified by patients on weighted (p = 0.0002, R2 = 0.11441) or unweighted (p = 0.0002, R2 =

0.03486) distances. Therefore, samples and their control share very little OTUs that may also

be present in different proportions.

Patient and clinical variable influence on the bacterial profiles

Bacterial profiles (β diversity) were identified, for tissues coming from a same patient (intra-

patient), to be more similar to those of different patients (inter-patient). A PCoA from

unweighted Bray-Curtis distances reveals clustering of the samples by patients (Fig 2), which is

confirmed by a variance analysis test (ADONIS) with p-value of 0.0002 and R2 of 0.03332.

Therefore, this correlation has extremely low chances of being fortuitous, but only accounts
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for a very small part of the overall variation (3.332%). In an attempt to explain the residual var-

iation observed in Fig 2, the different clinical variables correlated to the microbial composi-

tions by a similar variance analysis. The type of tissue (cancerous vs. healthy) dependently of

the type of cancer did not significantly explain additional variation in bacterial profiles when

stratified by patients (adenocarcinoma: p = 0.42352, R2 = 0.02878, squamous cell carcinoma:

p = 0.6867, R2 = 0.04471). A clustering by tissue type could neither be observed in Fig 2. The

distances were recomputed with or without samples from both types of tissue for statistical

tests. The type of cancer (adenocarcinoma or squamous cell carcinoma) did not statistically

account for the variance in bacterial profile in healthy (R2 = 0.0451, p = 0.09458) or cancerous

tissue (R2 = 0.03497, p = 0.5311). No other variable could explain variance in beta diversity.

Therefore, the bacterial profile of the samples did not exhibit a global pattern. Samples from a

same variable group, including type of tissue and cancer, do not have highly similar bacterial

composition.

In the absence of broad bacterial profiles trends, differential abundances (OTU level) were

scrutinized using DESeq2 to detect single OTUs that could be over- or underrepresented in

certain tissues but might not lead to broad associations. Eleven OTUs were differently abun-

dant (p<0.05) between the cancerous tissues of both types of cancer and thirteen from healthy

tissues (Fig 3). On the other hand, no OTU was significantly more or less present when com-

paring the cancerous and healthy tissue within the group of patients with adenocarcinoma.

Only one OTU, identified as Phascolarctobacterium, was 7.80 times (log2fold = -2.9626) more

abundant in cancerous than healthy tissue in patients with squamous cell carcinoma. OTUs in

Fig 1. Principal coordinates analysis of the extraction controls compared to the samples before the removal of contaminant OTUs. A. The

positions are based on weighted Bray-Curtis distances B. The positions are based on unweighted Bray-Curtis distances. An analysis of variance test

(ADONIS) stratified by patients was performed between the tissues and control to obtain the p-values and R2 displayed. Each dot represents a control

or tissue sample. Controls are identified in blue and cancerous and healthy tissues in orange and green, respectively. Multivariate t-distribution at 95%

was used to compute the data ellipses. n = 29.

https://doi.org/10.1371/journal.pone.0249832.g001
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tumoral and healthy tissues do not differ in a defined uniform way for each patient of a same

pathology.

Pearson’s correlations were computed (Table 2) to assess similarity of bacterial profiles

between healthy and cancerous tissues of a same patient (intra-patient) to identify the nature

of the trend observed with Bray-Curtis distances (Fig 2). Correlations vary from -1 to 1 and

are less predominant when closer to 0. Pairs with a p-value over 0.05 have statistically signifi-

cant correlations. Only 9 pairs out of 29 were correlated and significantly similar with coeffi-

cients ranging from 0.152 to 0.760. As previously mentioned, the presence of these

correlations could not be explained by the clinical variables collected. Very few OTUs were

shared between samples of a same patient compared to their total number of OTUs, even

when statistically correlated (between 2 and 14 OTUs) (Table 2). However, these OTUs would

represent a large proportion of the total of reads (from 20% to 65.1%) and force this correlation

between the two samples. Patients 1 and 5 shared a high number of OTUs, 13 and 19 respec-

tively, but were not significantly correlated due to important discrepancies in relative

Fig 2. Principal coordinates analysis of the weighted Bray-Curtis distances of tissue samples. Each dot and triangles represent a tissue sample from

a patient with lung adenocarcinoma or squamous cell carcinoma, respectively. Cancerous tissues are displayed in orange and healthy ones in green. The

two samples from a same patient are linked by a straight line. The p-value and R2 displayed are from a variance analysis (ADONIS) correlating the

variation to the patients. The samples from a same patient are more similar than tissues of other patients.

https://doi.org/10.1371/journal.pone.0249832.g002
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abundance. On the other hand, the pair of tissues from patients 15, 21, 22, and 29 did not

share any OTU. The shared OTUs were from a wide range of taxonomic nature. Taxonomic

identification and individual relative abundances are available in the S1 and S2 Figs. Most of

the tissues from a same patient (intra-patient) present vastly different compositions. Even cor-

related samples have large numbers of uncommon OTUs.

Alpha diversity computations were performed to compare the intrinsic number of different

bacteria and their distribution in samples based off the clinical variables. These results are

available in the Supporting information file for characterization purposes but do not give par-

ticularly insightful information regarding the mechanisms and the ecological relationships

involved in pulmonary microbiota (S5 and S6 Figs).

Taxonomic analysis and core microbiota

To identify the bacteria frequently present in the lung of cancer patients, OTUs found recur-

rently (30% of samples) in healthy and cancerous tissues of both types of cancer were extracted.

Very few OTUs were shared in samples from a same cancer type, even when healthy or cancer-

ous were considered separately (S3 and S4 Figs). The nature of these OTUs and their relative

abundance in the different samples are available in Figs 4 and 5. Comparing these two figures,

many genera are revealed as abundant in both types of tissue, including Diaphorobacter,
Micrococcus, Paracoccus, Phascolarctobacterium, and Ralstonia. However, enteric bacteria,

potential pathogens, or inflammatory bacteria, such as Escherichia-Shigella, Faecalibacterium,

Pseudomonas, unclassified Enterobacteriaceae, Alloprevotella, and Brevundimonas, are only

recurrently present in the tumoral tissues. OTUs identified by this method also partially coin-

cides with results from the differential abundance analysis (Fig 3), since the presence of a same

OTU in multiple samples from a same group in necessary to obtain significance.

Fig 3. Differential abundance analysis results obtained with DESeq2. a) Differentially abundant OTUs between cancerous tissues of the two types of

cancer b) Differentially abundant OTUs between healthy tissues of the two different types of cancer. Log2 folds changes represent the number of times

the relative abundance of an OTU is doubled between cancerous tissue of adenocarcinoma (right) and squamous cell carcinoma (left). Colors represent

the phylum to which the taxonomical identification of the OTUs belongs.

https://doi.org/10.1371/journal.pone.0249832.g003
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Discussion

This study leverages a rigorous sampling protocol previously reported by our team to further

document the composition of pulmonary microbiota in lung cancer and to minimize the

impact of contaminations. Pairs of cancerous and healthy pulmonary tissue from 29 non-small

cell lung cancer patients with their corresponding methodological controls were analyzed.

Accounting for contaminants

As described in the previously published method article [22], methodological controls,

accounting for every step of the experimental protocol, from sampling to sequencing, were

Table 2. Intra-patient comparisons: Pearson’s correlation coefficient and abundance of shared OTUs between healthy and cancerous tissue of a same patient.

Pearson’s correlation Shared OTUs between tissue pairs

Patient

identification

number (ID)

Correlation

coefficient

Significance p-value Number of

OTUs shared

Abundance of shared

OTUs in cancerous

tissue (%)

Abundance of shared

OTUs in healthy

tissue (%)

Total number of

OTUs in cancerous

tissue �

Total number of

OTUs in healthy

tissue �

25 0.760 <0.05 2.35x10-

25
2 65.1 51.0 65 65

16 0.609 8.55x10-

22
3 39.9 49.0 113 91

14 0.485 3.36x10-

09
4 48.9 33.3 78 59

19 0.343 3.51x10-

06
3 32.8 39.0 83 94

17 0.255 0.000640 2 27.0 22.2 71 107

2 0.165 0.00750 14 28.1 26.5 128 149

4 0.178 0.0102 10 41.1 20.5 113 105

20 0.219 0.0146 5 20.0 36.0 66 63

27 0.152 0.0428 3 24.4 19.4 69 111

23 0.140 >0.05 0.153 1 8.07 52.1 74 32

1 0.0740 0.270 13 50.9 16.5 92 145

3 0.0621 0.344 7 19.0 16.1 133 108

29 -0.0890 0.362 0 0.0 0.0 60 47

21 -0.0798 0.444 0 0.0 0.0 60 34

6 -0.0300 0.445 4 9.10 0.920 114 539

24 -0.0512 0.466 4 4.72 8.14 140 69

7 -0.0456 0.496 5 6.99 17.1 98 132

10 -0.0460 0.514 2 2.09 3.39 141 64

13 -0.0461 0.529 2 7.87 0.0414 125 66

5 -0.0368 0.543 19 63.6 7.11 144 151

15 -0.0607 0.559 0 0.0 0.0 48 47

9 -0.0474 0.560 1 3.78 0.0355 113 42

11 0.0317 0.628 1 2.58 27.4 179 58

22 -0.0308 0.733 0 0.0 0.0 92 33

12 -0.0139 0.832 1 3.93 5.84 156 81

26 -0.0167 0.836 2 11.2 11.3 63 95

8 0.00360 0.957 2 7.43 10.6 116 116

18 0.00284 0.974 3 6.97 11.2 79 59

28 0.00138 0.988 3 9.16 35.6 57 58

�The number of OTUs were not obtained through rarefication and do not account for different in sequencing depth.

https://doi.org/10.1371/journal.pone.0249832.t002
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added for each patient. They are representative of the bacterial contaminants that could have

been introduced in the samples throughout the protocol. The bacterial signature of control, as

measure by the weighted and unweighted Bray-Curtis beta diversity metric, was significantly

different (p = 0.0002) to the corresponding samples (Fig 1). Therefore, the tissue samples and

the controls share very few OTUs in potentially different proportions and the influence of con-

taminants on the bacterial composition detected for tissues seems negligible. The removal of

the contaminating OTU was still performed as described by Dumont-Leblond et al. [22,24].

The results presented here are a reliable description of the pulmonary microbiota.

Influence of clinical variables

Patient correlation. Tissues from a same patient correlated more together (intra-patient)

than they do with others (inter-patient) as a whole from weighted Bray-Curtis distances

Fig 4. Taxonomic identification and relative abundance of OTUs found in 30% of cancerous samples in either adenocarcinoma, squamous cell

carcinoma or both type of tumor. Each section of bar plots represents one OTU and each color a different genus. This figure matches the OTUs

identified in the S3 Fig.

https://doi.org/10.1371/journal.pone.0249832.g004

Fig 5. Taxonomic identification and relative abundance of OTUs found in 30% of healthy tissue in either adenocarcinoma or squamous cell

carcinoma afflicted patients. Each section of bar plots represents one OTU and each color a different genus. This figure matches the OTUs identified

in the S4 Fig.

https://doi.org/10.1371/journal.pone.0249832.g005
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(Fig 2). However, there seems to be a lot of variations as to how much cancer and healthy tis-

sues from a same patient are similar. In fact, the Pearson’s correlations that were computed on

the relative abundance of OTUs show that only 9 of the 29 patients (31%) of tumor-healthy

pairs were significantly correlate (Table 2) considering the presence of a same OTU and its rel-

ative abundance. These samples were most probably the origin of the broader correlation by

patients observed previously. The difference in clustering observed in Fig 2 and the low

amount of variance explained by the patient variable (R2 = 0.03332) result from this majority

of tissue pairs that do not have strong correlations. It is also explained by the low number of

OTUs shared by tissue pairs (from 2 to 14 in significantly correlated pairs) compared to their

total number of OTUs (Table 2). They, however, may represent a majority of the total relative

abundance of the samples (from 19.4% to 65.1%). Therefore, every cancerous and tissue sam-

ple pairs have a large proportion of OTUs they do not share, even in highly correlated ones.

Even in relative proximity, tissues from a same patient do not harbor identical bacterial com-

munities. Urbaniak et al. also found large discrepancies between healthy and cancerous breast

tissues from a same patient who underwent lumpectomies or mastectomies [40]. Similarly,

Nejman et al. observed partial similarity between cancerous and adjacent tissue of a same can-

cer (colon, breast, lung, ovary) [4].

Type of tissue and cancer. Tumoral tissues and healthy tissues from different patients

(inter-patient) do not cluster into two distinct groups (Fig 2). The bacterial profiles of the two

types of tissue from different patients are not similar in adenocarcinoma (p = 0.42352, R2 =

0.02878) or squamous cell carcinoma (p = 0.6867, R2 = 0.04471). It implies that there is not a

characteristic microbiota composition for cancerous or healthy tissue in lung cancer. This was

not previously reported as lung cancers were usually considered as a whole, without discrimi-

nation for the subtypes. The lack of relationship between the healthy tissue (inter-patient) may

also indicate that patients have a distinct bacterial signature or baseline as is observed in gut

microbiota [41]. These differences may make it difficult to uncover the influence of variables

on bacterial composition of cancer microbiota as a similar factor applied on communities of

different composition may not lead to the same alterations. In an attempt to counterbalance

this patient specific effect, both healthy and cancerous tissue were sampled to observe non-

pathologic microbiota and create a baseline for each individual. We then attempted to explain

the variation in the dataset by analyzing the differences between the pairs and identify OTUs

that were significantly more or less present between cancerous and healthy tissue for each of

the two types of cancer. No OTU could be identified as differentially abundance across the

cohort of patients with adenocarcinoma (18 patients) and only one with squamous cell carci-

noma (11 patients), classified as Phascolarctobacterium. This genus includes species such as

Phascolarctobacterium faecium and Phascolarctobacterium succinatutens that are known colo-

nizers of the intestinal tract [42,43]. The abundance of individual OTUs between cancerous

and healthy tissue of patients of a same pulmonary cancer (inter-patient) do not vary in a

characteristic way. The lack of strong correlation to begin with for every pair of tissue (intra-

patient) may explain why relative abundance analyses proved unsuccessful, as relative abun-

dance metrics can only be computed when a same OTU is present in both samples.

Considering these results and this study design, we are unable to identify what may cause

those major variations on bacterial profiles within the type of tissue (cancer vs. healthy). We

hypothesize that two mechanisms, that may be simultaneous, are possible:

1. The tumoral tissue could be colonized by a specific microbiota due to its different matrix or

human cellular activity, which would explain the large disparity between its bacterial com-

position and that of the healthy tissue is most cases. The intrinsic characteristics of the

tumor, e.g., the histologic pattern (lepidic, acinar, papillary, etc.) and genetic background,
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may have an additive influence on the tumoral ecosystem. Pairs of tissues that are more

similar would demonstrate a lower level of specific colonization that may or may not

develop as the pathology progresses. The tumoral environment could also have an influence

on the bacterial profiles of healthy tissue, but not significantly enough to create ecological

niches that would be occupied by the same bacteria.

2. The tumor could have no significant effect on the bacterial composition of the lung. The

presence of a transitory microbiota that has little growth and residency due to low nutrient

availability could be very mildly affected by the tumorous environment. This could explain

the frequent differences in microbiota composition by patients and type of tissue, since the

composition of the microbiota would become dependent on the local impaction of bacteria

and clearance by the host, phenomenon knows to occur in the lungs [44].

Following the variation in time of the microbiota and its potential shift when a lung cancer

is developed may be able to elucidate part of these theories. Such longitudinal studies of

human candidates may not be possible as it would require repeated removal of lung tissue, but

murine models could help get better insight into the community-shaping forces at play.

Taxonomic analysis and core microbiota

In the absence of broad bacterial associations between the type of cancer with Bray-Curtis dis-

tances (Fig 2), differential abundance analyses were performed to identify individual OTUs

that were over- or underrepresented in the same type of tissue from the two different cancers

(Fig 3). Ten differently abundant OTUs (6 more in SqCC and 4 in AC) in cancerous tissues

and 13 in healthy tissues were reported. It is worth nothing that tissues from different types of

cancer also come from different patients and this effect cannot be accounted for. Considering

the high inter-individual variation previously observed, caution is advised when interpreting

these results.

The presence of a bacterial genus in at least 80% of samples usually defines the term “core

microbiota”. In the absence of any genus present in that many samples, 30% was used as a

baseline to characterize frequently present genera. The lack of similarity between samples may

be explained by the different mechanisms of colonization and elimination observed in the pul-

monary microbiota compared to other environments, such as the gut microbiota [45].

Even with this low threshold, very few OTUs were recurrently identified and represented a

fairly low average relative abundance, below 21% (S3 and S4 Figs). The taxonomic classifica-

tion of these OTUs were extracted and displayed in Figs 4 and 5 by type of tissue and cancer.

The genera Diaphorobacter, Micrococcus, Paracoccus, Phascolarctobacterium, and Ralstonia
were shared by both types of tissue. Enteric or potentially pathogenic genera, such as Escheri-
chia-Shigella, Faecalibacterium, Pseudomonas, unclassified Enterobacteriaceae, Alloprevotella,

and Brevundimonas, were only present in cancerous tissue. Such trend had never been

observed in previous literature, to our knowledge. The chances of specific impaction of these

genera only on cancerous tissue seems unlikely. The tumoral environment must allow the rep-

lication and survival of those strains for them to be frequently detected. It is impossible to tell

if these bacteria had any responsibility in carcinogenesis or if their presence results from the

modification of the pulmonary environment by the apparition of cancer. As reported in gut

microbiota, it is not impossible for these bacteria to be interfering with anti-cancerous treat-

ments [7,20].

While performing bronchoalveolar lavage on healthy smokers, Erb-Downward et al. found

in 75% of their samples the genera Pseudomonas, Streptococcus, Prevotella and Fusobacterium.

Haemophilus, Veillonella and Porphyromonas were also found in 50% of the samples [1]. No
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genera were observed as frequently present. With the exception of Prevotella and Fusobacter-
ium, these genera were detected throughout the dataset, but not recurrently in the healthy tis-

sues. These disparities could be attributed to the different sampling and sequencing methods,

to lack of obvious concerns for contaminants and the absence of diagnosed cancer in the

patient they sampled.

While analyzing the intratumoral lung microbiota with whole-tissue DNA extraction, Yu

et al. also frequently detected the following genera: Burkholderia, Corynebacterium, Pseudomo-
nas, and Rasltonia. Yet, the present study reports a greater number of different genera, includ-

ing enteric bacteria. Their method was more alike to the one used in this article than Erb-

Downward et al. The slight difference, such as the use of different bioinformatics tools (poten-

tially 16s rRNA gene database), might still have explain part of the dissimilarities. They also do

not seem to differentiate the different subtypes of lung cancer.

A recent study by Nejman et al. reported the characterization of the intratumoral micro-

biota of 245 cancerous lung samples [4]. Great precautions were taken to limit the introduction

of contaminants during samples and data treatment, but little is known on the tissue sampling

process and most of the patient’s clinical data is undisclosed. They identified the frequently

found taxa at the family level. They detected every bacterial family related to the genera identi-

fied in Fig 4 (10; Provetellaceae, Pseudomonadaceae [Burkholderiaceae], Corynebacteriaceae,
Comamonadaceae, Veillonellaceae, Micrococcaceae, Rhodobacteraceae, Pseudomonadaceae),
with the exception of Caulobacteraceae (Brevundimonas), Muribaculaceae, Acidaminicoccoca-
ceae (Phascolartobacterium), and Rasltoniaceae (Ralstonia). These discrepantly could be asso-

ciated with the vastly dissimilar methodologies used (sequencing method; V3-V4 vs. R5

multiplex, 16S rRNA gene database; Greengenes vs. SILVA, custom bioinformatics pipelines)

or the lack of subdivision in types of cancer.

Limitations and perspectives

Relatively low number of biological replicates used in this study might have reduced our ability

to detect significant patterns in the microbial diversity. However, it might not be that clinical

variables do not have an influence on the bacterial composition, but that their effects are addi-

tive to other determinants of the lung microenvironment and do not have the same commu-

nity shaping effects from one individual to another. The host-microbiota relationship may

be too complex and specific to allow for the detection of large patterns with tools currently

available.

In fact, discriminating the effect of those multiples contributing factors and identifying

an optimal microbial consortium for an individual are currently two of the main challenges

in term human microbiota study. Moving forward, scientists may benefit from looking

into machine-learning algorithms [46] and artificial intelligence (AI) to allow a more

in-depth analysis of the large amount of microbiota data currently available or easily

obtainable with new generation sequencing techniques. The quality of data and methodol-

ogy used to collect them should be taken in considerations as models can only be as accurate

as the data their stem from, hence our previous push in lung microbiota methodology

standardization.

On the other hand, NGS methods currently available should be perceived as prospective, as

their high data production power and complexity (multiple steps) makes them susceptible to

numerous methodological biases. The absence of absolute quantification may also be limiting.

Therefore, the combination of NGS and quantitative methods such as qPCR may help provide

a more complete overview of the biological community and prevent over analysis of highly

processed NGS data by providing reference points and counter verification. In this study we
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present prospective data for the development of more focused methodologies and elucidation

of the dynamic forces shaping the lung microbiota.

As observed in gut microbiota studies, same bacterial genera may contain different genes

and functions [47]. Our description of the microbial flora through selective amplification and

NGS might not have achieved the level of resolution required to pick up underlying trends.

Omics techniques (metatranscriptomics and metabolomic) applied to the lung microbiota

may provide this additional resolution and seems to be the next step in unveiling the micro-

biota role in the lung and their influence on pulmonary health.

On the other end, the microbial characterization of healthy tissue achieved here may not be

representative of bacterial communities found in patients without cancer. The possibility that

the cancerous microenvironment or the systemic influence of cancer may have a significant

impact on the adjacent tissues cannot be rejected. Sampling healthy tissue from patients who

undergo resection for benign pulmonary disease may provide a more comprehensive repre-

sentation of the healthy lung microbiota.

This study presents the characterization of the lung microbiota from cancerous and healthy

tissues of twenty-nine non-small-cell cancer patients using a rigorous 16S rRNA sequencing

methodology. The cancerous and healthy tissue samples from a same patient (intra-patient)

were more similar than the ones from a different individual (inter-patient). The composition

of bacterial communities could not be correlated to the variables we collected, including type

of cancer and type of tissue. The recurrent presence of enteric and proinflammatory bacteria

characterized the cancerous lung tissue. Further work is needed to understand the importance

of lung microbiota on the human health and its influence on outcomes in cases of pulmonary

cancer. This work is one of the early in-depth characterizations of whole-tissue lung micro-

biota in cases of pulmonary adenocarcinoma or squamous cell carcinoma. It establishes strong

bases and recommendations for the pursuit of this field of study.
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Package. 2019. Consulté: https://cran.r-project.org/package=vegan.

35. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

36. Love MI, Anders S, Huber W. Analyzing RNA-seq data with DESeq2. 2020 [cité 12 août 2020]. Con-
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5048. https://doi.org/10.1128/AEM.01235-16 PMID: 27342554

41. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A, et al. What is the Healthy Gut

Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Micro-

organisms. 2019; 7: 14. https://doi.org/10.3390/microorganisms7010014 PMID: 30634578

PLOS ONE Non-small cell lung cancer microbiota characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0249832 April 23, 2021 16 / 17

https://doi.org/10.1016/j.cell.2017.07.008
https://doi.org/10.1016/j.cell.2017.07.008
http://www.ncbi.nlm.nih.gov/pubmed/28753429
https://doi.org/10.1016/j.trecan.2019.12.007
http://www.ncbi.nlm.nih.gov/pubmed/32061309
https://doi.org/10.1038/s42003-021-01690-5
https://doi.org/10.1038/s42003-021-01690-5
http://www.ncbi.nlm.nih.gov/pubmed/33547364
https://doi.org/10.1093/nar/gks808
http://www.ncbi.nlm.nih.gov/pubmed/22933715
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
http://www.ncbi.nlm.nih.gov/pubmed/23793624
https://www.mothur.org/wiki/MiSeq_SOP
https://www.mothur.org/wiki/MiSeq_SOP
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
http://www.ncbi.nlm.nih.gov/pubmed/19801464
https://doi.org/10.1016/j.jbiotec.2017.06.1198
http://www.ncbi.nlm.nih.gov/pubmed/28648396
https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1093/nar/gkt1209
http://www.ncbi.nlm.nih.gov/pubmed/24293649
http://www.rstudio.com/
http://www.rstudio.com/
https://www.rdocumentation.org/packages/ggpubr/versions/0.1.1
https://www.rdocumentation.org/packages/ggpubr/versions/0.1.1
https://ggplot2.tidyverse.org
https://cran.r-project.org/package=vegan
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://doi.org/10.18129/B9.bioc.metagenomeSeq
https://doi.org/10.22237/jmasm/1193890560
https://doi.org/10.22237/jmasm/1193890560
https://doi.org/10.1101/299537
https://doi.org/10.1128/AEM.01235-16
http://www.ncbi.nlm.nih.gov/pubmed/27342554
https://doi.org/10.3390/microorganisms7010014
http://www.ncbi.nlm.nih.gov/pubmed/30634578
https://doi.org/10.1371/journal.pone.0249832


42. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization

in human gastrointestinal tract. Exp Ther Med. 2017; 14: 3122–3126. https://doi.org/10.3892/etm.2017.

4878 PMID: 28912861

43. Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov.,

an Asaccharolytic, Succinate-Utilizing Bacterium Isolated from Human Feces. Appl Environ Microbiol.

2012; 78: 511–518. https://doi.org/10.1128/AEM.06035-11 PMID: 22081579

44. Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome.

Am J Physiol Cell Mol Physiol. 2015; 309: L1047–L1055. https://doi.org/10.1152/ajplung.00279.2015

PMID: 26432870

45. Dickson RP, Huffnagle GB. The Lung Microbiome: New Principles for Respiratory Bacteriology in

Health and Disease. PLoS Pathog. 2015; 11. https://doi.org/10.1371/journal.ppat.1004923 PMID:

26158874
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