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Tumor progression is a complex process consisting of several steps characterized
by alterations in cellular behavior and morphology. These steps include uncontrolled
cell division and proliferation, invasiveness and metastatic ability. Throughout these
phases, cancer cells encounter a changing environment and a variety of metabolic
stress. To meet their needs for energy while they proliferate and survive in their
new environment, tumor cells need to continuously fine-tune their metabolism. The
connection between intracellular transport and metabolic reprogramming during cancer
progression is emerging as a central process of cellular adaptation to these changes.
The trafficking of proteolytic enzymes, surface receptors, but also the regulation
of downstream pathways, are all central to cancer progression. In this review, we
summarize different hallmarks of cancer with a special focus on the role of intracellular
trafficking in cell proliferation, epithelial to mesenchymal transition as well as invasion.
We will further emphasize how intracellular trafficking contributes to the regulation of
energy consumption and metabolism during these steps of cancer progression.

Keywords: membrane trafficking, cancer cell metabolism, cell proliferation, epithelial to mesenchymal transition,
invasion

INTRODUCTION

During cancer progression, tumor cells go through different stages, which are defined as hallmarks
of cancer. One of the main hallmarks is the ability to sustain proliferation. Misregulation of
growth-promoting signals stimulates cell survival and energy metabolism, resulting in tumor
growth (Hanahan and Weinberg Robert, 2011). As cancer further develops, cells may become
able to disseminate from the primary site of origin. This is usually induced by loss of epithelial
markers such E-cadherin, and characterized by the transition from an epithelial phenotype to a
mesenchymal phenotype, a process known as epithelial to mesenchymal transition (EMT). Genes
that in normal tissues express molecules involved in cell-to-cell adhesion and cell-to-extracellular
matrix adhesions are altered in highly aggressive carcinomas, typically downregulated (Hanahan
and Weinberg Robert, 2011). After losing cell-cell adhesions, cancer cells acquire migratory ability,
leading eventually to invasion into neighboring tissues and forming metastatic sites in distant
organs (Son and Moon, 2010).

During these transitions, cancer cells undergo metabolic changes, which allow them to satisfy
their increased need of energy. The reprogramming of energy metabolism is now recognized as
one of the hallmarks of cancer. One of the most known metabolic adaptation in malignant cells is
the Warburg effect, that is characterized by increased glucose uptake and lactate production in the
presence of oxygen (Potter et al., 2016). To satisfy their high nutritional and energetic requirements,
cancer cells exploit intracellular trafficking pathways such as macropinocytosis and autophagy
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to scavenge the tumor microenvironment for nutrients and
macromolecules. This fuels the cells to sustain proliferation,
undergo EMT, as well as drive invasion. In this review, we will
highlight the contribution of the intracellular transport for the
metabolic adaptations required during the different stages of
tumor progression.

INTRACELLULAR TRAFFICKING IN
CANCER CELL PROLIFERATION

One of the first challenges that cancer cells overcome during
cancer transformation is the ability to sustain chronic
proliferation (Hanahan and Weinberg Robert, 2011). Keeping
up with a sustained proliferation signal has a cost in term
of energy requirement. To be able to proliferate, cells must
duplicate their mass. Therefore, they need to reprogram
their metabolism to meet the need for larger amount of
nutrients to support the synthesis of new macromolecules
(Davidson and Vander Heiden, 2017).

Cells that are proliferating rapidly have different metabolic
needs than those that are in a resting state. Even though
glucose and glutamine have been believed to be the major
source of energy, it is now clear that the cells also use
nutrients and amino acids available in the environment rather
than synthesizing them de novo. This is a more convenient
strategy as de novo synthesis requires more energy compared
to reusing already existing nutrients and amino acids (Hosios
et al., 2016). Pre-existing nutrients necessitate to be transported
either from the extracellular environment or from other cellular
compartments inside the cells to lysosomes for their degradation
into recyclable building blocks (Davidson and Vander Heiden,
2017; Figure 1).

Macropinocytosis and Cancer Cell
Proliferation
Cancer cells have an increased need for nutrients and therefore
adopt different strategies to access macromolecules from the
tumor microenvironment. Macropinocytosis is an effective and
rapid way to internalize macromolecules from the environment.
It is an actin-dependent endocytic mechanism consisting of
non-specific uptake of large amounts of extracellular fluid and
nutrients into large vesicles (King and Kay, 2019). This process
is crucial for nutrient uptake to support tumor cell fitness
and it is associated with cell growth. Indeed, pharmacological
inhibition of macropinocytosis suppresses tumor growth and it
has been suggested that this process could be a possible target for
anticancer therapies (Commisso et al., 2013). Macropinocytosis
also boosts intracellular Adenosine triphosphate (ATP)
concentration by directly ingesting ATP molecules when
they are available in the extracellular environment (Figure 1;
Qian et al., 2014). Extracellular ATP concentration in tumors is
up to 104 times higher than in normal tissues (Pellegatti et al.,
2008; Falzoni et al., 2013; Qian et al., 2014). This extracellular
ATP increases the survival of cancer cells during metabolic
stress by protecting against tumor inhibition drugs. It has been
suggested that following ATP internalization, the increased

intracellular ATP interferes with tumor inhibition drugs that
compete with ATP for their anticancer activity (Qian et al.,
2014). In line with this, extracellular ATP reduced the function
of the cancer drug sunitinib that works as an ATP competitor
targeting receptor tyrosine kinases (Papaetis and Syrigos, 2009;
Qian et al., 2014).

After internalization, macropinosomes deliver their content
to the lysosomes where the internalized macromolecules are
broken down. The obtained amino acids provide a carbon
source to the central metabolism, and serve as building
blocks for protein synthesis during proliferation in conditions
lacking free amino acids (Palm, 2019). The small GTPase
Rab7a, which regulates the fusion between endosomes and
autophagosomes with lysosomes, is enriched in melanoma
cells where it also is important for sustaining cell proliferation
and cancer progression (Alonso-Curbelo et al., 2014, 2015). In
particular, at early stages of melanoma development, Rab7a is
upregulated and sustains melanoma cell proliferation controlled
by the lineage-specific transcription factor SOX10 and the
oncogenic transcription factor MYC, which is activated at
early stages of melanoma development (Alonso-Curbelo et al.,
2014). Rab7a upregulation at these early stages of melanocyte
transformation hyperactivates Rab7a-mediated lysosomal
degradation to counteract the enhanced macropinocytic
influx associated with oncogene-induced senescence (Alonso-
Curbelo et al., 2015). During melanoma progression, Rab7a
expression is then downregulated. In highly invasive melanoma
cells, this favors invasive phenotypes supporting Rab7a as
a risk factor for melanoma metastasis and poor survival
(Alonso-Curbelo et al., 2014).

Nutrient scavenging consists in the uptake of macromolecules
from the extracellular environment and their degradation to
produce ATP or to be used in anabolism (Finicle et al., 2018).
Scavenging is controlled by the mechanistic target of rapamycin
complex-1 (mTORC1) and AMP kinase (AMPK), which are
involved in the regulation of macropinocytosis (Swanson and
King, 2019). AMPK activates all forms of scavenging, while
mTORC1 represses the effect of scavenging by interfering with
the catabolism happening in the lysosomes (Finicle et al., 2018).
AMPK regulates diverse metabolic cellular processes, and also
endocytic traffic during metabolic stress. When it is activated,
it inhibits energy demanding processes and enhances catabolic
reaction to generate ATP (Rahmani et al., 2019). AMPK can both
suppress but also promote tumor growth (Hardie, 2015). It has
been suggested that this depends on the timing of modification,
mutation and overexpression of AMPK or of the upstream
kinase Liver kinase B1 (LKB1). In the initial steps of cancer,
inactivation of this pathway may help cell growth by utilizing
anabolic pathways. In later stages, activation of the LKB1–AMPK
pathway could protect the tumor cells against oxidative stress by
facilitating metabolic adaptations (Jeon, 2016).

mTORC1 is a signaling hub that coordinates nutrient
status and cell growth. Activated mTORC1 regulates cellular
metabolism and growth by stimulating protein synthesis (Kim
and Guan, 2019). The internalization of amino acids in
macropinosomes and their delivery to the lysosomes is essential
for mTORC1 growth factor-dependent activation (Yoshida et al.,
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FIGURE 1 | Overview of nutrient scavenging pathways in cancer cells. During cancer progression, cancer cells increase their energy and nutrient requirement to
meet the demand of constant proliferation and sustain processes such as migration and invasion. For this, they use membrane trafficking pathways to scavenge
nutrients already available. Macropinocytosis allows the bulk internalization of extracellular ATP as well as albumin and other nutrients. In a similar manner,
receptor-mediated endocytosis is responsible for the uptake of receptors and their ligands that will be degraded in the lysosomes providing new building blocks to
be reused. Examples are integrins that bind to ECM components, and megalin which binds to albumin in the extracellular environment. The internalized albumin can
either bind to neonatal Fc receptor inside the endosomes and be recycled back to the plasma membrane, or degraded in the lysosomes. To access the pool of
nutrients already available in the cell, cancer cells can hijack autophagy. Engulfed damaged organelles and protein aggregates can thus be broken down and
degraded in the lysosomes for reuse. The altered metabolism during cancer progression results in increased MT1-MMP recycling, thus promoting cell invasion.

2015). The control of mTOR signaling is critical for the cells and
its dysregulation leads to several diseases such as cancer, diabetes,
and metabolic diseases (Yoshida et al., 2015).

Amino acid depletion stimulates macropinocytosis and the
scarcity of glutamine drives this process (Lee et al., 2019). The
nutrient stress triggered from amino acid depletion enhances
epidermal growth factor (EGF) receptor signaling that in turn
increases macropinocytosis by regulating membrane ruffling
and cytoskeleton dynamics (Lee et al., 2019). The activation
of the actin cytoskeleton occurs through the small GTPase
Ras (Bloomfield and Kay, 2016; Recouvreux and Commisso,
2017). Ras is frequently mutated in cancer and activated in
almost 33% of all human cancer (Bloomfield and Kay, 2016;
Lanfredini et al., 2019). Ras-driven cancer cells have a higher
rate of macropinocytosis. Over-activation of Ras promotes
metabolic rewiring and cell proliferation not only by activation
of macropinocytosis to internalize extracellular nutrients and
enhancing uptake of glucose, contributing to the Warburg effect,

but also by inducing autophagy (Recouvreux and Commisso,
2017; Palm, 2019).

Ras-transformed cancer cells are able to take up albumin
through macropinocytosis. Degradation of albumin is a source
of glutamine, one of the most deprived nutrients in cancer
environments. Hence, the macropinocytic uptake of albumin
could serve to sustain the proliferation of oncogenic Ras cells
by constituting a source of amino acid supply (Commisso
et al., 2013; Ha et al., 2016; Palm, 2019). Glutamine serves
indeed as important source of carbon, which in different tumors
is utilized for TCA cycle anaplerosis. In proliferating cells,
glutamine-dependent anaplerosis is critical for mitochondrial
metabolism and essential for cell growth (Cluntun et al., 2017).
The internalization of albumin through macropinocytosis and
the downstream use of albumin-derived amino acids as a source
of energy seems to be a unique property of cancer cells, since
normal cells adjacent to a tumor lack this ability (Davidson
et al., 2017). The stimulation of macropinocytosis in cancer cells
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is, however, not limited to Ras-transformed cells, as activating
mutations in Src kinases also drive macropinocytosis (Amyere
et al., 2000; Finicle et al., 2018).

Intriguingly, it has been recently demonstrated that under
nutrient-limited conditions, cancer cells within pancreatic ductal
adenocarcinoma are able to internalize collagen fragments
through macropinocytosis. This extracellular matrix protein
represents a proline reservoir that is used as a nutrient source
in the absence of other fuels. In this way, the collagen-derived
proline contributes to promoting cancer cell survival as well
as cell proliferation (Olivares et al., 2017). Therefore, it seems
that cancer cells have developed an efficient strategy to obtain
nutrients from alternative sources through macropinocytosis
followed by lysosomal degradation of extracellular proteins.
This allows to furnish the energy and nutrient demand for
sustained proliferation.

Receptor-Mediated Internalization for
Nutrient Scavenging
Nutrient scavenging does not only occur by macropinocytosis.
Cancer cells can also utilize receptor-mediated scavenging to
sustain their growth and proliferation (Figure 1). An example
of receptor-mediated scavenging is represented by the integrin-
mediated endocytosis of extracellular matrix (ECM) components
(Finicle et al., 2018). Integrins are cell surface receptors for
ECM components that link the actin cytoskeleton to the ECM.
During cancer progression, the trafficking of integrins is often
upregulated resulting in the internalization of the receptors but
also of the ECM components bound to the integrins. The ECM
consists of collagen, laminin, and fibronectin. These extracellular
proteins are also heavily glycosylated, thus ECM scavenging
yields amino acids and sugars to sustain cell proliferation.
Dietary restriction and nutrient deprivation induces laminin
scavenging by integrin α6β4-mediated endocytosis. Laminin
degradation in the lysosomes enhances mTORC1 signaling,
preventing cell death and promoting cell survival (Muranen
et al., 2017). Similarly, in ovarian cancer cells, integrin α5β1
binds fibronectin, which is then internalized and degraded
in the lysosomes, and the resulting amino acids activate
mTORC1 (Rainero et al., 2015). However, the mechanisms
for integrin-mediated nutrient scavenging in tumors are still
poorly characterized and further studies are required to better
understand this process.

It is not only integrins and ECM that are involved in
nutrient scavenging by receptor-mediated endocytosis.
Also albumin is endocytosed upon binding to megalin or
other cell surface scavenger receptors. The internalized
albumin can either bind to neonatal Fc receptor (FcRn) in
endosomes and be recycled back to the plasma membrane,
or degraded in the lysosomes. Degradation of albumin results
in increased amino acid and possibly also lipid availability
(Finicle et al., 2018).

Autophagy and Cancer Cell Proliferation
Autophagy is another process that provides nutrients and
energy to the cell. It is used by cells to recycle their own

compartments after sequestering them in a double membrane
organelle, the autophagosome. When nutrients are running low,
autophagosome formation is initiated to engulf macromolecules,
protein aggregates and damaged organelles from the cytosol
(Davidson and Vander Heiden, 2017). The autophagosomes
then fuse with the lysosomes. Degradation inside the lysosomes
provides the cells with new building blocks for protein synthesis
(Kimmelman and White, 2017).

Upregulation of autophagy can occur in response to hypoxia
or metabolic stress to ensure survival. Mice that lack essential
autophagy genes such as Atg5 and Atg7, die from nutrient
starvation underlying how essential autophagy is to provide
nutrients during metabolic stress (Kuma et al., 2004). Similar
to macropinocytosis, autophagy allows the cells to tap into a
pool of macromolecules. Both pathways are exploited by cancer
cells to obtain nutrients for survival and growth. The main
difference is that macropinocytosis internalizes nutrients from
the extracellular environment, while autophagy utilizes what is
already available inside the cells (Palm, 2019). The importance
of autophagy in cancer cell proliferation, therefore, seems to
be connected to its role in supporting tumor metabolism.
In line with this, mutations in the Ras pathway are often
associated with high levels of autophagy required to maintain
cancer cell metabolism (Guo et al., 2011; Lock et al., 2011;
Yang et al., 2011).

Essential autophagy genes such as beclin-1, which is important
in the formation of the autophagosome, are upregulated in
several types of cancers, including colorectal and gastric cancer
(Ahn et al., 2007). Furthermore, Rab escort protein 1 (REP1)
is associated with cancer progression by contributing to cell
growth and survival through the regulation of mTOR signaling
and its downstream pathways (Choi et al., 2017). REP1 is
involved in the recruitment of Rab proteins to membranes
as well as in the regulation of autophagy (Alexandrov et al.,
1994; Choi et al., 2017). Knockdown of REP1 suppresses mTOR
activity, blocking autophagy and increasing macropinocytosis.
Even though the exact mechanism used by REP1 to regulate
autophagy is not known, it is suggested that REP1 modulates
the localization of lysosomes and mTOR thereby affecting their
activity. It is also reasonable to think that REP1 controls the
recruitment of Rab proteins necessary for this process, such as
Rab7a (Choi et al., 2017).

The role of autophagy in cancer is quite complex and
not fully elucidated yet. It seems to be dependent on several
factors such as the type of tumor or the cancer stage. In the
initial stages of cancer, autophagy acts as a tumor suppressor
through quality control of proteins and removing damaged
organelles and protein aggregates (Mathew et al., 2009; Li et al.,
2020). By controlling these events, it can prevent sustained
proliferation and therefore tumor initiation. However, in the
later stages, when a tumor has formed, autophagy can protect
cancer cells by helping them cope with cellular stress using
the same strategies as in the early phases (Li et al., 2020).
Autophagy seems also to contribute to the ability of cancer
cells to develop resistance to chemotherapy by protecting them
from the stress inflicted by the therapy (Sui et al., 2013;
Ma et al., 2014).
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EPITHELIAL TO MESENCHYMAL
TRANSITION

The ability of cells to change their morphology and phenotype
is crucial during embryonic development but also in tissue
repair in adults. Transitions from epithelial to mesenchymal
cells and back again are known as cellular plasticity (Corallino
et al., 2015). Several cancers derive from epithelial cells. These
cells are the building blocks of most organs and are organized
in tissues by establishing contacts with their neighboring cells.
When epithelial cells transition to cancer cells, they lose their
epithelial phenotype and acquire a mesenchymal phenotype
during a process called epithelial to mesenchymal transition
(EMT) (Sciacovelli and Frezza, 2017). During this process,
epithelial cells lose their junctions and apical-basal polarity, re-
organize their cytoskeleton, change signaling programs and alter
gene expression. This results in the loss of contacts with the
neighboring cells leading to increased motility of individual
cells and in the development of an invasive phenotype. EMT is
indeed an essential step in cancer cell progression, which leads to
invasion and metastasis (Figure 2).

When cells undergo EMT, their metabolic needs become
different (Kang et al., 2019). Shaul et al. (2014) found a
mesenchymal metabolic signature consisting of 44 upregulated
metabolic genes that are essential for EMT but not for cell
proliferation. The reprogramming of gene expression has indeed
a crucial role during EMT. However, also non-transcriptional
changes, including alteration of intracellular trafficking, play a
vital part in this process (Le Bras et al., 2012).

In epithelial cells, adherens junctions maintain cell-cell
adhesion by connecting transmembrane proteins to the actin
cytoskeleton. EMT is characterized by the loss of E-cadherin,
one of the major structural components of these junctions. In
normal cells, E-cadherin is rapidly internalized from the cell
surface and then recycled back to form new cell-cell contacts
(Lu et al., 2003; Palacios et al., 2005). However, the endocytic
pathway is often dysregulated in cancer, with a shift in the balance
between recycling and degradation. In the early phases of EMT,
adherens junction dissociation often occurs as result of changes in
E-cadherin transport, leading to the internalization of E-cadherin
followed by its transportation and degradation into lysosomes
(Janda et al., 2006; Ulrich and Heisenberg, 2009; Le Bras et al.,
2012). The endocytosis and recycling of E-cadherin is regulated
by its interactor NUMB. Loss of NUMB causes E-cadherin to
relocate and accumulate at the apical side decreasing cell-cell
adhesion, and promoting cell migration (Wang et al., 2009). In
line with this, in triple-negative breast cancer, an aggressive type
of cancer, reduced NUMB expression is often associated with
elevated EMT (Zhang et al., 2016).

During EMT, activated v-Src, a kinase involved in oncogenesis,
phosphorylates E-cadherin. After phosphorylation, the E3 ligase
Hakai catalyzes the ubiquitination of E-cadherin leading to the
trafficking and degradation of E-cadherin to lysosomes (Fujita
et al., 2002). Even though the role of Hakai in E-cadherin
ubiquitination in physiological conditions remains unclear (Niño
et al., 2019), it is intriguing that the expression of this ligase
is gradually increased during the different stages of colon

cancer progression, which is in line with its suggested role
in E-cadherin modulation in EMT (Castosa et al., 2018).
Downregulation of E-cadherin facilitates a switch to N-cadherin,
which is associated with enhanced migration and invasion
(Figure 2A; Loh et al., 2019). Recently, it has been demonstrated
that E-cadherin impacts cell metabolism as mechanical forces
exerted on E-cadherin activates AMPK thereby stimulating
actomyosin contractility, glucose uptake and ATP production
(Bays et al., 2017).

One of the major EMT inducers is the transforming growth
factor beta (TGF-β) (Katsuno et al., 2013; Corallino et al.,
2015). Internalization of the TGF-β receptor triggers a series
of downstream cascades, which eventually lead to exocytosis of
ATP containing vesicles (Cao et al., 2019). The released ATP
functions as an extracellular messenger. It binds to and activates
the purinergic receptor P2X7, resulting in EMT induction
by upregulating mesenchymal markers and downregulating
epithelial markers (Cao et al., 2019). The extracellular ATP
thus induces metalloproteinase expression, but it also serves
as an energy source for cell detachment. This extracellular
ATP is indeed internalized by macropinocytosis, providing the
energy required to allow morphological changes and movement
(Cao et al., 2019).

INTRACELLULAR TRAFFICKING AND
ENERGY REQUIREMENT IN CELL
INVASION

Cancer cells that have undergone EMT experience changes that
include not only the loss of adherens junctions and apical-basal
polarity, but also the re-organization of their cytoskeleton and
morphology. This leads to the acquisition of migratory ability that
can develop in an invasive phenotype.

For efficient cell migration, adhesion molecules such as
integrins are rapidly internalized and transported along the
endosomal system. To evade lysosomal degradation, integrins
are recycled back to the plasma membrane. This replenishes the
plasma membrane pool of integrins and promotes their rapid
turnover for cell migration (Mosesson et al., 2008; Dozynkiewicz
et al., 2012; Sun et al., 2018; Moreno-Layseca et al., 2019).
Therefore, it is not surprising that altered integrin trafficking is
linked to invasive processes (Hamidi and Ivaska, 2018).

For example, gain-of-function mutant proteins of the tumor
suppressor p53, which are often associate with cancer, increase
α5β1 integrin recycling (Muller et al., 2009). α5β1, together
with Rab-coupling protein (RCP; also known as Rab11-FIP1),
recruits receptor tyrosine kinases, regulating their recycling
and potentiating downstream signaling via protein kinase B
(PKB)/Akt, thus resulting in invasive migration (Caswell et al.,
2008; Muller et al., 2009; Jacquemet et al., 2013). RCP-driven
endocytic recycling of α5β1 integrin enhances invasive migration
of cancer cells by reprogramming the actin cytoskeleton to
promote the formation of cell protrusions and actin-related
protein 2/3 (Arp2/3) complex-independent cancer cell invasion
in vivo (Jacquemet et al., 2013; Paul et al., 2015). Furthermore,
mutant p53 increases the expression of the motor protein myosin
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FIGURE 2 | Membrane trafficking events in EMT and cell invasion. Epithelial cells are organized in layers by establishing contacts with neighboring cells as well as
the basement membrane. During cancer progression, the cells can lose these contacts leading to EMT and increased proliferation. Cancer cells can then acquire
migratory ability, breaching through the basement membrane and invading into the ECM. (A) During EMT, E-cadherin is internalized and degraded. NUMB regulates
the internalization and recycling of E-cadherin. When NUMB is lost, E-cadherin relocalizes to the apical side. Upon internalization, E-cadherin can be phosphorylated
by src leading to ubiquitination by the E3 ligase Hakai. Ubiquitinated E-cadherin is delivered to lysosomes for degradation. This results in the loss of adherens
junctions. N-cadherin is then transported to the surface promoting migration. (B) Trafficking of α5β1 integrin under low nutrient conditions. Inhibition of the mTORC1
activation and of its recruitment to lysosomes promotes Arf4-dependent endocytosis, α5β1 integrin recycling, and cell invasion.

X, which binds to β1 integrin to mediate its transport to filopodia
(Arjonen et al., 2014). It has therefore been suggested that
blocking α5β1-integrin might have therapeutic benefit in mutant
p53-expressing cancers (Muller et al., 2009).

Gain-of-function p53 mutants, by promoting glucose
transporter 1 (GLUT1) translocation to plasma membrane,
stimulate glucose uptake, glycolysis and thus, the Warburg effect
(Zhang et al., 2013). Hence, mutant p53, by affecting different
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intracellular transport pathways, coordinates cell metabolism
and integrin recycling to promote cell invasion.

Small GTPases, along with their effectors, control integrin
recycling with huge impact on cell invasion. Rab11- and Arf6-
dependent recycling of integrins is associated with cancer
invasion (Yoon et al., 2005; Das et al., 2018; Moreno-Layseca
et al., 2019). A signaling pathway involving phosphorylation
of Rab34 inhibits β3 integrin lysosomal degradation mediating
its recycling back to the plasma membrane to promote cell
migration (Sun et al., 2018). In triple-negative breast cancer
cells, Rab5a stimulates Rab4-dependent fast recycling of α5β3
integrin, thus leading to cell invasion (Frittoli et al., 2014;
Linder and Scita, 2015). Furthermore, Rab25, which directly
associates with integrin α5β1, promotes integrin recycling from
late endosomes/lysosomes at the cell front to drive invasion
(Caswell et al., 2007; Dozynkiewicz et al., 2012).

Ligand-engaged α5β1 integrin are trafficked under control of
Rab25 to late endosomes/lysosomes following Arf4-dependent
internalization. This pathway is necessary to maintain lysosomal
positioning at the perinuclear region and to recruit and activate
the nutrient sensor mTORC1 on lysosomes. Interestingly, in
response to low-nutrient status of cancer cells, the recruitment
of mTOR to late endosomes/lysosomes is inhibited, further
promoting ligand-bound α5β1 internalization and trafficking to
lysosomes. This stimulates the degradation of ECM components
in the lysosomes as well as Rab25-mediated α5β1 integrin
recycling at the plasma membrane (Dozynkiewicz et al., 2012;
Rainero et al., 2015). Consequently, this pathway connects
nutrient sensing to ECM internalization and integrin recycling
to promote cell invasion (Figure 2B).

Degradation of ECM components during cancer invasion
occurs not only in the lysosomes but also outside the cell. Diverse
polarized trafficking pathways converge at the invadopodia,
plasma membrane protrusions responsible for ECM degradation
and invasion, for the local delivery of proteolytic enzymes,
which have pivotal role in defining the malignant features
of cancer cells. Indeed, extracellular degradation-mediated cell
invasion is carried by proteolytic enzymes, such as cathepsins and
matrix metalloproteinases (MMPs), which can be trafficked either
through the secretory pathway or via exocytosis of peripheral
lysosomes (Bonnans et al., 2014).

Rab5-mediated endocytosis regulates the internalization
and delivery of the membrane-associated MT1-MMP
(membrane-type 1 matrix metalloproteinase), an important
invasion-promoting enzyme, to non-degrading Rab7a-positive
endosomal reservoirs before being exocytosed at invadopodia for
ECM degradation (Planchon et al., 2018). A further regulation
of MT1-MMP recycling to the plasma membrane has been
described to be dependent on WDFY2 and Rab4 following
a VAMP3-dependent mechanism (Sneeggen et al., 2019).
However, while recycling is considered the major route for
fast delivery of proteases to the plasma membrane for ECM
degradation, MT1-MMP can additionally be delivered to
the plasma membrane following Rab8-dependent polarized
exocytosis (Bravo-Cordero et al., 2007) or Rab27-dependent
exosomal release (Hoshino et al., 2013). High levels of glutamine
consumption contribute to cancer aggressiveness by generating

a source of extracellular glutamate. This extracellular glutamate
activates its receptor GRM3 on the plasma membrane,
stimulating Rab27-mediated recycling of MT1-MMP to
promote invasiveness (Dornier et al., 2017). This highlights
how changes of tumor environment such as the increased
extracellular glutamate and low-nutrient status of cancer cells
alter cellular metabolism leading to aberrant endosomal recycling
to drive cell invasion.

In addition to have a role in catabolic and metabolic
signaling, lysosomes can also function as secretory compartments
releasing their luminal content in the extracellular space in
a calcium-dependent process (Blott and Griffiths, 2002; Xu
et al., 2012; Kimmelman and White, 2017; Buratta et al., 2020).
The lysosomal calcium-channel TRPML1 is activated by the
metabolic stress conditions typical of cancer cells. Its activation
promotes mTORC1 activity and ATP release via lysosomal
exocytosis (Liu et al., 2012; Takai et al., 2012; Machado et al., 2015;
Naegeli et al., 2017; Xu et al., 2019). Extracellular ATP interacts
with purinergic receptors on the plasma membrane, and acts as
cancer invasion stimulator by activating Rho GTPase-dependent
pathways and upregulating the expression of MMPs (Zhang et al.,
2010; Li et al., 2013).

Recent evidence demonstrates that the presence of
mitochondria at cell protrusions stimulates ATP-driven
actin polymerization to drive cell motility and invasion during
Caenorhabditis elegans development, even in absence of MMPs
(Kelley et al., 2019). This indicates special energy requirement
in protruding regions. In line with that, a connection between
intracellular mitochondrial trafficking and energy gradients
has been described, where ATP:ADP ratio changes depending
on positioning and density of mitochondria (Altieri, 2017;
Schuler et al., 2017). Long-range mitochondrial trafficking
relies on microtubule-associated molecular motors kinesins
and dyneins as well as on the mitochondrial Rho-GTPase
Miro1. In Miro1-deficient mouse embryonic fibroblasts
(MEFs), mitochondria reposition to the perinuclear area, which
correlates with high ATP production in this region. This inhibits
energy-demanding processes such as protrusion formation
and focal adhesion dynamics at the cell periphery, resulting
in decreased cell migration and invasion (Schuler et al., 2017).
Conversely, in migrating and invasive cancer cells, mitochondria
accumulate at the leading edge (Arismendi-Morillo et al., 2012).
Thus, the traffic and dynamics of mitochondria are coupled to
the localized energy demand at the protruding cell front for focal
adhesion dynamics, cell membrane dynamics and invasion.

ATP consumption at the leading edge promotes mitochondria
trafficking with a positive feedback mechanism that depends
on the energy sensor AMPK (Cunniff et al., 2016; Furnish
and Caino, 2020). This is in agreement with evidence showing
that some key glycolytic enzymes are located at the plasma
membrane of invasive cells (Attanasio et al., 2011; Havrylov
and Park, 2015; James et al., 2020) where the actomyosin
machinery used to displace the ECM relies on the readily available
supply of ATP (Oser et al., 2009; van Horssen et al., 2009;
Kelley et al., 2019).

Interestingly, tumor exposure to inhibitors of the therapeutic
target phosphatidylinositol-3-kinase (PI3K) has shown a unique
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repositioning of energetically active mitochondria in proximity
to focal complexes, which supports membrane dynamics and
cytoskeletal remodeling, resulting in increased cell motility and
invasion (Caino et al., 2015). Although this response may possibly
increase the risk of metastasis, it illustrates the feasibility of
targeting mitochondrial reprogramming.

CONCLUDING REMARKS

It is now widely recognized that different metabolic needs
are encountered during cancer progression. Therefore, it is
of high importance understanding the underlying molecular
mechanisms behind this metabolic cancer plasticity for
the development of target therapies and also to prevent
therapy resistance.

The contribution of intracellular membrane transport to
the metabolic rewiring in disease progression is, however, still
poorly characterized. Many questions remain unanswered due
to the limitations of studying cancer cells in their complex
tumor environment. However, studies where nutrient access was
restricted by pharmacologically altering membrane trafficking
have shown positive results, simultaneously blocking lysosomal
degradation of autophagosomes and macropinosomes, and
starving cancer cells to death (Kim et al., 2016). In line
with this, ongoing studies with agents that target scavenging,
macropinocytosis, autophagy or lysosomes seem to be promising
(Towers and Thorburn, 2017; Towers et al., 2020). For example,
recently developed lysosomal inhibitors for cancer therapy can
inhibit multiple lysosomal activities needed for tumor cell
survival and growth (Rebecca et al., 2017). Therefore, future
research should further explore the molecular mechanisms
of intracellular trafficking characterizing tumor initiation,

progression and metastasis in relation to the different cellular
metabolic needs as these aspects could help to identify new ways
or targets for therapy.

Dormant cancer cells are one of the most threatening aspects
of cancer and can lead to reoccurrence of metastatic tumors after
a long period of latency. Tumor cell dormancy can be induced
by nutrient deprivation (Jahanban-Esfahlan et al., 2019) but the
mechanism behind the revival of the dormant cells remains
mainly elusive. Therefore, further investigation is required to
understand whether and how changes in nutrient availability as
well as the metabolic adaptation influence this process. Moreover,
the role of intracellular trafficking in the re-activation of the
dormant cells is still unknown and its characterization may
further improve our understanding of tumor dormancy with
impact on tumor relapse.

Thus, the tight connection between intracellular trafficking
and cell metabolism should be taken into account in the
search of novel therapeutic targets for a more integrated
cancer therapy.
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