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Abstract

Objectives: Investigation of novel vertical radiation shield (VRS) in reducing operator

radiation exposure.

Background: Radiation exposure to the operator remains an occupational health haz-

ard in the cardiac catheterization laboratory (CCL).

Methods: A mannequin simulating an operator was placed near a computational

phantom, simulating a patient. Measurement of dose equivalent and Air Kerma

located the angle with the highest radiation, followed by a common magnification (8

in.) and comparison of horizontal radiation absorbing pads (HRAP) with or without

VRS with two different: CCL, phantoms, and dosimeters. Physician exposure was

subsequently measured prospectively with or without VRS during clinical procedures.

Results: Dose equivalent and Air Kerma to the mannequin was highest at left anterior

oblique (LAO)-caudal angle (p < .005). Eight-inch magnification increased mGray by

86.5% and μSv/min by 12.2% compared to 10-in. (p < .005). Moving 40 cm from the

access site lowered μSv/min by 30% (p < .005). With LAO-caudal angle and 8-in.

magnification, VRS reduced μSv/min by 59%, (p < .005) in one CCL and μSv by 100%

(p = .016) in second CCL in addition to HRAP. Prospective study of 177 procedures

with HRAP, found VRS lowered μSv by 41.9% (μSv: 15.2 ± 13.4 vs. 26.2 ± 31.4,

p = .001) with no difference in mGray. The difference was significant after multivari-

ate adjustment for specified variables (p < .001).

Conclusions: Operator radiation exposure is significantly reduced utilizing a novel

VRS, HRAP, and distance from the X-ray tube, and consideration of lower magnifica-

tion and avoiding LAO-caudal angles to lower radiation for both operator and

patient.
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1 | INTRODUCTION

Radiation exposure in the cardiac catheterization laboratory (CCL) is

known to have both stochastic and deterministic effects on the patient

and the operator.1–5 Fluoroscopy-guided transcatheter interventions have

become more complex over the past decade with chronic total occlusion

techniques, high-risk coronary interventions, mechanical support devices,

and structural interventions in a population with rising body mass index

(BMI) that may increase radiation exposure.6–8 Simple methods and

devices to reduce radiation include avoidance of left anterior oblique

(LAO) or steep caudal or cranial angles, lower fluoroscopy frame rates,

several shields, and greater distance from the X-ray tube.9–23 A variety of

more expensive, although very effective systems have been developed in

reducing operator radiation exposure, including the use of a suspended

radiation protection system and vascular robotics.24–27 The primary aim

of this study was to compare operator radiation exposure with or without

a novel vertical radiation shield (VRS) using first a mannequin and a

human computational phantom, followed by evaluation during clinical

procedures in the CCL.

2 | METHODS

2.1 | Computational human phantom models

2.1.1 | Phantom Model A

Prior to comparing various shields, a computational human phantom

(United States Department of Energy) was placed on a CCL table

(Toshiba Infinix, Irving, CA) to simulate a patient and to locate the

position with the highest impact on scatter radiation. Various angles

(measured in degrees), magnifications, and distances were evaluated

in triplicate. Both Air Kinetic Energy Released per unit Mass (Kerma)

measured in mGray per hour (mGy/hr) provided by the CCL. X-ray

radiation exposure or dose equivalent to the wrist of the

mannequin(operator) was measured at 10 mm below the skin in

microSieverts per minute (μSv/min) provided by a dosimeter (Fluke

RaySafe 2, Glenwood, IL) after fluoroscopy for a period of time until

the exposure was stable (Figure 1a). Source to image distance (SID)

was measured between 107 and 116 cm and interventional reference

point was 15 cm from the isocenter to the X-ray source for measure-

ment of Air Kerma. Measurement of radiation was collected with the

following angles: LAO-Caudal (Caud); LAO-Cranial (Cran); right anterior

oblique (RAO)-Cran, and RAO-Caud. After defining the angle with the

highest radiation exposure, this angle was used in comparison of magnifica-

tion zoom fields set at 6, 8, and 10 in. Using this same angle and an 8 in.

field (as this magnification is used by most operators in this institution), radi-

ation exposure was compared with the mannequin positioned at the access

site, then moved 40 and 120 cm caudal from the access site. This was

followed by comparison with use of HRAP (Radpad Yellow, Worldwide

Innovations & Technologies, Kansas City, MO) alone or in conjunction with

a VRS (Steradian, Radux Devices, MapleGrove, MN).

2.1.2 | Phantom Model B

The above methods were repeated with a different computational

human phantom (Alderson RANDO, Imaging Solutions, Cypress, TX),

CCL (Phillips, Allura system FD 10 and FD 20, Andover, MA) with a

HRAP (Microtek, Ecolab, St. Paul, MN), and dose equivalent measured

at the wrist also 10 mm below the skin with RAD-60R dosimeter

(RADOS, Turku, Finland) on the same mannequin. SID was measured

between 103 and 119 cm with and interventional reference point was

15 cm from the isocenter to the X-ray source. Both Air Kerma (mGy)

and dose equivalent in milli Roentgen equivalent man (converted to

μSv) was measured in triplicate after 15 seconds of cine.

2.2 | Clinical procedures

Operator radiation exposure was measured in a prospective manner in

the setting of two CCLs (Phillips, Allura system, Andover, MA): CCL A

F IGURE 1 (a) Position of
mannequin, when testing both
horizontal radiation absorbing pad
(HRAP) and vertical radiation shield
(VRS; white arrow) with human
computational phantom. (b) Example
of VRS placement (white arrow) with
both the ceiling-mounted shield and
HRAP with left radial access during a
clinical procedure [Color figure can be
viewed at wileyonlinelibrary.com]
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installed in 2008 and CCL B installed in 2016 with clarity software,19

among four interventional cardiologists with internal review board

approval. Operator radiation exposure was measured and recorded

after each case using dosimeter RAD-60R (RADOS, Turku, Finland)

placed on the left wrist of an interventional cardiologist under their

sterile gown. All cases had at least two HRAP (Radpad Yellow, World-

wide Innovations & Technologies, Kansas City, MO), a ceiling-mounted

upper body radiation protection shield with a patient contour cutout,

and a lower lead shield attached to the side of the CCL Table. A series

of cases were done with and without the VRS, placed between the

access site and the detector in the area not covered by the ceiling-

mounted shield (Figure 1b). The VRS was adhered to the drape and

flexed at the base to conform to body habitus and location.

2.3 | Statistical analyses

Use of t-test with two samples assuming equal variances on analysis of

radiation using the human phantom and mannequin for data acquired in

both CCL with both human phantoms. For the data acquired from the

clinical cases, use of descriptive statistics, t-test with two samples assum-

ing unequal variances compared the variables in those with and without

use of VRS. Inferential statistics with MANCOVA to determine whether

there were significant differences in μSv to the wrist between the

two groups after controlling for covariates of interest including BMI,

magnification (8 or 10 in.), percutaneous intervention, additional

large injection such as left ventriculography/subclavian or femoral

injection, access site (radial, femoral, or both radial/femoral). MAN-

COVA is a combination of a MANOVA preceded by a regression

analysis. A level of significance of .05 was used in the MANCOVA.

The data of the skewness statistics (1.94 and 2.71) were not greater

than three and kurtosis statistics (5.44 and 8.73) were not in the

range of 10–20 for non-normality. Thus, the data of both μSv and

mGray exhibited a normal distribution. Significance level was set at

two-sided alpha of .05. Statistical analyses were performed using

Microsoft Exel (Version 16.16.10) and IBM SPSS programs.

3 | RESULTS

3.1 | Modifiable procedural factors associated with
radiation exposure

Comparison in phantom Model A of μSv/min and mGy/hr in phantom

Model A at magnification of 8 in. demonstrated that LAO/Caud

(30/28�) angle resulted in two to four times more radiation compared

F IGURE 2 (a) Comparison of radiation exposure to the mannequin and human computational phantom with four angles of the detector. Left
anterior oblique (LAO); Right anterior oblique (RAO); caudal (Caud); cranial (Cran). LAO/Caud with significantly more radiation measured by μSv/
min and mGy/hr, p < .005. (b) Increase in magnification significantly increases exposure measured with μSv/min and mGy/hr (p < .005).
(c) Significant decline in μSv/min (p < .001) with no change in mGy/hr produced by the X-ray tube (p = .732) when mannequin positioned 40 and
120 cm from femoral access site of phantom
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to the LAO/Cran (38/20�), RAO/Cran (05/41�), and RAO/Caud

(33/25�), p < .005 (Figure 2a). Comparison of radiation in phantom

Model A at LAO/Caud (30/28�) with SID of 115 cm demonstrated

both μSv/min and mGy/hr significantly decreased with 10 in. com-

pared to both 6 and 8 in. magnification (Figure 2b). With the detector

at LAO/Caud angle, 8 in. magnification (standard magnification for

most operators), distance from the source lowered μSv/min by 30% at

40 cm and 47% at 120 cm caudal from the access site with no change

in mGy/hr (Figure 2c).

3.2 | HRAP and VRS impact on radiation exposure

In Phantom Model A with the detector at LAO/Caud angle, on 8 in.

magnification, shielding with HRAP (Radpad) and VRS compared to

neither shield resulted in a 57% reduction in μSv/min (p < .005);

the combination of both HRAP and VRS resulted in 80% (p < .005)

reduction in μSv/min, and VRS lowered μSv/min by 59% (p < .005)

when added to HRAP, all with no significant change in mGy/hr

(Figure 3a). In Phantom Model B with the detector at LAO/Caud

angle, on 8 in. magnification, shielding with HRAP (Microtek) and

VRS compared to HRAP alone resulted in 100% reduction in μSv,

p < .016, with no significant change in mGy, respectively

(Figure 3b).

3.3 | Prospective clinical procedure radiation
evaluation

A total of 184 procedures were performed as part of the current

study. Seven procedures were excluded from the analysis as no

coronary angiography was performed (three were atrial septal

defect closures, one was a balloon aortic valvuloplasty, one was an

intra-balloon pump insertion and two were right heart catheteriza-

tion alone). Table 1 demonstrates the patient and procedural char-

acteristics of clinical procedures with VRS (n = 49) versus those

without (n = 128). Clinical procedures with VRS had significantly

higher magnification and more men, but lower fluoroscopy time

compared with the group that did not use VRS. Mean comparison

found a 41.9% lower μSv in the group with VRS compared to those

without VRS (Figure 3c), with no change in mGy. μSv remained

lower with the use of VRS versus without VRS even after

F IGURE 3 Radiation exposure using horizontal and vertical shields. HRAP = horizontal radiation absorbing pad; VRS = vertical radiation shield
(Steradian). (a) CCL 1 (Toshiba) with significant decline in μSv/min with use of both HRAP (RadPad) and VRS (Steradian) compared to neither
HRAP or VRS shields (baseline); and combination of both VRS and HRAP with further improvement in radiation protection (p < .005), with no
change in mGy/hr from the X-ray tube (p = .226). (b) CCL 2 (Phillips) with significant drop in μSv with use of VRS compared to HRAP (Microtek;
p = .019) and further reduction with combination of both HRAP and VRS (p = .016), with no change in in mGy generated from the X-ray tube
(p = .353, p = .797). (c) Significant shielding in clinical cases from radiation shown as decline in μSv with the VRS and HRAP to HRAP alone
(p = .001) with no significant change in mGy produced from the X-ray tube (p = .297)
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adjustment of covariates of interest (F[1, 170] = 8.61, p < .001,

partial η2 = 0.05).

4 | DISCUSSION

Occupational hazards in the catheterization laboratory impact opera-

tors and staff.1–5 Maneuvers are well described to lower radiation,

including avoidance of LAO, steep cranial or caudal views.9–11 In a

controlled setting using a human computational phantom simulating a

patient, and a mannequin in the place of an operator we discovered

the LAO-Caudal angle has the highest operator and patient radiation

exposure. Raising magnification from 10 to 8 in. field size will almost

double radiation exposure. Moving only16 in. (40 cm) caudal from the

access site can lower operator exposure by approximately one third.

In both the controlled CCL above and a prospective study with physi-

cians in clinical cases, we discovered the addition of a novel VRS

(Steradian) placed between the operator and detector, significantly

lowered by almost half the operator radiation exposure. The reduction

in operator exposure was significant after controlling for variables

including magnification, BMI, percutaneous coronary intervention,

additional large injection, or access site location.

5 | STUDY LIMITATIONS

The VRS was not evaluated at other angles, magnification, or distance,

clinical data collected were not blinded or randomized with a sham

control arm. Radiation exposure to the head was not obtained given

the dosimeter used would not safely attach to the operator. Fluoros-

copy time was lower in the group with VRS, but no difference was

found in frame count or Air Kerma (mGy).

6 | CONCLUSIONS

In summary, operator radiation exposure is significantly reduced utiliz-

ing the novel VRS with horizontal radiation absorbing pads and dis-

tance from the X-ray tube, and consideration of lower magnification

and avoiding LAO-caudal angles to lower radiation for both operator

and patient.
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