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Abstract

Many measures aiming to assess the stability of human motion have been proposed in the literature, but still there is
no commonly accepted way to define or quantify locomotor stability. Among these measures, orbital stability analysis
via Floquet multipliers is still under debate. Some of the controversies concerning the use of this technique could lie
in the absence of a standard implementation. The aim of this study was to analyse the influence of i) experimental
measurement noise, ii) variables selected for the construction of the state space, and iii) number of analysed cycles
on the outputs of orbital stability applied to walking. The analysis was performed on a 2-dimensional 5-link walking
model and on a sample of 10 subjects performing long over-ground walks. Noise resulting from
stereophotogrammetric and accelerometric measurement systems was simulated in the in-silico analysis. Maximum
Floquet multipliers resulted to be affected by both number of analysed strides and state space composition. The
effect of experimental noise was found to be slightly more potentially critical when analysing stereophotogrammetric
data then when dealing with acceleration data. Experimental and model results were comparable in terms of overall
trend, but a difference was found in the influence of the number of analysed cycles.
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Introduction

Stability, in terms of capability to walk without falling or
stumbling, is a crucial feature of gait [1,2]. Loss of dynamic
stability while walking can lead to falls, which represent a major
problem for community and public health, with large clinical and
economic consequences [3,4]. Moreover, the majority of fall-
related injuries in older adults occur during walking [5–7]. The
possibility to detect a loss of stability, offline or in real-time,
would represent an improvement in the understanding of the
mechanisms related to falls. The capability to quantify
decreased dynamic stability could lead to the development of
devices alerting the subject (or the clinician) of potentially
critical situations in order to prevent the fall, particularly in the
case of long walks. Moreover, subjects with low gait stability
could be selected for fall prevention programs.

Several stability indices have been proposed in the literature
for clinical application [2,7–10], among them, measures coming

from nonlinear analysis of dynamical systems are particularly
interesting.

Many human tasks are structurally cyclic, and show a
periodic-like behaviour. A motor task can be treated as a
nonlinear dynamic system: biomechanical variables (e.g. joint
angles, accelerations) vary during the temporal evolution of the
task, defining a system whose kinematics continuously
changes over time according to a controlled pattern.
Techniques for nonlinear stability analysis basically consist in
the quantification of the tendency of an orbit (defined by the
temporal evolution of a set of variables called state space) to
diverge from (or converge to) the previous orbit or a repelling/
attracting limit cycle.

Two main approaches for nonlinear stability analysis in
biomechanics are proposed in the literature: local and orbital
stability analysis. These nonlinear measures of dynamic
stability quantify different properties of system dynamics [11].

In particular, orbital stability analysis can be applied to
periodic systems with a limit cycle behaviour; it has been
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extensively used in the study of passive dynamic walking
robots [12] and, in recent years, it has been applied to
biomechanics also [2,11,13–16]. Fundamental indicators of
orbital stability are Floquet multipliers (FM). FM quantify,
discretely from one cycle to the next, the tendency of the
system's states to return to the periodic limit cycle orbit. If FM
have magnitude < 1, perturbations tend to shrink by the
following repetition, and the system remains stable [11].
Smaller FM’s imply higher stability [17].

Despite the lack of evidence of a direct correlation between
maxFM and fall risk [10], still FM were found to be higher in fall-
prone older adults than in healthy subjects [1], and capable to
detect perturbations during walking [18]. For this reason, FM
could be used in the detection of real time short-term
potentially critical variations in stability.

Deriving from the nonlinear analysis of dynamic systems,
orbital stability analysis finds its main application in robotics.
When assessing the stability of a robot (e.g. a walker), the
equations of motion and the nature of the controllers are
known, allowing an adequate selection of the variables that
properly characterize the system and the implementation of the
analysis in an analytical or semi-analytical way [19]. However,
when dealing with human biomechanical time series, equations
of motion and control laws are unknown. FM must hence be
calculated numerically, and with no a-priori knowledge on the
more appropriate variables that define the system. This lack of
knowledge makes the implementation not straightforward.

Beyond the mathematical implications, it is however
important to highlight that applying this analysis to human gait
implies several assumptions: i) human gait is an inherently
stochastic system, while Floquet theory applies to deterministic
limit cycle systems; ii) walking trajectories are continuously "re-
perturbed" by stochastic perturbations that are often internal to
the system. Since one of the main assumptions behind the
application of this technique is the existence of a limit cycle
trajectory, a reference trajectory for human stable walking has
to be chosen. To cope with this situation, the average trajectory
during the motor task is assumed as limit cycle, although the
likely asymmetrical nature of the basin of attraction of human
walking.

Orbital stability analysis preliminarily resulted to detect gait
instability [1,18], suggesting its effectiveness despite the many
theoretical assumptions, but reference values for orbital
stability of stable human walking are not known and, in the
literature, incoherent results are reported [20]. This
incoherence is likely to result from the absence of a standard
implementation of the technique. In particular, the influence to
experimental input noise, state space construction, and
analysed cycles has not been characterized yet. No unique
way of defining the state space of a given motor task was
defined in the literature: which and how many variables should
be included in the state space and how this choice affects the
results of the numerical calculation of orbital stability analysis
have not been analysed yet. A similar problem was examined
in the literature [21]: the performance of local dynamic stability
was analysed when applied to a Lorentz attractor and an
experimental sewing task, but this did not allow to draw clear
conclusions about locomotion. Another relevant issue is the

minimum and optimum number of task cycles to be analysed in
order to obtain reliable orbital stability results: this issue was
addressed before [22], but only for experimental treadmill
walking. Moreover, it is not clear yet how the experimental
noise can affect FM calculation.

In this scenario, the analysis of physiological signals of gait
(e.g. accelerations, joint angles) from a walking stable model
can allow the assessment of the influence of i) experimental
noise, ii) state space variables and iii) number of analysed
cycles on FM values.

In order to obtain indications applicable in experimental
conditions, model data must be comparable with experimental
data. Signals extracted from a stable walking model are hence
required.

Some authors performed simulation studies on orbital
stability of 1 or 2-link walking models related to fall risk
[19,23,24]. However, these are simplified models and simulate
very peculiar walking conditions. Simplicity is both the strength
and the limitation of these models: their walking conditions can
be easily manipulated, but they generate signals that
significantly differ from physiologic human gait. Stability
analysis on a more complex model can better describe human
walking, allowing the comparison between model and
experimental results. In order for the model to produce
kinematics as similar as possible to stable human gait, the
required conditions for the model are a continuous walk and
the absence of falls or stumbles, regardless of control laws and
implementation details.

The aim of the present study was to analyse, from an
applicative point of view, the influence on the final results of
orbital stability analysis applied to walking of i) experimental
measurement noise, ii) selection of the variables for the
reconstruction of the state space iii) number of analysed cycles
on a 2-dimensional 5-link walking model [25], providing walking
patterns of known stability. Results of in-silico analysis were
compared to those obtained experimentally on 10 subjects
performing long overground walks.

Methods

Overview
In-silico orbital stability analysis of a 5-link stable walking

model [25] was performed. The model showed continuous
walking, free of falls or stumbles, for all the simulation period
(300 strides). This was also assured by a check on step
variability, which was minimal following visual inspection of the
phase portraits. In order to properly calculate orbital stability,
model was slightly perturbed. The analysis was performed for
increasing number of cycles (from 10 to 300), based on
differently composed state spaces (including different joint
angles and/or accelerations). Semi-analytical value of the
maxFM of the model was also calculated for reference.
Simulated experimental error and noise were added to the
segmental kinematics of the model and the sensitivity of orbital
stability analysis was evaluated. Orbital stability analysis was
also performed on data collected experimentally on 10
subjects; given the impossibility to use a
stereophotogrammetry system on a long outdoor road, only
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acceleration data were acquired experimentally. Orbital stability
was calculated using an established technique [13].

In-silico data
The 2-dimensional, 5-link biped walking model analysed [25]

consisted of a trunk, two thigh and two shank segments (Figure
1). The model orientation was described by stance and swing
knee angles, stance and swing hip angles and upper body
angle (φk,sw, φk,st, φh,st, φh,sw, φub, all referred to gravity direction).
The dynamics of the model consisted of a continuous swing
phase during which the swing leg smoothly swinged past the
stance leg, and an istantaneous, fully inelastic heel strike when
the swing foot touched the floor. The swing leg knee contained
a hyper-extension stop and a latch that was activated upon full
extension to hold the leg straight. There were a total of four
control torques on the model, at the stance/swing knee and at
the stance/swing hip. All control torques were implemented
with fixed gain proportional-derivative (PD) controllers (with kp
= 100 Nm and kd = 10 Nms).

Small random perturbations were added to the state
variables at each heel strike event as uniformly distributed
random numbers having maximum amplitude ±10*10-4. This
maximum amplitude was chosen based on the maximum
perturbation that the model could tolerate without falling.

The model was adapted to perform 315 consecutive strides.
The first 15 strides of the simulation were discarded in order to
assure stable walking condition. The simulation was performed
using a MATLAB’s (Mathworks, Natwick, NA) fourth- and fifth-
order variable time-step Runge-Kutta solver (ode45, with
relative error tolerance set to 10-12). Joint angles were
expressed using Grood and Suntay approach [26].
Accelerations of the trunk segment at the level of the fifth
lumbar vertebra (L5) were obtained by the second derivative of
the position of a point located at 1/8 of the trunk segment.

Segmental kinematics data obtained from the model were
used to reconstruct experimental data from a
stereophotogrammetric system (joint angles) and a single
inertial sensor located on the trunk (accelerations). Simulated
experimental noise and errors were superimposed to
segmental kinematics signals obtained from the model.

Clusters of 4 markers were virtually applied to all the
segments of the model (trunk, thighs and shanks, for a total of
20 markers) and simulated instrumental normally distributed
noise with a standard deviation of 0.2 mm was added to the
marker position in 2-d space. Technical reference frames were
calculated from the cluster positions, and the position of the
segment extremities relative to these frames was estimated. A
mis-localization error of anatomical landmark positions (Table
1) was also added to the estimate of the position of segment
extremities [27]. Joint angles were then calculated from the
relative orientation of the anatomical reference frames [28].

Instrumentation noise (white noise with an SNR of 10 dB and
alignment errors with a normal distribution and a standard
deviation of 0.1 degrees), compatible with use of commercial
accelerometers, was added to acceleration signals of the trunk
segment at the level of L5. Smaller magnitudes of noise were
also analysed that led to comparable results, therefore, only
the most potentially critical conditions were reported.

Experimental data
10 healthy participants [age 28 ± 3 years, height 174 ± 11

cm, weight 67 ± 13 kg] were included in the study. Two
synchronized tri-axial inertial sensors (Opal, APDM, Portland,
OR, USA) were placed on the participants at the level of L5
and of the right shank, for measuring angular velocity of the
lower leg. Accelerations and angular velocities were recorded.
The range of the accelerometers was ±2G and sampling rate
was 128 samples/second. The participants were instructed to
walk straight at self-selected speed on a 250 m dead-end long
road.

Ethics Statement
The Bioetihcal Committee of the University of Bologna

approved this study (July 7, 2012). Written informed consent
was obtained from the participants.

Data processing
Orbital stability analysis was implemented according to

methodology described in the literature [13,23,24,29].
Seven state spaces (six for model-data and one for

experimental data) were analysed (Table 2), based on the
literature about orbital stability of human gait [11,15,16]. Two
approaches were used. Five state spaces were constructed
directly including time series into the state space. These state
spaces (Table 2) included model knee flexion-extension joint
angles (WMk), model hip flexion-extension joint angles (WMh),
model knee+hip+trunk flexion-extension joint angles (WMhkt)

Table 1. Precision of the palpable anatomical landmark
position (in millimeters) in the relevant mean anatomical
frame obtained by Della Croce et al., 1999.

Anatomical landmark x y
Greater trochanter (GT) 12.2 11.1
Medial Epicondyle (ME) 5.1 5.0
Lateral Epicondyle (LE) 3.9 4.9
Medial Malleolus (MM) 2.2 2.6
Lateral Malleolus (LM) 2.6 2.4

For ME, LE and MM, LM the mean value between the two was used in the
analysis.
doi: 10.1371/journal.pone.0080878.t001

Figure 1.  Schematic representation of the 5-link 2-dimensional model (Solomon et al., 2010).  
doi: 10.1371/journal.pone.0080878.g001
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and experimental accelerations in the V and AP directions
(EXPa). Two state spaces were constructed using delay
embedding [30,31] of model AP (WMaAP) and V (WMaV) trunk
acceleration signals. An embedding dimension of dE = 5 was
chosen, as several published studies supported this delay
dimensions appropriate for gait data [22,31,32]. A fixed time
delay τ = 10 was chosen [22,32].

For both model and experimental data, a stride cycle was
considered as the interval between two consecutive right heel
strikes. For experimental data, right heel strike instants were
estimated from the angular velocity of the lower limb with a
method based on wavelet analysis [33]. Strides were
resampled to 101 samples, because Floquet theory requires a
strictly periodic system. Experimental data were analysed
without filtering, to prevent complications resulting from linear
filtering of nonlinear signals [34]. A Poincaré section was
defined at each percentage of the gait cycle (0% = right heel
strike).

The Poincaré map:

Sk+1FSk (1)

defines the evolution of the state Sk to the state Sk+1 at each
Poincaré section, for each stride k.

The limit cycle trajectory was defined as the average
trajectory across all strides, defining a fixed point in each
Poincaré section:

S*FS* (2)

A linear approximation of equation (1):

Sk+1S*≈JS*SkS* (3)

allows to calculate how system states diverge from or
converge to fixed points. The FM are the eigenvalues of the
Jacobian matrix J(S*). The maximum FM (maxFM) is believed
to govern the dynamics of the system, and hence to be the
most representative in terms of instability. If the maxFM have
magnitude < 1, the system is stable, otherwise, the system
tends to diverge from the limit cycle and is unstable. maxFM
were calculated for each Poincaré section (0 – 100% of the gait
cycle), and the overall mean value of maxFM across the gait
cycle was calculated and used in this analysis.

Orbital stability analysis on model-data was performed on the
seven different state spaces (Table 2). Both noise-free and
noisy conditions were analysed, as well as experimental data.
Mean values of maxFM along the gait cycle were calculated for
increasing number of strides (from 10 to 300 for model-data,
from 10 to 160 for experimental data).

In order to perform a sanity check of the results obtained
from numerical calculation of maxFM on model time series,
semi-analytical calculation of the FM was performed. The full
10-dimensional state space (composed of angular velocities
and accelerations) was considered for this analysis. Instead of
estimating S*, the stable period one solution was taken. Ten
strides were then simulated (being the state space 10-
dimensional), each one with a small perturbation of one the
state variables at the heel strike instant. States at heel strike
after the perturbation were then put in matrix form; S* was then
subtracted from said matrix, obtaining the right hand side of Eq.

3. This matrix was then divided by the magnitude of the initial
perturbation in order to obtain J matrix [19,35].

Results

Semi-analytical calculation of the FM of the model led to a
value of maxFMsa = 0.23.

Experimental noise had a slight but non-negligible influence
on maxFM for state spaces composed by joint angles (WMhkt,
WMk and WMh). Analysis on these state spaces in noise-free
conditions led to mean values of maxFM along the gait cycle
that decay with the increase of the analysed stride cycles, until
reaching the values 0.27, 0.15 and 0.22 respectively. For all
state spaces about 130 strides were needed to reach steady
values. Standard deviation slightly decreased with the increase
of the number of stride cycles (Figure 2). State spaces
composed by noise-affected signals showed a similar overall
trend, but seemed to reach slightly different steady values,
especially for WMhkt state space (Figure 3).

MaxFM calculated on noise-free acceleration state spaces,
both 2- and 5-dimensional (WMa, WMaAP and WMaV),
behaved similarly: values of maxFM gradually decreased,
starting from values between 0.5 and 0.9, until stabilizing
around values a little lower to the ones previously found for non
noise affected joint angle state spaces (0.13 - 0.19) with a
standard deviation of about 0.04 (Figure 4). About 130 strides
were needed in order to reach steady values. Results coming
from analysis of noisy accelerations signals were practically
identical to those obtained from noise-free signals for overall
trend, number of required strides and numerical values (Figure
5).

MaxFM calculated on experimental acceleration state space
(EXPa) showed decreasing value for increasing number of

Table 2. Description of the state spaces.

Acronym Description Composition

WMk
Swing+stance knee flexion/
extension joint angles (model)

WMk(t) = [ϕk,st(t), ϕk,sw(t)] ∈ R2

WMh
Swing+stance hip flexion/
extension joint angles (model)

WMh(t) = [ϕh,st(t), ϕh,sw(t)] ∈ R2

WMhkt
Knees, hips and trunk flexion/
extension joint angles (model)

WMhk(t) = [ϕk,st(t), ϕk,sw(t), ϕh,st(t),
ϕh,sw(t), ϕt(t)] ∈ R5

WMaAP
5-dimensional delay embedding of
AP accelerations of L5 (model)

WMaAP(t) = [aAP(t), aAP(t + τ), …,

aAP(t + (dE - 1)τ)] ∈ R5

WMaV
5-dimensional delay embedding of
V accelerations of L5 (model)

WMaV(t) = [aV(t), aV(t + τ), …, aV(t
+ (dE - 1)τ)] ∈ R5

WMa
Accelerations in the AP and V
direction of L5 (model)

WMa(t) = [aAP(t), aV(t)] ∈ R2

EXPa
Accelerations in the AP and V
direction of L5 (experimental)

EXPa(t) = [aAP(t), aV(t)] ∈ R2

φk,st and φk,sw are flexion/extension knee angles for stance and swing limb;
similarly, φh,st and φh,sw are flexion/extension hip angles. φt is flexion/extension
trunk angle. aAP and aV are accelerations of the trunk at the level of L5 in anterior-
posterior and vertical directions. For delay-embedded state spaces, τ is time delay
and dE is the embedding dimension (τ = 10, dE = 5).
doi: 10.1371/journal.pone.0080878.t002
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cycles analysed, reaching values close to 0.4 from 80 cycles
on, with a standard deviation of about 0.1 (Figure 6).

Discussion

The possibility to have a reliable locomotor stability index is
of fundamental importance in early identification and treatment
of older adults with high predisposition to fall, and possibly in
real-time gait instability detection also. However, still there is no
unique definition of locomotor stability in the literature. Orbital
stability analysis via maxFM seems promising for the analysis
of cyclic locomotor tasks. However, when dealing with
biomechanical time series, the equations of motion are
unknown, excluding the possibility to calculate maxFM in an
analytical or semi-analytical way. Numerical calculation of
maxFM from experimental time series is hence required, but it

is not clear yet how different implementations of this analysis
can influence the stability estimations.

In this explorative study, orbital stability analysis was applied
to a 5-link stable walking model. The walking model was used
in order to produce signals (joint angles and trunk
accelerations) as similar as possible to real human gait signals.
Stability was assumed, since the model didn’t show any fall or
stumble during the simulation period. Different implementations
of numerical orbital stability analysis were then performed on
the biomechanical signals obtained from the model. As a
reference, semi-analytical calculation of FM of the model was
performed. The aim was to better understand the influence of
number of analysed cycles, state space composition and
experimental noise on the stability outputs.

The magnitude of maxFM obtained in this study was lower
than values obtained in previously published simulation studies

Figure 2.  maxFM obtained for model state spaces WMhkt, WMk and WMh (clean signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g002

Figure 3.  maxFM obtained for model state spaces WMhkt, WMk and WMh (noisy signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g003

Figure 4.  maxFM obtained for model state spaces WMa, WmaAP and WMaV (clean signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g004

Figure 5.  maxFM obtained for model state spaces WMa, WmaAP and WMaV (noisy signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g005

Figure 6.  maxFM obtained for experimental state space EXPa for increasing number of stride cycles.  Error bars represent
standard deviation calculated over the stride cycle.
doi: 10.1371/journal.pone.0080878.g006
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[19,23,24]. Whereas those studies analysed the behavior of 1-
or 2-link walking models, in our study walking of a 5-link model
was analysed. A possible explanation is that the higher model
complexity allows for a higher number of state variables to
compensate for perturbations, thus leading to higher stability.
However, as also explicitly stated by Roos and Dingwell [24],
the main aim of the previous published works was to show the
general relationship between fall risk and stability measures,
and not to give exact numerical values.

According to the results of the present study, the number of
cycles analysed plays a fundamental role. From a theoretical
point of view, the number of analysed cycles cannot be smaller
than the dimension of the state space otherwise the set of
equations would be underdetermined. Once the dimension of
the state space is reached, the analysis of more gait cycles
leads to a better estimate of the true attractor [22] in presence
of physiological gait variability and experimental noise.

Orbital stability analysis performed on noise-free signals from
the stable walking model resulted in maxFM values close to the
reference value of maxFMsa = 0.23, as provided by the semi-
analytical calculation of maxFM, for both state spaces
composed by joint angles and L5 accelerations. The coherence
between these results is encouraging, as it seems to indicate
that a repeatable value of the maxFM can be obtained
analysing different state spaces. Another similarity among
these results was the dependence on the number of analysed
cycles, since for all state spaces composed by non noise-
affected signals steady results were obtained from about 130
strides on.

For a few number of cycles, maxFM values resulted to be
high and inconsistent, hence probably unreliable. Moreover, for
shorter time series (15 strides), analysis conducted upon
stereophotogrammetric data led to a lower overestimation of
the maxFM with respect to the analysis conducted upon
acceleration data.

Whereas the analysis performed on 5-dimensional state
space WMhkt led to value very close to the semi-analytical
value, 2-dimensional state spaces performed comparably, and
sometimes slightly better (as it is the case for WMh state
space, composed by hip joint angles time series). Whereas a
2-dimensional representation of a complex system may seem
insufficient to provide a proper characterization, compared to a
5-dimensional state space, it may serve the applicative
purpose of obtaining a repeatable index of stability with a
simpler representation of the system dynamics. The
relationship with the stability index obtained with this
implementation and the actual fall risk remains, however, still
undetermined.

Results from the analysis of noisy signals led to slightly
different results between acceleration and
stereophotogrammetric data. Analysis of noisy accelerations of
L5 led basically to the same results obtained for noise-free
signals, for all the state spaces: simulated experimental noise
on inertial sensor data did not influence maxFM calculation.
This can lead to the conclusion that orbital stability analysis
performed on state spaces composed by accelerations coming
from inertial sensors is robust to noise, and that again a high
dimensional (5) reconstruction of the state space may not be

necessary, as a lower dimension (2) state space led basically
to the same results. Analysis of joint angles showed an
influence of experimental noise and mis-localization error,
leading to lower steady values for the maxFM, with the
exception of WMh which remained practically unvaried (and
very close to the reference value of maxFMsa = 0.23).

These results are in agreement with Bruijn et al. [16], who
found a correlation of 0.66 between maxFM obtained from two
measurement systems (accelerometers and optoelectronics).

Experimental trial results on the accelerations-based state
space showed a similar trend with respect to the ones obtained
from the analysis of the same variables derived from the
model; nevertheless, the value of maxFM obtained was slightly
higher, and so the standard deviation. A limitation of this
experimental session was the relatively short length of the
walks (160 strides) with respect to the model-data; given the
high handiness and portability of inertial sensor, however,
future studies can analyse orbital stability of very long
overground walks. On the other hand, 160 strides seem to be
sufficient to reach a steady value for the maxFM.

Based on these results, a reliable implementation of orbital
stability analysis could be obtained from an acceleration-based
state space (reconstructed with delay-embedding or including
in the state space accelerations in different directions) and a
number of stride cycles not lower than 130.

In conclusion, the exploration of the influence of
experimental input parameters in orbital stability analysis led to
interesting results. One of the main issues relative to this
technique is the necessity to properly describe the dynamical
system, in order to obtain a reliable orbital stability index;
hence, the definition of the state space is of crucial importance
for the outputs. The coherence between the results obtained
with differently composed state spaces showed that the same
stability output can be obtained with different implementations
and experimental setup. The number of gait cycles necessary
to obtain these results is also practically identical among these
setups. For the peculiarity of the instrumentation features,
however, stereophotogrammetry system is only suitable for
acquiring such long gait trials when a treadmill is used.

Experimental noise and operator errors have an impact,
although small, on the results when using orbital stability
analysis based on joint angles obtained from
stereophotogrammetric systems. Further studies are needed to
determine if the stability measures obtained from analysis on
these state spaces are really capable to discriminate between
known stability conditions. Experimental noise on
accelerometer data showed no particular influence on the
stability results.

Experimental results were also coherent with the model
results in terms of number of cycles required, supporting the
validity of the stability outcomes. This result confirms the
possibility to obtain reliable orbital stability measures with a
single inertial sensor and could lead to advantages in the
development of a simple and fast data acquisition protocol,
confirming what was found in literature for treadmill walking
[16].
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