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Abstract 
Social media data can boost artificial intelligence (AI) systems designed for clinical applications 
by expanding data sources that are otherwise limited in size. Currently, deep learning methods 
applied to large social media datasets are used for a variety of biomedical tasks, including 
forecasting the onset of mental illness and detecting outbreaks of new diseases. However, 
exploration of online data as a training component for diagnostics tools remains rare, despite the 
deluge of information that is available through various APIs. In this study, data from YouTube 
was used to train a model to detect the Omicron variants of SARS-CoV-2 from changes in the 
human voice. According to the ZOE Health Study, laryngitis and hoarse voice were among the 
most common symptoms of the Omicron variant, regardless of vaccination status.1 Omicron is 
characterized by pre-symptomatic transmission as well as mild or absent symptoms. Therefore, 
impactful screening methodologies may benefit from speed, convenience, and non-invasive 
ergonomics. We mined YouTube to collect voice data from individuals with self-declared 
positive COVID-19 tests during time periods where the Omicron variant (or sub-variants, 
including BA.4/5) consisted of more than 95% of cases.2,3,4 Our dataset contained 183 distinct 
Omicron samples (28.39 hours), 192 healthy samples (33.90 hours), 138 samples from other 
upper respiratory infections (8.09 hours), and 133 samples from non-Omicron variants of 
COVID-19 (22.84 hours). We used a flexible data collection protocol and implemented a simple 
augmentation strategy that leveraged intra-sample variance arising from the diversity of 
unscripted speech (different words, phrases, and tones). This approach led to enhanced model 
generalization despite a relatively small number of samples. We trained a DenseNet model to 
detect Omicron in subjects with self-declared positive COVID-19 tests. Our model achieved 
86% sensitivity and 81% specificity when detecting healthy voices (asymptomatic negative vs. 
all positive). We also achieved 76% sensitivity and 70% specificity separating between 
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symptomatic negative samples and all positive samples. This result showed that social media 
data may be used to counterbalance the limited amount of well-curated data commonly available 
for deep learning tasks in clinical medicine. Our work demonstrates the potential of digital,    
non-invasive diagnostic methods trained with public online data and explores novel design 
paradigms for diagnostic tools that rely on audio data. 
 
1. Introduction 
In this work, we used public online data from social media to boost the diagnostic potential of 
the human voice. Instant assessment was performed for the presence of the COVID-19 Omicron 
variant using a deep convolutional neural network (CNN) model trained on unscripted audio 
samples from YouTube videos. SARS-CoV-2 is routinely detected and confirmed through 
polymerase chain reaction (PCR) using nasal or throat swabs; however, the turnaround time, 
cost, and resources can pose a challenge for broad-scale rapid testing in some settings. Resource-
limited settings for definitive testing might benefit from serial screening methods to triage 
limited testing resources. Invasive home testing methods have also been developed, but can 
require expensive reagents and laboratory expertise, further restricting accessibility in low-
resource settings. Moreover, these tests still do not offer the practicality of immediate results, 
which have become increasingly necessary as societies move towards “living with COVID”.5 

Serial testing practices are already common, where reasonably sensitive at-home antigen test 
screening is followed sequentially by more-specific PCR confirmation. Instant, non-invasive, 
and sensitive “pre-screening” tests might be useful if immediately available to suggest 
subsequent confirmatory testing, or to track spread of variants with unique audio phenotypes. 
Prior AI methods have been unable to successfully detect pre-Omicron variants from unscripted 
or scripted human voice alone, or were otherwise unsuitable for deployment (e.g., very limited 
training data, poor generalization).6 

  
Omicron, however, more commonly affects the upper airway, sinuses, and hypopharynx than 
prior variants, often resulting in voice changes without a cough.7 This represents an opportunity 
for more specific targeting by AI methods if robust datasets were available. Worldwide, there are 
over 3.6 billion users of various social media platforms, and that number is expected to be above 
4.4 billion by 2025.8 On YouTube alone, over 500 hours of video are uploaded to the platform 
every minute.9 Much of this widely accessible data is ignored but may be readily available to 
researchers or developers through the advanced programming interfaces (APIs) provided by the 
social media companies. Such data provides an accurate portrayal of noisy, unscripted           
“real-world” data, whose broad diversity supports generalizability. Similar data for training and 
validation may support “pre-screening” deployment settings, such as a smartphone application. 
  
Our deep learning model was trained from this freely accessible data. However, sequencing was 
not performed, and annotation of training data was based upon prevalence assumptions and self-
declaration. However, these same limitations contribute to the practicality and cost-effectiveness 
of the approach. Such models may have non-invasive serial pre-screening implications in 
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settings with unmet needs or in under-resourced populations, with limited access to conventional 
testing. Early detection of phenotypic shifts or geographic migration could have critical impact in 
precisely such settings, where low rates of vaccination may facilitate emergence or spread of 
novel variants. If validated and deployed successfully, AI-based pre-screening tools using voice 
data alone could be instant, accessible, and cost-effective. Other pre-screening methods that rely 
upon lab results are slower and less accessible than digital or automated solutions. Digital voice 
models may be flexibly deployment in a broad array of real-world settings. 
 
 

There are numerous barriers to realistic deployment of AI models for COVID-19 diagnostics. 
Prior attempts have frequently been trained on extremely limited datasets, resulting in overfit 
models that do not generalize, with limited performance and impracticable translation.10 Existing 
models for acoustic, AI-driven diagnostics have also been limited due to a reliance on short, 
structured samples collected in sterile scripted environments, which are not reflective of         
real-world settings. In this report, we offer several contributions toward instant COVID-19 
testing and, more broadly, to dataset design and audio-based deep learning methodologies, 
especially in unscripted settings. 
  
Contributions: 
 

1. A non-invasive and instant Omicron pre-screening/detection model was developed using 
training data that included recent subvariants, healthy controls, and other respiratory 
illnesses. Voice changes were identified in patients with self-declared Omicron. 
Unscripted voice recordings alone (excluding cough, stridor, etc.) may be sufficient for 
detecting Omicron COVID-19.  
 

2. An AI system was built with public social media data, with training and validation 
strategies designed for practical real-world settings. This is in contrast with prior social 
media AI efforts which simply facilitated narrow tasks that were only useful in similar 
social media settings for similar users. The system included a model for healthy screening 
(filtering out healthy voices) that was trained on healthy and omicron data. We also 
trained a model for symptomatic testing, separating other URI data from omicron data.  
 

3. A large audio training dataset was developed from a diverse array of settings and 
recordings towards Omicron detection from voice sounds. Our dataset contained over 28 
hours of unscripted audio from people posting with self-declared Omicron, which is 
several orders of magnitude greater than previous efforts. 
 

4. A new framework was designed for rapid diagnostic tools from voice data, emphasizing 
longer samples and unscripted collection protocols that facilitate stable, real-world 
deployment.  The simple strategy relied on the diversity of the input data to prepare for 
real-world testing environments more effectively. Improved generalization was shown 
when compared to the use of short speaking inputs using a standardized script (counting 
to 20). This testing paradigm may be extendable to future pandemics. 
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2. Related Work 
  

2.1 Social Media Data for Diagnosis 
Cost-effective data collection, curation, annotation, and augmentation are critical for enabling AI 
to track or predict illness. Public online sources like social media are expansive sources of 
information. This freely available data does not rely upon intricate searching mechanisms or 
filtered, delayed reporting, potentially facilitating earlier detection of disease outbreaks, 
surveillance, or epidemiology dynamics. 
 
The vast amount of information available on social media has been utilized in several existing 
diagnostic models. A deep learning model trained on Tweets was more predictive of 
atherosclerotic heart disease mortality than a model based on conventional mechanistic input 
combining socio-economic, demographic, and health risk factors (such as diabetes and 
obesity).11 Word frequency analysis can classify the mental health status of Twitter users.12 
Multi-agent reinforcement learning has been used to extract textual and visual features from 
Tweets to predict depression.13 Recently, multiple types of textual features were leveraged to 
detect suicide ideation from Tweets using deep learning methods.14 
 
Other social media platforms (YouTube, Facebook, etc.) have also been used as sources for data 
for biomedical applications, though less frequently than Twitter. Novel biomarkers predicting 
pre-diabetes, depression, and postpartum depression were discovered via statistical analysis of 
Facebook data.15,16 Manual analysis of brief, unstructured home videos on YouTube by           
non-clinical raters was able to detect and classify autism in children with a high performance, 
even outside of traditional clinical environments.17 Similar to the Twitter analyses, YouTube 
audio, visual, and search-history data have successfully detected mental illnesses, including 
depression and OCD.18,19 As such, the generalizability of social media-based models is limited 
mostly by the context of their training. 
 

2.1 AI for COVID-19 Testing 
AI methodologies have been applied across a variety of COVID-19 datasets aiming to develop 
deployable systems for instant screening diagnostics. When coughing and breathing changes 
occur with COVID-19, these symptoms may have unique features that can be used for 
classification, even when compared to other upper respiratory infections (URIs). Past and current 
work should, however, be contextualized using the criteria outlined by Han et al., which point 
out methodological flaws such as mixing training/testing data, exclusion of other URIs 
(classifying only fully healthy samples and COVID samples), and overfitting on small datasets.6 
Prior work has also generally lacked stratification by variant (the studies were centered around 
“COVID” as a whole. 
  
Nonetheless, previous efforts highlight the potential for using voice/audio data as the foundation 
for an effective diagnostic tool. A CNN-based model trained on forced-cough recordings of 
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patients with and without COVID-19 was able to recognize COVID-19 with 98.5% sensitivity, 
which increased to 100% in otherwise asymptomatic subjects.20 Audio-based technologies using 
cough sounds have also been deployed on a smartphone app for COVID-19 detection.21,22,23,24,25 
Additionally, COVID-19 patients have unique time and frequency domain patterns in breath 
sounds that may empower CNN models.26 
  
In a dynamic pandemic such as COVID-19, crowdsourced datasets allow for continuous and 
focused sample collection. “Coswara” is a database containing a variety of respiratory sound 
samples of COVID-19, including cough, breath, and scripted voice data.27 Volunteers recorded 
and uploaded samples on a smartphone or computer, and the database divided them into COVID 
or non-COVID cohorts.28 Numerous researchers have used this database to train AI models for 
detection of COVID-19 based on cough or breath recordings.22,25,29 Prior work used data from 
pre-Omicron variants (including Alpha and Delta), which affected the voice less commonly than 
Omicron. 1    
 
Omicron is characterized by milder illness and the absence of a cough and lung changes that 
were the substrates for a multitude of prior AI-based COVID-19 models. However, physiological 
changes in speech (such as from Omicron) may occur before symptoms are present or obvious.1 
Past studies have used machine learning techniques to build models that classify COVID-19 with 
scripted speech as one input element. Audio recordings from COVID-19 patients helped train a 
model to automatically stratify patients based on illness severity, sleep quality, fatigue, and 
anxiety.30 A binary classifier was able to differentiate COVID-19 speech from normal speech 
based on scripted telephone data.31 Spectral features of speech alone were assessed in 
asymptomatic patients with and without COVID-19, yielding a true positive rate of 70%. 
However, the likelihood of generalization was limited, as the model was trained on samples from 
only 22 asymptomatic patients that were directed to read the same sentence.  
 
Multiple studies have used the Coswara database to train models to detect COVID-19 from 
scripted voice, cough and breathing samples. Such algorithms reported an accuracy of 97% on 
limited binary datasets, which notably excluded other respiratory illnesses.32,33 Deep learning 
models trained on the “Sounds of COVID” dataset showed that voice alone performed poorly on 
pre-Omicron data (0.61 ROC-AUC), also without other respiratory illnesses.6 Further, most 
studies focus on multi-input models, and do not clarify exact time-frames of voice data analyzed, 
nor specify the exact or likely variant (or sub-variant) with sequencing or demographic 
likelihood statistics, which may have a major impact upon training and performance. 

 

3. Methods                 
This study was performed as human subjects research with Institutional Research Board approval 
and waiver of subject consent. The analysis, training, validation, and testing pipeline for 
detecting the Omicron variant of COVID-19 using voice recordings mined from YouTube is 
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outlined (Fig. 1). The process included data collection, data preprocessing, and 
training/validation of the model. 

 

 
Figure 1. Workflow for COVID-19 detection pipeline. (1) Videos were mined from YouTube; 
(2) audio was extracted, and the human voice was separated from music and background noise; 
(3) audio recordings were split into segments and converted to spectrograms; (4) DenseNet 
model was trained on the spectrograms; (5) trained model was used to predict if samples in a 
testing dataset were positive or negative for COVID-19. 
 
3.1 Data Collection                                                                                                       
Audio samples were mined from YouTube searches and annotated based upon presumptive 
correlation with epidemiological data. We separated our data into 4 self-declared, presumptive 
cohorts: 
  

1. COVID-19 – Omicron variant (presumed by dates) 
2. COVID-19 – non-Omicron variant (presumed by dates) 
3. Other upper respiratory infections (URIs) 
4. Presumably healthy or non-acutely ill subjects.  
 
A series of heuristics were implemented to identify relevant videos. For example, if the user said, 
“I have COVID” or “I tested positive”, during a time in which Omicron was the dominant 
variant, the corresponding audio sample was labeled as “Omicron”. For the healthy videos, as 
there is a nearly infinite number of non-acutely ill speakers on YouTube, we focused on videos 
which had extremely clear, high-quality audio from one speaker over a long period of time. Each 
YouTube video was annotated as one of the 4 cohorts and manually verified to ensure accurate 
labeling. Though the data mining procedure was somewhat standardized, it was not 
comprehensive, and future studies might benefit from an improved, automated mining procedure 
to expand the dataset. All Omicron videos were from December 20th, 2021 – August 1st, 2022. 
Omicron was designated a “variant of concern” on November 26th, 2021 by the WHO.34 BA.2 
was first identified in the US on December 21st, 2021, and Omicron was estimated to be the 
dominant variant in the US by late December 2021.35  Omicron was identified as the dominant 
variant globally, accounting for > 98% of sequences shared on GISAID after February 2022.3,36 
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The BA.1 and BA.2 lineages were most common between December 2021 – June 2022, with 
BA.4/BA.5 becoming more prevalent in July 2022.37 No sequencing was recorded.  
  
3.2 Data Preprocessing 
Raw audio samples (extracted from YouTube videos) were noisy, often containing background 
noise such as music, as well as long periods of silence or low-resolution audio. These were 
potential sources of confusion for a model aiming to detect disease effects upon spectral features 
of raw human voice. A preprocessing pipeline with 3 steps was implemented across the cohorts: 
   

1. Audio Denoising: Audio quality assessments were performed, and “noisy” sound was 
removed using semi-supervised machine learning methods developed by Dolby and made 
available through the Dolby Media APIs.38 
  

2. Removal of Background Noise and Silence: Background noise was removed via a      
U-Net convolutional neural network architecture. Extended periods of silence were 
removed via a voice activity detector that leveraged Gaussian mixture models to identify 
regions of data wherein the user was not speaking.39 

  

3. Conversion into Mel spectrograms: Samples were converted into a 3-channel matrix, 
corresponding to 3 Mel spectrograms generated with different window sizes and hop 
lengths. Mel spectrograms represent sound as frequency over time, where the frequency 
values have been converted to the Mel scale (a representation of pitch based on how the 
human ear perceives loudness). This approach ensured that each channel contained 
different frequency and time information (similar to resolution in a standard image 
representation), providing the model with maximal context during training.40 

  
3.3 Augmentation 
In audio-based diagnostics, there is minimal value in positional context. We further assume that, 
in laryngitis data, long-term dependencies are also limited in value. While past work has shown 
that not all sounds are “created equal” as disease predictors, relevant digital biomarkers of 
laryngitis should reasonably have a detectable frequency within a 10 second interval.41 Our 
simple data augmentation strategy relied on the positional invariance of diagnostic speech 
samples and the reduced need for modeling long-term dependencies in the context of laryngitis. 
Our aim was to use the natural diversity of speech to enhance the generalizability of our model 
and reduce the impact of class imbalance. For each audio recording, we considered the set of 
possible transformations to be the result of dividing the sample recording into segments of length 
n seconds. Time and frequency masking (via SpecAugment) were also applied to each batch 
prior to input into the DenseNet CNN model.42 

 
3.4 DenseNet             
Convolutional neural networks (CNNs) utilize the convolution operation to model spatial 
relationships in matrices (e.g., images or spectrograms). These representations, in most cases, are 
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input into a standard feed-forward neural network and mapped onto an outcome or embedding 
vector. In most cases, the individual layers of a CNN are connected only to the subsequent layer. 
DenseNet introduced a new framework wherein each layer was connected to all subsequent 
layers in a “Dense Block”, and there may be multiple Dense Blocks within the same network.43 
These blocks are connected to each other via convolution and pooling layers which structured the 
outputs of one block as inputs for the following block. This approach had multiple key 
advantages for complex tasks, including improved feature propagation and improved feature 
reuse. 
   
The DenseNet model was chosen due to the scalability of the architecture and high top-1 
accuracy value on the complex ImageNet dataset, indicating that this model had learned a 
generalizable representation of images themselves (key shapes/features). A pre-trained model 
was chosen based on prior work which reported that CNN models pre-trained on ImageNet 
achieved superior performance on audio data compared to randomly initialized models.40,44 

Although DenseNet is used for scalability and high performance, other recent architectures can 
be used as well, such as Vison Transformer.45 Our system does not rely on a single architecture: 
instead, any improvement in the architectural design our proposed model will also increase the 
overall outcome. 

 
4. Experimental Design 
Experiments were performed to assess the potential of social media as a data source for training 
models to complete pre-screening/diagnostic tasks. We also assessed the generalization capacity 
gained from using the long, free-response inputs as a component of the data augmentation 
strategy alongside SpecAugment (compared to short, standardized inputs). Each experiment was 
run using stratified 6-fold cross validation to determine the potential for generalization. The 
reported performance metrics are mean values from 6-fold stratified cross validation (Table 2).  
  
4.1 Datasets 
 

4.1.1 YouTube Dataset                                                                                                                 
The YouTube dataset contained 183 videos/subjects with Omicron voices (28.39 hours), 133 
videos/subjects with pre-Omicron COVID-19 voices (22.84 hours), 138 videos/subjects with 
voices from users with other respiratory illnesses (8.09 hours), and 192 videos (33.90 hours) with 
healthy voices. Statistics for the YouTube dataset are listed in in Table 1.  
 
To the best of our knowledge, the YouTube dataset currently contains the largest amount of 
voice data (in hours) for COVID-19 generally (all variants), the Omicron variants specifically, 
and, particularly, upper respiratory infections that were confirmed or self-declared non-COVID. 
The Coswara dataset contains samples which may be other upper respiratory infections but were 
not confirmed or self-declared as non-COVID. We also note that within the previously reported 
“Sounds of COVID” dataset from Han. et al, nearly half the 1,964 negative participants had at 
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least one “COVID” symptom, but multiple of these possibilities were unrelated to the upper 
respiratory system (e.g., fever, dizziness). 6  In this study, each participant was instructed to read 
the same short sentence 3 separate times. 6  
 
In contrast, the YouTube dataset intentionally contained either self-declared non-omicron 
illnesses or illnesses that were designated non-omicron based on the date of posting. The samples 
were selected for the potential to impact the upper respiratory system and strengthen the model 
as a tool for symptomatic testing with voice data. These included influenza, strep throat, cold, 
allergy attack, asthma, bronchitis, and others. Prior to training, we applied preprocessing and 
augmentation strategies to the dataset as described in sections 3.2-3.3. 
 
4.1.2 Coswara 
After preprocessing the data to remove samples with more than 50% silence or background noise 
(section 3.2), the remaining subset of the Coswara database contained 213 Omicron samples 
(defined using the same date range as the YouTube data), 251 non-Omicron COVID-19 samples, 
102 samples from non-diagnosed URIs (COVID-19 not confirmed or ruled out), and 704 healthy 
samples (on date of access). These scripted samples include audio from counting in English at 
two rates of speed: normal and fast. Statistics for the Coswara dataset are listed in Table 1. 
 
Table 1: Statistics for COVID-19 Sound/Voice Datasets used in this study.  
  

Dataset COVID-19 
Samples (All 
variants) 

Omicron 
Samples 

Other URI 
(Symptomatic) 
Samples 

COVID-19 
total audio  

Omicron 
total audio 

URI total 
audio 

YouTube 
Dataset 

316 183 138 51.23 28.39 8.09 

Coswara 464 213 102 1.92 0.95 0.47 

 
4.2 DenseNet Model Training 
For supervised classification tasks involving voice samples, a cross-entropy loss function was 
used to fine-tune a pre-trained DenseNet. Parameter optimization was performed for learning 
rate, weight decay, segment length (the length of the n-second windows described in section 3.2), 
and minimum sample length. The final set of parameters used for fine-tuning our model was a 
learning rate of 1e-5, weight decay of 0.1, a batch size of 64, a segment length of 2.5 seconds, 
and a minimum sample length of 30 seconds. Early stopping was used to reduce overfitting. To 
address imbalances in the dataset, each batch was generated by oversampling the minority class. 
For each sample in the batch, a 2.5 second voice segment was selected randomly from the entire 
audio recording. We used the same DenseNet architecture when training on the Coswara dataset 
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but froze the base layers and fine-tuned only the classification head. This was done to reduce 
overfitting on the scripted training dataset. 
 
4.2.1 Healthy Screening                    
A DenseNet model was trained to perform healthy pre-screening (e.g., an asymptomatic 
individual, such as prior to attending a sporting event or traveling). Here, the model was trained 
by simply performing a binary classification task, separating asymptomatic healthy voices from 
those with omicron. 
 
4.2.2 Symptomatic Testing 
A DenseNet model was also trained to perform symptomatic testing. The model was tasked with 
separating between Omicron samples and other URI samples, aiming to classify users who are 
presenting with upper-respiratory symptoms  
 
4.2.3 Coswara Experiments                    
A DenseNet model (classification head only; the base layers were frozen due to overfitting) was 
fine-tuned on the preprocessed Coswara dataset to complete the tasks described in 4.2.1-4.2.2.  
 
4.3 Model Validation 
For validation on a blind test dataset, sensitivity and specificity were calculated on a per-sample 
basis. Each sample was divided into a set of n-second segments as described in section 3.3. If a 
sample could be split into more than one segment, a majority vote was used to assign the final 
label (“positive” or “negative”). This approach was used to facilitate subsequent real-world 
deployment, where the user would be prompted to supply at minimum 30 seconds of audio, 
thereby reducing the risk of incorrect results because of random noise (e.g., misuse of the 
system) or model failure due to shifts in tone, words/phrases, etc. that could occlude relevant 
digital biomarkers. 
 
5. Experimental Results 
 

5.1 YouTube Dataset                 
Our model was tested on the YouTube dataset using the classification tasks described in sections 
4.2.1-4.2.3 (Table 2 for specific results). Notably, we show that voice changes can be used as a 
predictor for the omicron variant on “real-world” data (mined from YouTube), with a sensitivity 
of 0.76 and a specificity of 0.70 for the symptomatic testing task. This finding suggests that AI 
models trained on real-world voice data may have relevance beyond identifying asymptomatic 
healthy subjects. Here, the sensitivity (0.86) and specificity (0.81) were expectedly higher.  
 
5.2 Coswara Dataset 
For comparison, the same general methodology was applied to the preprocessed Coswara 
dataset, which consisted of much shorter segments with a standardized script for the participants 
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(counting to 20 in English). Coswara data was used to train a DenseNet model, which was tested 
on Coswara data subsets. The performance (sensitivity and specificity) was superior for the 
YouTube dataset versus the Coswara dataset (Table 2). The uniformity of short, scripted data 
samples may degrade the generalization performance of the model, limiting applications in “real-
world” settings. 
 
Table 2: Model performance on randomly selected test datasets using the unscripted YouTube 
and scripted Coswara datasets: 

   
Dataset Task Sensitivity Specificity 
YouTube Healthy Screening 0.86 0.81 

YouTube Symptomatic Testing 0.76 0.70 

Coswara Healthy Screening 0.58 0.55 

Coswara Symptomatic Testing 0.52 0.43 

 
 

 6. Discussion 
 

In this report, we show that: 
   

1. Public online data, including unscripted social media data, has rich public health and 
epidemiological information that can be utilized in various targeted tasks, even in a 
pandemic setting. Artificial Intelligence (AI) deep learning models trained from 
unscripted social media data can be applied in settings that do not involve social 
media/Internet users. 

  
2. Voice change was a predictor of the Omicron variant (in contradistinction to past 

variants). Omicron samples were distinguished not only from healthy voices, but also 
from voices with other URIs/conditions.  

   
3. Models trained on longer, unscripted audio samples achieved superior generalization 

compared to shorter, and, in some cases, standardized scripted inputs. Lengthy sequential 
data improved model performance, even for audio diagnostics where there is little need 
for modeling positional context or long-term dependencies. 

  
We introduced the “YouTube COVID-19 voice dataset”, which contains over one full day of 
data from audio samples corresponding to the Omicron variant, non-Omicron COVID-19, and 
healthy controls. The dataset also included over 8 hours of data from other URIs. This is in 
contrast with other COVID-19 audio datasets such as Coswara, which were noisy and 
imbalanced (approx. 1 hour of viable Omicron voice data) and contained undiagnosed URI data 
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(unconfirmed COVID negativity). This comparison underscores the value of retrospective data 
collection from public social media in unscripted real-world settings. 
 
6.1 Real-World Deployment                   
Potential future applications for our model include dataset expansion through improved mining 
methods, smartphone/web-app testing that can be done at the onset of symptoms, prior to large 
gatherings, travel, or in other surveillance settings. Furthermore, upfront regular pre-screening in 
an at-risk population (already being screened with PCR or antigen testing) could be used to 
define the temporal or geographic dynamics of voice changes from variants as the virus 
continues to evolve. Since infectivity and transmission may pre-date symptoms, such efforts 
might facilitate a better understanding of early pre-screening methodologies and approaches.  
 
However, model deployment, stability, and impact currently remain speculative and unproven 
due to the limited size of samples from other URIs, lack of PCR confirmation testing, lack of 
SARS-CoV-2 sequencing, and numerous assumptions feeding into ground truth classification. 
Training data classifications were dependent upon prevalence and demographic assumptions 
which introduce undefined elements.  
  
7. Conclusion   
Digital epidemiology is understudied in the context of the vast amounts of public online data and 
social media data available. The quantity of public data raises new questions in terms of security, 
regulation, and real-world validation. Social media audio data that is unscripted may inherently 
be more diverse (and ultimately lead to more generalizable models) than narrow-intent scripted 
data. Still, the results achieved by this early effort at Omicron detection merit further evaluation 
with smartphone app deployment, even without ground truth from PCR or sequencing in the 
training data. Despite these limitations, this work highlights the presentation of laryngitis 
manifesting with uniquely hoarse voices in patients with the Omicron variant of COVID-19. The 
deluge of untapped and unscripted audio data on social media may enable new frameworks to 
facilitate instant pre-testing, all trained with public data. 
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