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Abstract

As malaria declines in many African countries there is a growing realization that new interventions need to be
added to the front-line vector control tools of long-lasting impregnated nets (LLINs) and indoor residual spraying
(IRS) that target adult mosquitoes indoors. Larval source management (LSM) provides the dual benefits of not only
reducing numbers of house-entering mosquitoes, but, importantly, also those that bite outdoors. Large-scale LSM
was a highly effective method of malaria control in the first half of the twentieth century, but was largely
disbanded in favour of IRS with DDT. Today LSM continues to be used in large-scale mosquito abatement
programmes in North America and Europe, but has only recently been tested in a few trials of malaria control in
contemporary Africa. The results from these trials show that hand-application of larvicides can reduce transmission
by 70-90% in settings where mosquito larval habitats are defined but is largely ineffectual where habitats are so
extensive that not all of them can be covered on foot, such as areas that experience substantial flooding.
Importantly recent evidence shows that LSM can be an effective method of malaria control, especially when
combined with LLINs. Nevertheless, there are a number of misconceptions or even myths that hamper the
advocacy for LSM by leading international institutions and the uptake of LSM by Malaria Control Programmes.
Many argue that LSM is not feasible in Africa due to the high number of small and temporary larval habitats for
Anopheles gambiae that are difficult to find and treat promptly. Reference is often made to the Ross-Macdonald
model to reinforce the view that larval control is ineffective. This paper challenges the notion that LSM cannot be
successfully used for malaria control in African transmission settings by highlighting historical and recent successes,
discussing its potential in an integrated vector management approach working towards malaria elimination and
critically reviewing the most common arguments that are used against the adoption of LSM.

Background
The United Nation’s Roll Back Malaria decade 2000-2010
has seen an unprecedented increase in the coverage of
malaria control interventions. It is a critical time in the
history of malaria control in Africa since, for the first
time in a generation malaria is declining, at least in some
countries [1]. The present global malaria control strategy
aims at protecting individuals and communities using
long-lasting impregnated nets (LLINs), indoor-residual
spraying (IRS) and the prompt and effective treatment of
clinical malaria [2]. In order to maintain this momentum
and aim for further reductions in malaria transmission,
supplementary tools for vector control need to be added
to the current arsenal [3]. Since LLINs and IRS are

directed against the adult vector population that enters
houses, further suppression of transmission could be
achieved by targeting the aquatic stages by reducing vec-
tor larval habitats, thus attacking both outdoor and
indoor biting vectors. This may be particularly important
in areas targeted for elimination where malaria foci or
‘hot spots’ persist [4-9]. At the same time as the global
malaria community is considering how to eliminate
malaria, the World Health Organization (WHO) is
actively promoting Integrated Vector Management
(IVM), where multiple interventions are combined to
control vector-borne diseases [3,10-15]. Nevertheless, lar-
val source management (LSM, Figure 1), although one of
the oldest tools in the fight against malaria remains a lar-
gely forgotten and often dismissed intervention for
malaria control in Africa [16,17]. Despite the lack of its
application in Africa for over half a century, LSM has
been the main focus of mosquito control programmes for
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decades in the United States of America (US), Canada,
throughout Europe, Brazil and Singapore [18-20]. In the
US larval control has been used for over a century [21].
Today there are 734 named mosquito abatement districts
in the US, all employing LSM, which is the ‘primary and
preferred method of mosquito control in the US, should
habitat removal or modification be inadequate’ (Ameri-
can Mosquito Control Association, personal communica-
tion). LSM is practiced over extensive areas, especially in
California and Florida, often controlling mosquitoes that
occur on far more prodigious scales than found in Africa.
In the largest district, Lee County Florida, the annual
budget for mosquito control exceeds $19 M [22], whilst
in the Metropolitan Mosquito Abatement District the
budget is over $18 M [23]. Despite the scale and success
of these operations in developed countries, this activity
has been largely ignored by those interested in malaria
control, until recently.
This paper challenges the notion that LSM cannot be

successfully used for malaria control in African transmis-
sion settings by highlighting historical and recent suc-
cesses, discussing its potential in an IVM approach
working towards malaria elimination and critically
reviewing the most common arguments that are used
against the adoption of LSM. It needs to be emphasized
that LSM should not be considered as a stand alone
intervention (at least in most circumstances) or replace-
ment for personal protection measures, but an additional
tool of IVM. Therefore, this paper does not aim to con-
trast advantages and disadvantages for LSM with current
first line interventions, which can be found elsewhere
[24,25], but rather aims to highlight the potential benefits
of a neglected tool where applicable.

Larval source management pre IRS with DDT
In the early twentieth century larviciding and environ-
mental management were the only tools available to

contain malaria. The historical literature and more
recent reviews of this approach show that anti-larval
mosquito control measures were powerful tools against
malaria [25,26]. Importantly LSM contributed to all suc-
cessful eradication efforts and successful vector control
programme worldwide [27-33].
The first report of anti-larval measures used for

malaria control in Africa was in Freetown, Sierra Leone,
in 1812, where there was a law preventing people from
allowing stagnant pools which ‘generate disease and
mosquitoes over the town’ [34]. Since then, Anopheles
larval control has been a central pillar of many success-
ful malaria control programmes worldwide. What is par-
ticularly salient, and is relevant to the current push for
IVM, is that these programmes all used combinations of
vector control tools.
Perhaps the most remarkable achievements with larvi-

ciding were the elimination of Anopheles arabiensis [35], a
member of the An. gambiae complex, from Brazil [28] and
Egypt [27]. In the 1930s, An. arabiensis, a major vector of
malaria in Africa, was introduced accidentally into Brazil
resulting in an epidemic that killed thousands of people
and turned the countryside into a wilderness [28,33]. Most
remarkably, a larval control programme run with military
precision was able to eradicate An. arabiensis within 2-3
years, under-budget and on schedule. The common larval
habitats in Brazil resembled those found in many African
settings [36], in a climate similar to parts of Africa where
malaria is endemic [37]. Similarly, when An. arabiensis
invaded Egypt in 1942, the vector was eliminated using
larval control within a staggeringly short time of 6 months
[27].
These vectors have also been successfully controlled in

the heartland of malaria: in Africa. Malaria was a major
threat to the economic success of the copper mines in
Zambia in the first half of the twentieth century. An
integrated malaria vector control programme, primarily

What is mosquito larval source management?  
Mosquitoes undergo complete metamorphoses and their immature stages develop in stagnant water. While Long-Lasting Impregnated Nets and Indoor 
Residual Spraying target host-seeking adult mosquitoes, larval source management attempts to decrease malaria transmission by decreasing the number of 
mosquitoes that reach adulthood. Mosquito larval source management (LSM) is the management of water bodies (aquatic habitats) that are potential 
breeding sites for mosquitoes in order to prevent the completion of immature development. LSM can be further classified into (1) habitat modification, (2) 
habitat manipulation, (3) biological control and (4) larviciding [22]. Habitat modification is a permanent change of land and water, including landscaping, 
drainage of surface water, land reclamation and filling but also coverage of large water storage containers, wells and other potential breeding sites. Habitat 
manipulation is a recurrent activity, such as water-level manipulation, which includes measures like flushing, drain clearance, shading or exposing habitats 
to the sun depending on the ecology of the local vector. Biological control of mosquitoes refers to the introduction of natural enemies into aquatic habitats; 
these are predatory fish or invertebrates, parasites or disease organisms. Larviciding is the regular application of biological or chemical insecticides to 
water bodies for control of mosquitoes. Insecticides available for larval control have different modes of action including (1) surface films like mineral oils 
and alcohol- or silicon based surface products that suffocate larvae and pupae, (2) synthetic organic chemicals such as organophosphates (e.g. temephos, 
pirimiphos-methyl) that interfere with the nervous system of immature stages, (3) microbials such as Bacillus thuringiensis israeliensis (Bti), and Bacillus 
sphaericus (Bs) that kill larvae with toxins that are ingested and lead to lysis of the insect’s gut, and (4) insect-growth regulators such as pyriproxyfen, 
methoprene and diflubenzuron that interfere with the metamorphoses of the insect and prevent adult emergence from the pupae stage. Historically, Paris 
Green (copper acetoarsenite), an arsenical compound, was extensively used for anopheline larval control. Today the most common interventions for 
mosquito larval control are the application of Bti and Bs, temephos, filling and draining, and the introduction of fishes.

Figure 1 Summary information on mosquito larval source management.
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based on attacking the larval stages of malaria vectors by
environmental management [29] resulted in a 97%
reduction of annual malaria incidence from 514/1,000 in
1929/1930 to 16/1,000 in 1949/1950. Similarly, overall
mortality fell by 88% from 32/1,000/year to 4/1,000/
year. Drainage of breeding sites along the Nigerian coast
led to a 77% decrease of malaria incidence from 130/
1,000/year in 1942 to 30/1,000/year in 1943. Interest-
ingly, only the addition of environmental management
to established interventions like quinine treatment and
personal protection measures led to such significant
decreases in malaria whilst there was hardly any impact
before LSM was introduced [38]. LSM was not limited
to Africa and was most successfully employed for
malaria control in South East Asia, particularly in
Malaysia and Indonesia [26,39-41].

The fate of LSM after IRS with DDT
Malaria eradication with IRS using DDT sounded the
death knell for many effective control methods, including
LSM. LSM is based on a sound understanding of the local
ecology of malaria in an area. It is also complex and
requires strong management [42-45]. The rush for malaria
eradication with IRS and DDT represented, at that time, a
simple fix that could be used anywhere unlike LSM. The
result was eloquently captured by Socrates Litsios [46]:

’With the arrival of DDT the detailed understanding
that had built up in the course of tens of thousands
of studies was put aside and a monolithic strategy
took hold. With victory in sight, there was no need
for further study. Today, when victory seems far
away, there is a risk that what was learned before
DDT arrived will be forgotten’.

The failure of the global malaria eradication pro-
gramme had repercussions that put vector control
research in the doldrums for several decades. The resur-
gence of interest in vector control coincided with the
renewed efforts to accelerate malaria control in Africa
and the development of insecticide-treated bed nets in
the 1980s [47,48] as a practical control tool, but the
focus of research from then on focused heavily on
attacking vectors indoors with insecticides, almost
excluding alternative approaches [49]. However, over the
past decade, there have been opportunities for diversifi-
cation and a reappraisal of many forms of control,
including LSM [2].

Recent evidence for the potential of LSM in Africa
Recent field evaluations (Table 1) under various eco-epi-
demiological conditions in Africa showed that: (1) hand-
applied larviciding reduced transmission by 70-90%
where the majority of aquatic mosquito larval habitats
were defined and aquatic surface areas not too extensive
[43,50-52] and (2) that the addition of larviciding with
LLINs resulted in greater gains than could be achieved
by using LLINs alone [52,53]. The cautionary note is
that hand-application of larvicides was not effective in
areas with very extensive water bodies such as the flood-
plains of the large river system in the middle reaches of
the Gambia River [54]. But as we make progress towards
malaria elimination, it may be that persistent malarious
areas can be effectively controlled by aerial application
of larvicides, which would be best suited for the treat-
ment of extensive flood plains and irrigation systems
[19,22,23,55]. Although this method of application is
expensive, if it results in elimination, these costs may be
justifiable, in the same way as aerial application was in

Table 1 Recent trials of larvicides against malaria in Africa

Study site Ecosystem Reduction in Date of trial

Late instar Anopheles
larval density

Anopheles gambiae s.l.
adult density

Malaria
infection

Semi-arid ecosystems, Eritrea [50] Desert fringe Significant reduction Significant reduction - Not reported

Lake Victoria, Kenya [51] Rural, high
population density

99%
(97.5-99.4%)

91.5%
(91.4-91.6%)

- Jul 2001-Sep
2005

Western Highlands, Kenya [52] Rural, Highlands 91%
(87-95%)

86%
(80-88%)

56%
(18-77%)

Feb 2004-Jan
2007

Dar es Salaam, Tanzania [43,53] Urban Not done1 34.5%
(19.1-46.7%)2

72%
(20-90%)

Apr 2005-
May 2007

Middle reaches of the Gambia River,
The Gambia [54]

Floodplains 73-99%3 No impact No
protection

Jul 2005-Nov
2007

1Larval density was not measured but proportion of habitats that contained late Anopheles larvae. There was a 96.5% reduction in Anopheles gambiae larval
habitat abundance in year 1 as compared to the same time period pre-intervention and non-intervention sites [43]
2represents overall reduction in year 1 of intervention but late start during rainy season and operational challenges responsible for relative small reduction
overall, the dry season larviciding in from July to September reduced transmission by 67% compared with the same time period pre-intervention and non-
intervention sites
3Reduction in sites containing larvae compared with contemporary controls
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the Onchocerciasis Control Programme in West Africa
[56,57].

The benefits and role of larval source management in
malaria control and elimination
Anopheles larvae are ‘sitting ducks’; they are relatively
immobile and often readily accessible. By targeting the
larval stages, mosquitoes are killed ‘whole sale’ before
they disperse to human habitations. Mosquito larvae,
unlike adults, cannot change their habitat to avoid con-
trol activities [58].
The elimination of aquatic habitats close to human habi-

tations by environmental modifications and manipulations,
where possible, can provide long-term and cost-effective
solutions. Once a habitat is gone it does not produce any
flying and biting mosquitoes [29,39]. This is particularly
true in urban areas where drainage of aquatic habitats can
be incorporated into on-going town or city development
plans [59,60]. In many cases these costs will be paid out-
side the health sector. In places where habitats cannot be
eliminated, a number of very effective larvicides are avail-
able that reduce mosquito production rapidly. There are a
broad range of effective formulations that have been devel-
oped for anopheline control [24,61,62]. The diverse family
of larvicides provide a wide range of modes of actions
against Anopheles larvae including microbials that lyse the
gut epithelium, insect growth regulators that prevent the
larvae developing into adults, synthetic or botanical toxins
that directly interfere with the insects’ metabolism and
monolayers that lead to suffocation of larvae. Today’s lar-
vicides are environmentally acceptable with minimal or no
effect on non-target invertebrate populations, aquatic eco-
systems, beneficiary insects, fish, birds, and mammals,
including humans. Larviciding requires no substantial
change in human behaviour or the management of key
resources such as water and land, and skills for larviciding
can be similarly acquired as those for IRS [43,52,63,64].
LSM is a well-established strategy, with large-scale pro-

grammes worldwide [18-20,22,23,65]. There are many
National Malaria Control Programmes in Africa that
would be in the position to incorporate, or have already
incorporated, LSM in their development agenda [66-72].
The tool is ready to use [19,21,25,43] without any further
research required. Obviously, locally appropriate imple-
mentation systems need to be developed on an individual
basis for each programme, taking local structures and
administrative systems into account and adapted to local
eco-epidemiological conditions [28,43,73-75]. Sustainable
LSM programmes need time for implementation staff and
institutions to develop, pilot, refine and stabilize locally-
appropriate, effective and sustainable procedures and insti-
tutional structures [42,45,76,77]. The scale at which LSM
is applied depends on the local ecology, institutional struc-
tures and financial support.

Over the past decade interest in LSM by the interna-
tional scientific community has grown and its potential
has been demonstrated for contemporary Africa (Table 1).
As a consequence, LSM has been included in the latest
Global Malaria Action Plan of the Roll Back Malaria Part-
nership. The document outlines that in areas where
malaria transmission is low to moderate, seasonal or focal
the integration of LSM can be appropriate. It is viewed as
a targeted approach in addition to LLINs and/or IRS. The
added value of LSM is especially anticipated during the
phase of ‘sustained control’ (as opposed to ‘scale-up-for-
impact’) [2]. This is echoed in the Global Malaria Pro-
gramme for Malaria Elimination where it is stated that
‘larviciding may play an important supportive or even
leading role in some special settings’ [12]. It has been
recognized that malaria control interventions must take
more account of the mosquito behaviour and the potential
adaptability of mosquitoes [49]. Such adaptability has been
observed even during historical control interventions
[78-81]. Recent publications also convincingly demon-
strate that as malaria declines in many African countries,
driven down (partly) by the use of LLINs and IRS, outdoor
biting is becoming a more important feature of malaria
transmission [82-85] with the more exophilic An. arabien-
sis increasing in importance as vectors [86-89]. Griffin and
colleagues [90] recently presented strong evidence that
outdoor biting defines the limit of what is achievable with
LLINs and IRS. LSM is one of the few strategies effective
against outdoor biting vectors.
Insecticides used for the control of vectors indoors are

limited at present to four different classes: organochlor-
ines, pyrethroids, organophosphates and carbamates. The
wide diversity of insecticides used for larval control, many
of which are not used for adult control, represents an
important opportunity to maintain the longevity of insecti-
cides for adult control, especially if combined with envir-
onmental management. This is particularly relevant today
when resistance to pyrethroids, used for treating bed nets
and IRS, is threatening the effectiveness of control pro-
grammes across Africa [91,92]. There is also an obligation
to replace DDT with other insecticides [93], further
restricting our ability to deal with resistance. Last, but not
least, LSM could have a role to play in malaria eradication
where persistent malaria ‘hot spots’ remain, after the appli-
cation of existing tools directed at indoor-feeding vectors.

Why is LSM not considered on par with LLINs and IRS?
The question posed here is why, with all the historical
and recent evidence, LSM is not considered ‘on par with
LLINs and IRS’ [2] today? There are a number of rea-
sons for this, some understandable, some plainly wrong.
Evidence of efficacy
Interventions against malaria are typically evaluated by
measuring a decline in malaria morbidity and mortality.
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This is usually done by randomly allocating the test
intervention and a placebo of current intervention at the
level of the individual, household or cluster of houses.
The randomized controlled trial (RCT) has become the
standard tool for evaluating interventions [94,95]. Since
LSM needs to be applied over large-scales of many
square kilometres it is impracticable or prohibitively
expensive to carry out a large-scale RCT. Consequently,
there will never be the same degree of proof that LSM
is effective, as is available with interventions that are
randomized by individual or household, such as with
LLINs [96]. In this context, LSM is very similar to that
of IRS where the main evidence of efficacy is also based
on historical accounts and where there are few high-
quality trials to measure their impact [97]. Yet today
IRS campaigns are common in Africa, whilst there are
few LSM programmes in operation [1]. Nonetheless,
ultimately the value of an intervention depends on its
effectiveness when operated through control pro-
grammes and the scalability of the intervention.
Although LSM can be scaled up [19,22,65] to date larval
control programmes in sub-Saharan Africa have never
covered very large areas and populations.
Biological myths
During the DDT era and the subsequent production of
entomologists who focused on attacking the vectors
indoors some common misconceptions have become
dogma and reinforced the view that larval control is inef-
fective. As recently as 2000, the WHO expert committee
on malaria control did not consider LSM in their packages
of interventions [98]. One of the reasons for this was the
Ross-Macdonald model [99] that defined one of the key-
stones of the IRS DDT era. According to this model the
greatest reductions in malaria transmission can be
achieved by reducing the longevity of the vector popula-
tion. This was best achieved by killing the vectors indoors,
which would result in a reduction of survival of the vector
population, as well as reducing vector numbers, rather
than attacking the aquatic stages where survival would not
be affected. Based on this model, the original assumptions
made in the first eradication campaigns were very simplis-
tic [100]. Nevertheless, a point which the rational of Mac-
Donald [101] and Garrett-Jones [100] missed is that it is
equally important to assess how easy parameters are to
change as it is to assess the relative magnitude of the
impact that changing those parameters delivers. More cur-
rent models show that although killing adult mosquitoes
has the highest benefit in reducing malaria transmission,
there are limits on increasing adult mosquito mortality
above a certain threshold primarily due to changing mos-
quito behaviour and physiology and the effects of reducing
adult emergence is multiplicative and has an even greater
effect on R0 than reducing survival alone [90,102]. Some
models highlight the potential benefit of adding LSM to

IVM programmes [103,104]. Several authors have convin-
cingly shown that the limitations of LLINs/ITNs and IRS
are largely defined by mosquitoes avoiding them by feed-
ing or resting outdoors and/or at earlier hours and by
developing insecticide resistance [82,83,85-89,91,92,
105,106]. These concerns can be reduced if LSM is com-
bined with indoor vector control tools. Moreover, recent
research also suggests that LSM will not only reduce the
number of adult vectors, it may also increase the difficulty
an adult female has locating a site to lay her eggs, extend-
ing the gonotrophic cycle, and reducing transmission risk
[104,107,108].
Many argue that LSM is not feasible in Africa due to

the high number of small and temporary larval habitats
for An. gambiae that are difficult to find and treat
promptly, that the delivery of larvicides to very small
habitats (e.g. cattle hoof prints) is difficult, and environ-
mental management targets primarily larger, permanent
water bodies, which are not typically anopheline habitats
and therefore contribute little to malaria control [16,17].
Recent studies show that these assertions are incorrect in
many areas of sub-Saharan Africa with stable malaria
transmission. Importantly, the widely feared small and
temporary habitats contribute little to the overall produc-
tion of larvae and adults throughout the year [109-112].
For example a study of potential mosquito larval habitats
in a 400 km2 area in The Gambia during the rainy season
[113] found only 50 puddles or tyres tracks containing
water of which 46% had anophelines. This contrasted
with 413 ricefields of which 66% had anopheline larvae.
Similarly in rural site in western Kenya borrow pits
accounted for 60-78% of the total pupal productivity
[109] and in the western Kenya highlands puddles,
though most productive when present, were the most
unstable habitats and accounted only for 5% of all aquatic
habitats in the study area whilst permanent drains
accounted for 72% [106]. Importantly, today malaria in
Africa has become much associated with agricultural
development, both in rural and urban settings due to the
increasing use of irrigation leading to an increasing num-
ber of anopheline habitats [114-120]. Whilst covering all
available habitats in the target area at the time of applica-
tion is aimed for, missing out on a few small, transient
habitats that might be overlooked or hard to access is not
going to jeopardize the impact of the intervention. It is
these larger, semi-permanent and permanent habitats
that are often man-made [110,113,121-123], that are sta-
tic and accessible that are at greater or at least equal risk
of being colonized by anophelines than small ones, and
these larger sites are available for extended periods of
time and are therefore responsible for endemic malaria
transmission [106,110,124,125].
Utilization of state of the art mapping tools like Geo-

graphical Positioning Systems, Geographical Information
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Systems and remotely-sensed imagery combined with
modern communication tools increases the operational
efficiency of disease control interventions, and are suc-
cessfully used for mosquito vector surveillance and con-
trol for example in Australia, Singapore, Nicaragua and
the US [126]. GIS was introduced in the operational
malaria control programme in South Africa as early as
1990 and is since successfully used for a large number
of applications including monitoring of malaria cases
and coverage of vector control interventions [127,128].
This is a technology whose application cannot be under-
estimated with regard to LSM. In previous times,
mapping and reconnaissance of larval habitats were
necessarily laborious and done by pencil and paper
mapping; now, superior technologies allow for mapping
and modelling of landscapes to facilitate tremendously
the location and treatment of larval habitats; and
the retreatment and inspection, when necessary
[19,43,55,64,76,129].
Management and costs of LSM
The current strategy of LSM with larvicides is to treat all
available larval habitats [43,52,54,130]. Some argue for a
more spatially targeted approach [131,132] to apply larvi-
cides only at the most productive habitats [133]. At pre-
sent though we still lack scalable field methods for
determining which habitat subsets are the productive
ones. In fact to date no published evidence exists that
shows that accurately determining where malaria vectors
will develop is possible [106,124,134,135]. There is both
spatial and temporal variation in the distribution of Ano-
pheles larvae. Whilst some types of habitats are more likely
than others to have aquatic stages [106,109,113,124,136],
this is not sufficiently refined for spray personnel to be
able to identify and target only these high-risk habitats.
Most importantly, when it comes to the implementation
of LSM, treatment of all sites is much easier for field per-
sonnel since this requires minimum decision making and
is, therefore, less prone to mistakes [43,134]. However,
several models have been developed recently to predict
mosquito larval habitats location and productive potential,
so in future it may well be possible to target interventions
more effectively [137,138]. Any benefit of targeting larval
habitats at specific times of the year needs to be proven,
but may work well when LSM is part of an IVM package
of interventions [52]. Thus, in the future, LSM may be tar-
geted in space, when ‘hotspots’ of transmission have been
identified, or in time, to restrict biting densities at certain
times of the year [75]. In both cases the scale of the inter-
vention would be considerably smaller than the routine
application of blanket larviciding.
Another concern is the application frequency of larvi-

cides. At present microbial larvicides are generally
applied weekly to all potential sites [43]. Whilst larvicides
with greater residual activity would be beneficial for

treating permanent habitats [139], it is important to note
that they are not necessarily the panacea they might
appear to be since during periods of rain new potential
mosquito larval habitats can appear and larvae can
develop into adults before the next round of application.
Thus where sites are dynamic, weekly application is effec-
tive because new sites are treated promptly and it is sim-
pler because the people who apply the larvicide become
familiar with their treatment area and the weekly cycle of
activity.
Overall, targeting interventions in space and time as well

as the use of more residual larvicides will only reduce
costs if proven to be equally effective than blanket applica-
tion and if the increased management effort for decision
making does not outweigh the larvicide costs [140]. None-
theless, substantial reductions in long-term costs may be
made if larviciding is combined with environmental man-
agement. A recent study in Dar es Salaam demonstrated
that simply by improving drainage in drains would reduce
larval breeding by 40% [59]. Since malaria is a problem
created by surface water, it is still surprising that engineers
are rarely engaged in malaria control [3] since there are
many simple and effective engineering solutions to reduce
mosquito larval habitats [141].
A frequent critique is that larviciding is too labour inten-

sive for the reasons outlined above. It needs labour inten-
sive management systems for application, surveillance and
evaluation, which are expensive and prone to failure
[42,45,142]. There is no local capacity in country to imple-
ment and evaluate LSM, and it hinders the delivery of
other malaria control initiatives. Whilst it is true that LSM
requires a large number of personnel, Africa has a large
pool of people who could be gainfully employed in large
control programmes. This should be viewed as an oppor-
tunity rather than an impediment. Similarly, locally appro-
priate implementation systems take time to be developed
and to address initial challenges and failures [42,45]. This
is common to all vector control programmes, not just
ones using LSM. It may be considered appropriate to con-
sider the role of vector control programmes for the crea-
tion of employment in resource-poor communities, which
under most circumstances lack other income-generating
opportunities. The involvement and payment, therefore, of
community members in local (supervised and monitored)
vector control activities could therefore contribute to
reduction of disease burden, through the reduction of vec-
tors and, indirectly, by improvement of the local socio-
economic situation [10,74,75].
LSM has several aspects that are significantly more sus-

tainable than IRS and LLINs since highly effective tools
other than larviciding can be applied by local commu-
nities without dependency of high recurrent costs
[143-146]. The need for local adaptation and skills should
be seen as an opportunity creating self-empowerment for
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health control, which is one of the objectives of the
WHO’s IVM strategy [13].
A recent analysis of three LSM programmes of different

sizes and ecological settings in Africa showed the cost per
person protected each year ranged from US$0.94 to US
$2.50 [75]. This compares favourably with IRS (range from
various African settings US$0.88-4.94, [147]) or LLINs
(range for LLINs costing US$5 and assumed to last three
years US$1.48-2.64 [148]), suggesting that LSM presents a
viable and cost effective malaria control tool that can com-
plement existing malaria control methods in many settings
across Africa. With the move towards elimination there is
a need to scale-up use of existing tools and use additional
cost effective tools to reach that goal. Africa lacks local
capacity in trained entomologists and ecologists [49,74].
Yet whether it is malaria elimination or IVM or both,
capacity will need to be increased. Human resources need
to be improved to ensure that any improved control can
be sustained [74,149,150].

Conclusion
LSM is an important suite of tools for including in IVM
packages that will ensure more effective control of malaria.
LSM can, as a secondary tool, synergize with primary
interventions such as LLINs or IRS. LSM is not a stand-
alone intervention but should, where practicable, be inte-
grated with established interventions directed at adult
mosquitoes. However, it is not an intervention that can be
applied cost-effectively everywhere and specific settings
where aquatic habitats are too extensive will be unsuitable,
unless aerial application of larvicides is undertaken. This
statement simply reinforces the adage that “all malaria is
local” and those local conditions need to be considered for
all types of interventions, not just LSM.
Mosquito larval control will work best and be most cost-

effective in areas where larval habitats are well-defined
possibly seasonal or relatively few, where habitats are
accessible by ground crews, and in cooler parts of Africa
where larval development is prolonged. These conditions
occur frequently, even in sub-Saharan Africa, and thus this
method can be an effective tool for malaria control in
selected eco-epidemiological conditions such as areas of
low to medium transmission intensity, areas of focal trans-
mission or epidemic prone areas. Such conditions are
common in urban environments, desert fringe commu-
nities, highland settlements and rural areas with high
population densities.
It is not a strategy for country-wide application, and

should not be the primary tool selected in areas of inten-
sive transmission. Nevertheless, LSM has the potential to
be integrated into control programmes after LLINs or
IRS have reduced transmission to moderate or low levels
of transmission and therefore should be considered in
the consolidation phase of control and elimination

programmes where it can be targeted in space and time.
LSM will further reduce transmission, in a synergistic
fashion, and help manage insecticide resistance.
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