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Animals are home to complex microbial communities, which are shaped through
interactions within the community, interactions with the host, and through environmental
factors. The advent of high-throughput sequencing methods has led to novel insights
in changing patterns of community composition and structure. However, deciphering
the different types of interactions among community members, with their hosts and
their interplay with their environment is still a challenge of major proportion. The
emerging fields of synthetic microbial ecology and community systems biology have the
potential to decrypt these complex relationships. Studying host-associated microbiota
across multiple spatial and temporal scales will bridge the gap between individual
microorganism studies and large-scale whole community surveys. Here, we discuss the
unique potential of Hydra as an emerging experimental model in microbiome research.
Through in vivo, in vitro, and in silico approaches the interaction structure of host-
associated microbial communities and the effects of the host on the microbiota and
its interactions can be disentangled. Research in the model system Hydra can unify
disciplines from molecular genetics to ecology, opening up the opportunity to discover
fundamental rules that govern microbiome community stability.
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INTRODUCTION

Microbes sustain life on this planet as they perform not only important ecosystem functions but
also inhabit all organisms. The entirety of a host with its associated microbial community, including
viruses and cellular microbes is called the “metaorganism” or “holobiont” (Bosch and McFall-Ngai,
2011; Bosch and Miller, 2016). The existence of such a unifying term indicates the significance
of the microbial community for understanding the biology of any host. These host-associated
microbial communities (microbiomes) live on host surfaces, are associated with different tissues,
and can reside inter- and intracellularly (Huttenhower et al., 2012; Kostic et al., 2013). Host-
associated microbial communities are dynamic, changing throughout the hosts’ life, and are not
passive players but actively engage in host development, metabolism, immunity, and health as
found in established model systems, like corals, worms, insects, mice, and Hydra (Ley et al., 2008;
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Fraune and Bosch, 2010; Fukuda et al., 2011; Naik et al., 2012;
Lee and Brey, 2013; Sommer and Bäckhed, 2013; McFall-Ngai,
2014; Thompson et al., 2015). How microbes increase the host’s
stress tolerance and modulate its niche breath are active fields
of research (Mueller and Sachs, 2015). Despite the evident
importance of the microbiome in affecting host fitness (in a
Darwinian sense), insights into the underlying mechanisms are
still lacking.

TRANSITIONING FROM DESCRIPTIVE
TO PREDICTIVE MICROBIOME
RESEARCH

Recent technological advances (e.g., high-throughput
sequencing, proteomics, metabolomics) and expanded
efforts through a large number of human and environmental
microbiome initiatives (summarized in Stulberg et al., 2016)
have led to great progress in characterizing the composition of
host-, habitat-, or ecosystem-associated microbial communities
(Huttenhower et al., 2012; Gilbert et al., 2014; Hacquard
et al., 2015; Sunagawa et al., 2015). A recent assessment of US
microbiome research, for example, highlights the importance of
microbiome studies for tackling current world problems, such as
food production, human, and ecosystem health (Stulberg et al.,
2016). Yet for achieving this, microbiome research needs to shift
from a descriptive to a more predictive science (Alivisatos et al.,
2015), where the ecology of these highly diverse communities
is addressed. Central for the ability to predict and manage
the function of host-associated microbial communities is the
knowledge about the factors determining their dynamics and
stability. The concept of a core microbiome (taxa or functional
core) has been very helpful in addressing the stability of this

core and how it changes with age, diet, geographic location,
time, or other factors. Recent findings from human microbiome
research suggest that a core microbiome can be defined at
the functional rather than the taxonomic level (Lloyd-Price
et al., 2016). Yet, what constitutes a core still remains elusive
and depends on the question of interest. In Hydra, microbial
communities of wild caught and domesticated animals have been
found to be surprisingly similar and to share a core microbiota
at the taxonomic level (Fraune and Bosch, 2007). It is likely
that the microbiome (like microbial communities associated
with abiotic environments) is affected by various extrinsic and
intrinsic factors, e.g., temperature, pH, resource availability,
microbe–microbe interactions, but also by interactions with the
host. While a number of studies exist on the interactions between
host and the microbiome, comparatively little is known on the
interactions between microbes within the microbiome (including
the virome) and on how these impact the metaorganism.

Within-microbiome interactions can be driven by diverse
features such as metabolism, social traits (production of public
goods), or environmental factors, like spatial organization (Kim
et al., 2008; Nadell et al., 2010; Mitri and Foster, 2013;
Großkopf and Soyer, 2014). Six different interaction patterns
between members of different species can be distinguished
(Lidicker, 1979) (see Figure 1 for potential interactions within
the metaorganism exemplified in Hydra).

MICROBE–MICROBE INTERACTIONS:
CHALLENGES AND FUTURE RESEARCH

For disentangling the interactions in microbial communities,
it is essential to understand the importance of the two key
motifs, cooperation and competition. This has been well studied

FIGURE 1 | Complex microbial community interactions in Hydra. Schematic drawing of Hydra, with a magnified section of the ectodermal epithelial cells that
are covered with a glycocalyx and the associated microbial community. In this complex system microbes may interact with each other in multiple ways as depicted
by arrows. For the species involved interactions can have a positive (+), a negative (−) or no impact (0). A summary of the possible ecological interactions and their
meaning in metabolic terms are summarized in the table (modified from West et al., 2007; Faust and Raes, 2012; Großkopf and Soyer, 2014). It is likely that
interactions between specific microbes and the host can be modulated by metabolic or physical signals but that the host also directly affects the interaction between
microbial species (dashed arrows) via epithelial selection.
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in environmental communities, e.g., by Foster and Bell (2012),
where species from two aquatic environments were isolated. By
analyzing pair-wise interactions between the culturable microbes
it was observed that the majority of interactions were competitive
(Foster and Bell, 2012). This pattern is confirmed by results from
other studies, which suggest that at least 86% of interactions
between strains or species are competitive (reviewed in Mitri
and Foster, 2013). This is in contrast to what had been
assumed for host-associated microbial communities until very
recently. Cooperative interactions among community members
were predicted to be the major driving force for a productive
and stable microbiome, e.g., in the human gut (Bäckhed et al.,
2005; Van den Abbeele et al., 2011). This view was challenged
by a seminal study that integrated ecological network analysis
and recent data from mammalian microbiomes (Coyte et al.,
2015). Whereas a cooperative microbial network was indeed
found to be very productive in the short term, competition
between the different microbes was identified as the driver
of long-term microbiome stability, and so as a benefit for
the host. The counter-intuitive result that cooperation between
microbial species is destabilizing is based on positive feedback
loops that will lead to runaway effects (Coyte et al., 2015).
Unconstrained cooperation is predicted to lead to an ever-
increasing abundance of the cooperating groups of species, which
in turn can result in the collapse of competing populations
and eventually in the destabilization of the whole community.
Competitive interactions between microbes are in contrast
thought to help stabilize the community (McNally and Brown,
2016).

Another factor facilitating the stability of its microbiome is
the host itself (Coyte et al., 2015). Several mechanisms have
been identified by which a host may be able to suppress
the positive feedback between cooperating species and weaken
their interaction: (i) regulation through the immune response
dependent on the density of the different microbial species, (ii)
spatial segregation reducing between-species contact, and (iii)
provision of carbon sources via epithelial feeding minimizing
cross-feeding between microbes. This study also implies that
for understanding and manipulating the host microbiome,
close attention needs to be paid to the strength and nature
of the ecological interactions between the different microbial
species (Coyte et al., 2015), for which experimental data is still
scarce.

Although impressive advances have been made with the
help of high-throughput sequencing techniques in describing
the (highly) diverse species compositions of host-associated
communities [such as the ‘Human Microbiome Project’
(Huttenhower et al., 2012)], little data is currently available
on ecological interactions within the microbiome (Coyte
et al., 2015). One central aspect for approaching a predictive
understanding of microbial community function and dynamics
will be the integration of theory and experiments (Widder et al.,
2016). For generating data that can feed into mathematical
models, ‘model’ microbial communities need to be identified
that can be manipulated and where theoretical predictions can
be tested.

Hydra AND ITS MICROBIOME AS AN
EXPERIMENTAL MODEL

We here propose to extend the utilization of the metaorganism
Hydra beyond the fields of developmental biology (Bosch, 2007),
stem cell research (Bosch, 2009; Bosch et al., 2010), immunity
(Bosch, 2013, 2014), aging (Nebel and Bosch, 2012; Boehm et al.,
2013), and animal–microbe interactions (Bosch, 2013, 2014) as
a model organism for studying interactions within the animal-
associated microbiota and on how that affects the host and vice
versa (Figure 1).

Hydra is a cnidarian, which in contrast to other model
systems for host-associated microbiota, is phylogenetically basal.
Hydra’s phylogenetic position thus provides the benefit of a
very simple body plan with a limited number of cells and
a basal immune and nervous system. Its tube-like body is
akin to the vertebrate intestine (Bosch, 2012) and changes in
Hydra’s epithelial homeostasis lead to significant changes in the
microbial community (Fraune et al., 2009). Hydra possesses
a species-specific and core microbiome of low complexity
(Fraune and Bosch, 2007; Bosch, 2013), from which the most
dominant microbes can individually be cultured under laboratory
conditions (Bosch, 2013; Fraune et al., 2014). The observation of
distinct and reproducible colonization patterns of Hydra during
its developmental life cycle suggests that host factors are involved
in shaping the microbial composition (Franzenburg et al., 2013a).
Antimicrobial peptides have been identified as prominent effector
molecules of the innate immune system that drive epithelial
selection (Augustin et al., 2009; Bosch et al., 2009; Franzenburg
et al., 2013b). Yet it is unlikely that the host has the ability to
control each microbial phylotype individually.

Another key tool for studying interactions between the
host and its microbiota is the creation of germ-free or
gnotobiotic animals, which has been achieved in the Hydra
system (Franzenburg et al., 2012). This in combination with
its transparency, its fast life cycle, the ease of its cultivation
and clonal propagation, and the rich pool of knowledge on
features important for characterizing, understanding, but also
manipulating Hydra as a host (for details see Bosch, 2014),
makes it a perfect system for ‘deconstructing’ a metaorganism
and its interactions. Hydra as a basal eumetazoan thus not
only allows us to gain insight into the early evolution
of host–microbe interactions but also into the ecological
interactions within low complexity microbiomes. Dissections of
the ecological interactions at play are key for understanding
microbiome dynamics, which is the prerequisite for the ability to
reconstructing and restoring a ‘healthy microbiome’.

For disentangling microbial interactions within the Hydra
microbiome, we propose an integrated approach based on
constructing synthetic communities of various complexities
in vivo and in vitro that can be compared to the in situ
community and to single genotypes (Figure 2). Contrasting
identical microbial communities through in vivo and in vitro
experiments will offer valuable clues to the extent of host effects
on microbe–microbe interactions and ultimately their fitness,
and vice versa of microbial effects on the fitness of the host.
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FIGURE 2 | Hydra’s experimental potential for studying interactions
within the microbiome. Overview of the spectrum of microbial community
study systems for unraveling interactions in the relatively simple Hydra
microbiome. The integration of in vivo and in vitro experiments offers the
opportunity to capture clues on how the host might affect microbe–microbe
interactions and vice versa. The opportunity to study inter- and intra-specific
interactions at different resolutions will help to unravel general principles of
microbial interactions in microbiomes.

Classical co-culture experiments (Mitri and Foster, 2013) can
easily be performed in the Hydra system. Here the community
is deconstructed to its individual components and fitness of
each microbial species within the synthetic communities of
various compositions compared to its fitness when grown singly.
Negative interactions [such as competition (net negative effect)]
result in reduced growth of the co-culture compared to the sum
of the species (mono-culture) yields. If additive growth equals
the sum of mono-culture growth, the net effect is neutral, so
species do not interact. If the net effect is positive, i.e., the
combined growth is greater than the additive growth, interactions
are cooperative. This approach has been used for species
assemblages with a manageable number of species (e.g., Fiegna
et al., 2015). With the ability to culture most of the microbial
phylotypes in Hydra in vitro (Bosch, 2013), the interaction
between individual members and the role of individual microbes
within the community can be disentangled.

Co-culture experiments will provide information on the
interactions between the different microbes but also on the
interactions with the host (Figure 1), which can be implemented
into simple theoretical models that can in turn be extended to
providing predictions for more complex microbial communities,
such as the mouse or human microbiome. The value of such
an approach in gaining new insights into the function of the
metaorganism has been showcased by a recent study, where

Hydra’s microbiome was found to provide protection from
infection with the fungus Fusarium sp., which was only able to
infect germ-free animals or the ones with a reduced microbial
community (Fraune et al., 2014). Data from these experiments
fed into theoretical models, which confirmed the findings using a
game theory approach, but also indicated that more experiments
are needed, as the findings could not fully be explained by
pairwise interactions between the microbial species (Li et al.,
2015). Such integration of mathematical predictive models with
experimental data is essential for advancing the understanding
of the function and dynamics of microbial communities (Widder
et al., 2016).

For gaining information on the mechanistic underpinning
of specific interactions, co-culture experiments can be
complemented with gene knockout experiments (Bernstein
et al., 2012; Nakashima and Miyazaki, 2014; Khare and Tavazoie,
2015) in which a target gene is deleted in one of the strains and
the nature of the interaction in the co-culture compared to the
one with the gene still present. Rakoff-Nahoum et al. (2016)
used such an in vitro approach in combination with gnotobiotic
mouse experiments to test for the evolution of cooperation
within the mammalian gut microbiota. Further, there is evidence
that not only genetic changes might be necessary for the
establishment and maintenance of interspecies interactions but
also that changes of the transcriptome can solely be sufficient
(reviewed in Tan et al., 2015). The opportunity of analyzing
the mechanistic (genetic) underpinning of the interactions
among microbes is possible in the Hydra metaorganism but can
moreover be extended to the host as not only the bacteria can
be genetically manipulated, but also transgenic Hydra polys can
be generated by embryo microinjection (Wittlieb et al., 2006).
Another aspect that is advantageous in this system is the ability
to create a ‘static’ host that doesn’t coevolve with the microbiome
as Hydra can reproduce asexually via budding, and so create
identical copies of itself. The microbiome in contrast can
artificially be manipulated and selected upon, e.g., with the goal
of improving host performance. This host-mediated microbiome
engineering (recently reviewed in Mueller and Sachs, 2015) is
discussed as one of the new research frontiers in medicine and
agriculture. Microbiome engineering also allows the studying of
the emergence of new interactions between community members
and how this affects the productivity and long-term stability
of the microbiome and also on how it impacts on host fitness
(Mueller and Sachs, 2015). This is especially of interest in times
of rapid environmental change, where shifted interactions within
the microbiome can function as a buffer against environmental
effects on the host.

Using host-mediated microbiome engineering, another layer
of complexity can be added by including the virome. A recent
study revealed that viral communities in Hydra are species-
specific (Grasis et al., 2014) but their role in establishing and
maintaining the microbiome or affecting species interactions has
to be still resolved (Bosch et al., 2015; Bosch and Miller, 2016).

Decoding the connection between metabolites, microbes, and
the host is yet another exciting frontier in metaorganism research
(Dorrestein et al., 2014). This is highly relevant in the light of
recent evidence that microbially produced metabolites influence
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different organ systems, such as microbe-brain connections,
bone metabolism, or immune functions (Cryan and Dinan,
2012; Dorrestein et al., 2014; Charles et al., 2015; Eisthen and
Theis, 2016). Multi-omics approaches in which the metabolome,
the microbiome, and the host immune system are assessed
simultaneously are feasible in the Hydra model and will help to
decipher this new connection. The metabolite exchange between
the different microbial players in an interaction can be addressed
in an experimental set up, where a conditioned- or spent-
medium approach allows to control metabolite production and
consumption (Ponomarova and Patil, 2015). The method is
based on a cell-free culture filtrate of a donor species, which
is added to a recipient microbial culture to assess the activity
of the secretome (Vetsigian et al., 2011; Rakoff-Nahoum et al.,
2014). In addition to classical experiments in liquid culture
media, other co-culture systems and technologies are currently
used, such as microfluidics, petri dishes, solid support systems,
bioreactors, and transwell systems (reviewed in detail in Goers
et al., 2014).

An alternative approach for inferring cooperative and
competitive relationships between the different community
members (but not the underlying mechanisms) is based on
the availability of high-throughput sequence data, where co-
occurrence data and correlation patterns are analyzed (Faust
and Raes, 2012). A positive relationship can be assumed, when
two species co-occur or show a similar abundance pattern over
multiple samples; a negative one is predicted, when they show
mutual exclusion (Faust and Raes, 2012). With this information
co-occurrence interaction networks can be constructed, enabling
the identification of keystone species that stabilize a community,
or predicting the (in)stability of communities to environmental
change (Faust et al., 2012; Berry and Widder, 2014; Widder et al.,
2014).

Another set of models based on whole-genome sequence
data (or at least drafts) focuses on metabolic dependencies in
microbial communities (Klitgord and Segrè, 2010; Mahadevan
and Henson, 2012). Based on the success of systems biology in
developing in silico predictive capabilities for individual species,
community systems biology (CoSy) attempts to determine and
predict the interactions among multiple species (Zengler and
Palsson, 2012; Tan et al., 2015). The role of community systems
biology in helping to unravel modes of interactions in complex
communities has recently been highlighted by Zengler and
Palsson (2012), and specifically for the human microbiome by
Manor et al. (2014). Genome-scale metabolic modeling has been
instrumental for the reconstruction of the genotype to phenotype
relationship for single organisms (Borenstein et al., 2008; Zengler
and Palsson, 2012). The advancement of these frameworks and
techniques for multispecies metabolic models is a very promising
route for the prediction of complex relationships in multispecies

systems (such as the human microbiome) in the near future
(Borenstein, 2012; Manor et al., 2014). Such an approach can
be applied to the Hydra system due to its comparatively simple
microbiome. Hypotheses can be generated based on genomic
data for subsequent tests in the laboratory as most of the bacterial
phylotypes identified can be cultured in vitro.

The ease of working with the Hydra system in the laboratory
allows that experiments can be performed under well-controlled
conditions, that can easily be replicated, perturbed, and sampled
at different time scales. Hydra shares many ancestral genes with
humans that have been lost in Drosophila and Caenorhabditis
(Chapman et al., 2010; Hemmrich et al., 2012), so insights
into host–microbe–microbe relationships might unravel general
principles that are also relevant to humans and their microbiota.
The Hydra system provides an excellent bridge between the
simplicity of synthetic communities and the mouse model. As
important features of the host, e.g., the host immune response,
are difficult to recapitulate in vitro, in vivo experiments in
combination with an in silico approach will close the knowledge
gap from microbiome composition to ecological interactions
within these communities.
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