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Using both qualitative and quantitative data
in parameter identification for systems
biology models
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In systems biology, qualitative data are often generated, but rarely used to parameterize

models. We demonstrate an approach in which qualitative and quantitative data can be

combined for parameter identification. In this approach, qualitative data are converted into

inequality constraints imposed on the outputs of the model. These inequalities are used along

with quantitative data points to construct a single scalar objective function that accounts

for both datasets. To illustrate the approach, we estimate parameters for a simple model

describing Raf activation. We then apply the technique to a more elaborate model char-

acterizing cell cycle regulation in yeast. We incorporate both quantitative time courses

(561 data points) and qualitative phenotypes of 119 mutant yeast strains (1647 inequalities)

to perform automated identification of 153 model parameters. We quantify parameter

uncertainty using a profile likelihood approach. Our results indicate the value of combining

qualitative and quantitative data to parameterize systems biology models.
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Systems biology models, such as those found in BioModels
Database1, typically have outputs in the form of time
courses. It follows that if one wants to parameterize such a

model, the most useful dataset would be the corresponding
experimental time courses. However, time-course data may be
unavailable, limited, or corrupted by noise.

Much of the experimental data collected in biology are quali-
tative, categorical characterizations, such as activating or repres-
sing, oscillatory or non-oscillatory, or lower or higher relative to a
control. In contrast, quantitative data are numerical and may take
the form of a time course, a steady-state dose-response curve, a
distribution, or a ratio.

Although qualitative observations are not numerical, they still
contain information that could potentially aid in model devel-
opment. However, qualitative observations are largely ignored by
the modeling community.

A notable exception is the modeling work of Tyson and co-
workers on the cell cycle in budding yeast2–6. In ref. 3, parameters
were tuned using qualitative data: the viability or inviability of
131 yeast mutant strains. Parameters in yeast cell cycle models
have been estimated by hand-tuning3 and later refined by auto-
mated tuning7 to maximize the number of mutant strains that the
models describe correctly.

Here, we extend the approach of Oguz et al.7, and demonstrate
how qualitative biological observations can be formalized as
inequality constraints on the outputs of a model. Such a for-
mulation has the advantages that (1) it is generalizable to a range
of biological problems, whenever qualitative data are available;
and (2) it lends itself to the use of quantitative data in addition to
the qualitative data in parameter identification. Constrained
optimization—the task of minimizing an objective function
subject to inequality constraints—is well-studied in the field of
optimization8. In the context of parameter identification for a
biological model, we minimize the sum-of-squares distance from
the quantitative data, and each qualitative data point leads to one
inequality constraint.

Constrained optimization can also be viewed as an extension of
model checking9, a technique with applications in systems
biology10,11. Model checking seeks to verify that a model meets a set
of desired specifications. Here, we consider specifications that are
straightforward to verify for a single model (inequality constraints
on outputs of deterministic models), but we seek to tune model
parameters to achieve optimal agreement with the specifications.

Numerous algorithms for constrained optimization are
known8. Because the constraints in biological modeling are
derived from experimental data, they have some level of uncer-
tainty, and it may be reasonable to tolerate parameterizations for
which some constraints are not satisfied. Static penalty functions
appropriately handle these soft constraints by adding to the
objective function a cost proportional to the extent of each con-
straint violation12. This converts a constrained optimization
problem to minimization of a scalar function, which can be
approached using, for example, a metaheuristic optimization
method13.

To illustrate the strengths of constrained optimization for
biological modeling, we consider the budding yeast model of
ref. 7. We formulate the associated yeast phenotypic data in terms
of inequality constraints, and perform automated parameter
identification. We incorporate quantitative data that has not been
used previously to parameterize this model. We also account for
data about the phase of cell cycle arrest in inviable yeast mutants
—additional qualitative data that previously required hand-
tuning of parameters to incorporate6. Uncertainty quantification
shows that the combination of quantitative and qualitative data
leads to a higher level of confidence in parameter estimates than
either dataset individually.

Results
An illustration of the potential value of qualitative data. To
demonstrate the potential value of qualitative data, we consider a
simple case of solving for the coefficients of polynomial functions.

We consider two polynomial functions: y1= ax2− bx+ c and
y2= dx+ e. Suppose we want to solve for the coefficients a, b, c,
d, and e, which we will take to be positive. As the ground truth
coefficients to be determined, we choose (a, b, c, d, e)= (0.5, 3, 5,
1, 1.5).

Suppose that a limited amount of quantitative information is
available. Namely, it is known that the parabola y1 contains the
points (2, 1) and (8, 13), and the line y2 contains the point (3.5,5).
This is not enough information to solve for any of the coefficients
because three points are required to specify a parabola, and two
points are required to specify a line (Fig. 1a).

Suppose that in addition, there is qualitative information: at
some number of x values, we know whether y2 > y1 (+) or y2 < y1
(−) (Fig. 1a). This information constrains the x values at which y1
and y2 intersect. For example, with qualitative information at
five points as shown in Fig. 1a, we know that the two functions
intersect at a value 0 < x1 < 2.5 and at a value 5 < x2 < 7.5.
Equivalently, these are bounds on the roots of the parabola y1−
y2= ax2− (b+ d)x+ (c− e).

Note that if the roots x1 and x2 of y1− y2 are known exactly,
then we can obtain exact solutions for all five coefficients. By
Vieta’s formulas for the sum and product of roots, we have x1+
x2= (b+ d)/a and x1x2= (c− e)/a. Combined with the three
known quantitative points, we have a solvable system of five
linear equations.

If we have bounds such as 0 < x1 < 2.5 and 5 < x2 < 7.5, how well
can we estimate the coefficients? To address this question, we
sampled possible values of x1 and x2 within the bounds, solved
the resulting linear equations, and, among solutions with all
parameters positive, determined the range of values that each
coefficient could take.

As the number of known qualitative points increases (assumed
to be uniformly distributed over the range 0 ≤ x ≤ 10), the bounds
on x1 and x2 become tighter, leading to tighter bounds on the
values of the coefficients (Fig. 1b). With a sufficient amount of
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Fig. 1 A simple illustration using polynomial functions. We use qualitative
and quantitative information to determine the unknown coefficients. a
Visualization of the problem. We seek to find the coefficients of equations
for a parabola and a line, with the ground truth shown (blue solid curves).
Two points on the parabola and one point on the line are known (black
dots). These three points are consistent with infinitely many possible
solutions (e.g., orange dashed curves). Qualitative information (colored
circles, x-axis) specifies whether the parabola is above (+) or below (−)
the line. This information limits the possible values of intersection points x1
and x2 to the green shaded segments of the x-axis. b Bounds on coefficient
values as a function of the number of qualitative points known. Shaded
areas indicate the range of possible values of each coefficient
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qualitative information, the coefficient estimates converge to the
ground truth values.

This example illustrates the potential utility of qualitative data
in identifying model parameter values.

Fitting with qualitative and quantitative data. In the following
sections, we will demonstrate an approach by which we incor-
porate both qualitative and quantitative data into a parameter
identification procedure. We minimize an objective function with
contributions from both types of data:

ftotðxÞ ¼ fquantðxÞ þ fqualðxÞ ð1Þ

where x is the vector of the unknown model parameters. The
term fquant(x) is a standard sum of squares over all quantitative
data points j:

fquantðxÞ ¼
X

j

yj;modelðxÞ � yj;data
� �2

ð2Þ

For the term fqual(x), we construct a function that likewise takes a
lower value as the qualitative data are better matched by model
outputs. We express each qualitative data point as an inequality of
the form gi(x) < 0. Given this constraint, we seek to minimize the
value of Ci · max(0, gi(x)), where Ci is a problem-specific constant.
In other words, if the constraint gi(x) < 0 is violated, we apply a
penalty proportional to the magnitude of constraint violation.
The final objective function to be minimized consists of the sum
of the penalties arising from all of the individual constraints:

fqualðxÞ ¼
X

i

Ci �maxð0; giðxÞÞ ð3Þ

In the constrained optimization literature, Eq. (3) is called a static
penalty function12. The squared difference, max(0, gi(x))2, is also
sometimes used, but we chose Eq. (3) to avoid overpenalizing
single constraints with a large degree of violation.

ftot(x) can be minimized using a standard optimization
algorithm such as differential evolution14 or scatter search15.

Fitting a model of Raf inhibition. Next, we demonstrate usage of
a combination of qualitative and quantitative data for parameter
identification (which we will also refer to as finding a fit to the
data) for a simple biological model. We use synthetic data to
parameterize a model, originally described in Kholodenko et al.16,
for the dimerization of the protein kinase Raf and the inhibition
of Raf by a kinase inhibitor. This model has relevance for cancer
treatment17,18. We show that qualitative data can be used to
improve confidence limits on the parameter values.

We consider the model shown in Fig. 2a. Raf (R) is able to
dimerize, and each Raf monomer is able to bind an inhibitor (I).
The model parameters consist of six equilibrium constants,
denoted K1 through K6. Note that these six parameters are not
independent. By detailed balance, K4= K1K3/K2, and K6= K4K5/
K2= K1K3K5=K

2
2 , leaving four independent model parameters.

For the purposes of this example, we assume that K1 and K2

are known. K1 could be obtained by studying the dimerization
of Raf in the absence of inhibitor, and K2 could be obtained
by studying inhibitor binding to a dimerization-incompetent
Raf mutant. Our problem of interest, therefore, is solving for the
parameters K3 and K5.

The model has six population variables, which we denote as R,
I, RR, RI, RIR, and RIRI. It is also useful to consider the total
abundance of Raf, Rtot= R+ RI+ 2(RR+ RIR+ RIRI). Two
population variables, e.g. Rtot and I, must be specified to define
the entire system state given the equilibrium constants.

To test the capabilities of constrained optimization with this
model, we generated synthetic datasets with the ground truth
parameter values K1= 0.04 μM−1, K2= 20 μM−1, K3= 4000 μM−1,
and K5= 0.1 μM−1. We assume a constant, known Rtot concentra-
tion of 50 μM.

An experiment yielding quantitative data would be to measure
a binding curve: measure the free inhibitor concentration I versus
receptor occupancy �Y (Fig. 2b). Here we define �Y as the fraction
of Raf molecules bound to inhibitor, �Y = (RI+ RIR+ 2RIRI)/
Rtot. A curve similar to this has been measured for EGF and the
EGF receptor19.

We consider a second experiment that yields only qualitative
data, in which we measure free inhibitor concentration I versus
the overall Raf activity. We assume that the active Raf species are
the uninhibited dimers RR and RIR.

We define A= RR+ RIR as a quantity proportional to Raf
activity, but suppose that the experiment can only detect whether
the activity is higher (+), lower (−), or within error (0) of the
basal value of A with no inhibitor (Fig. 2c). Note that a small
concentration of inhibitor unintuitively causes an increase in
Raf activity by increasing the concentration of the species RIR.
This behavior is observed for many Raf inhibitors and poses a
challenge for therapeutic applications18.
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Fig. 2 A model of Raf inhibition. a Reaction network. Raf (R) can dimerize,
and each monomer can bind an inhibitor (I). b Synthetic quantitative data
(dark red diamonds) of the free inhibitor concentration I (in μM) versus the
proportion of Raf bound to inhibitor Y. c Synthetic qualitative data of free
inhibitor concentration I versus Raf activity. We assume Raf activity is
proportional to RR+ RIR, but the data (circles on x-axis) only tell us
whether the activity is higher (+), lower (−), or within error (0) of the
activity at I= 0. In b, c magenta curves indicate the ground truth, and blue
curves indicate the best fit using the combined qualitative and quantitative
datasets. Curves in c show the quantitative value of RR+ RIR. d, e Profile
likelihood uncertainty quantification of the two unknown parameters of
the model, K3 and K5, using the quantitative data in b (blue dashed curve),
the qualitative data in c (orange dash-dot curve) or both datasets combined
(purple solid curve). Vertical red lines indicate the ground truth values.
Vertical axes indicate the relative objective function values, obtained by
normalizing each profile to zero by subtracting its minimum value
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We combine the quantitative and qualitative datasets by the
method introduced in the previous section. Here, we are solving
for the parameters x= (K3, K5).

For the quantitative term of the objective function fquant(x) (Eq.
(2)), we directly use the synthetic data in Fig. 2b. For the
qualitative term fqual(x) (Eq. (3)), we note that each data point in
Fig. 2c can be expressed as an equality or inequality constraint on
the value of A at the particular value of I given x= (K3, K5), which
we will write as A(I, x). Namely, for a “−” data point, we have A
(I, x) < A(0), and an analogous constraint holds for a “+” point.
For a “0” point, we have AðI; xÞ � Að0Þj j<ϵ, where ϵ is the
tolerance (we used ϵ ¼ 1:5 in this example). Note that A(0), the
value of A with no inhibitor, is a known constant computed from
K1. Each constraint is then converted to the form gi(x) < 0 for use
in Eq. (3) (e.g., for a “−” point at inhibitor concentration Ii, we
have A(Ii, x)− A(0) < 0).

We must choose the penalty constants Ci in Eq. (3) based on our
confidence in the qualitative data—a larger Ci gives the qualitative
data more weight compared to the quantitative data. We hand-
selected a value of Ci= 0.03 for all i, to give roughly equal
contributions from the qualitative and quantitative datasets (i.e.,
such that the blue and orange curves in Fig. 2d, e can be plotted
using the same scale). Note that giving equal contributions to both
datasets is an arbitrary choice for illustration—with real experi-
mental data, the modeler may choose to give unequal weights based
on the relative importance/credibility of the datasets.

We minimized ftot(x) by differential evolution, and found best-
fit parameters of K3= 5100 μM−1 and K5= 0.060 μM−1, which
are reasonably close to the ground truth.

To evaluate the strengths of combining quantitative and
qualitative data, we performed uncertainty quantification. We
used a variant of the profile likelihood approach, a method that is
well-established for quantitative fitting20. One parameter of
interest is held fixed, and the objective function is minimized
by varying the remaining parameters. The resulting minimum is
taken as the negative log likelihood of the fixed parameter value.
The minimization is repeated for many possible fixed values of
the parameter to produce a curve (Fig. 2d, e). Note that our
objective function is not a likelihood in the rigorous sense, but has
a similar interpretation in that a lower objective value indicates
the parameter value is more consistent with the data.

We performed profile likelihood analysis using fquant(x),
fqual(x), and ftot(x) in turn as the objective function, and
considering two free parameters K3 and K5 (Fig. 2d, e). We
found that each dataset individually provided bounds on possible
parameter values, but the tightest bounds were obtained when we
combined both datasets.

To make a numerical comparison, we can choose some
maximum acceptable value for the relative objective function in
Fig. 2d, e (we chose 0.15, for illustration), and find the range of
possible parameter values consistent with that maximum
objective. These ranges (Table 1) can be thought of as confidence
intervals for each parameter, and we find the smallest intervals for
the combined dataset. Notably, for K3, each individual dataset
provides a bound to within 2 orders of magnitude, whereas with

the combined datasets, we find a considerably tighter bound of
1.2 orders of magnitude.

Our results with this simple but biologically relevant model
speak to the strengths of combining both qualitative and
quantitative data for parameter identification.

Fitting a model of yeast cell cycle control. Having provided
illustrations of the potential value of combining qualitative and
quantitative data in two simple problems, we now apply the same
method to identify parameters for a detailed model of yeast cell
cycle control. We chose to analyze the model described in
refs. 7,21, which has previously been used in an automated fitting
effort. The previous fit7 incorporated the phenotypes of 119 yeast
strains (viable or inviable, but without considering the phase of
cell cycle arrest). Nominal parameter values, based on earlier,
hand-tuned models, were used to limit the search space of the
optimization algorithm: The search covered a range of ±90% of
each nominal value.

In a viable yeast cell, the expected model behavior is to have the
volume V of the cell increase over time, followed by cell division,
which immediately reduces V. (Division of budding yeast is
asymmetric. We arbitrarily choose to track the smaller daughter
cell, and so multiply V by 0.4 at division.) This cyclic increase in
V followed by division is expected to repeat in a stable, periodic
manner. At the same time, the cyclins and other cell-cycle-
dependent species tracked in the model are expected to oscillate
periodically, each one peaking at a particular point in the cycle
depending on its role. Finally, certain events must occur during
each cycle: origin relicensing, bud formation, origin activation,
and spindle assembly.

In addition to the previously used qualitative data on the
viability of mutant yeast strains6,7, quantitative time series data
are available in the form of DNA microarray measurements of
mRNA levels22. Although this dataset has a high level of noise, it
contains useful, additional information such as at which point in
the cell cycle each species reaches its peak value.

As with the Raf example, we considered the objective function
ftot(x) as described in Eq. (1). Here, x is a vector of 153 model
parameter values.

In this model, the constraints relate to properties of entire time
courses, rather than individual data points. Some examples are
shown in Fig. 3. The constraints include those that require that a
variable never reaches a particular value (row i), or must reach a
value at some point in the simulation (row ii). It is also possible
for a constraint to be enforced over only a particular window of
times (row iii). As shown with the examples in Fig. 3, each
constraint can still take the form gi(x) < 0, and fqual(x) takes the
same form as in Eq. (3).

For each possible phenotype that exists in the data (viable, G1
arrest, etc.), we generated as many constraints as possible that
enforce known properties of that phenotype (Supplementary
Table 1). To model each mutant yeast strain, we made
perturbations to appropriate model parameters, as summarized
in Supplementary Table 2. We ran one simulation per mutant
strain, and enforced all constraints corresponding to the mutant’s
phenotype. The 119 strains summarized in Supplementary Table 2
resulted in a total of 1647 constraints included in the Eq. (3)
summation.

In this example, we used different static penalties Ci for
different constraints. We chose the Ci to account for how the
degree of constraint violation can differ by orders of magnitude,
depending on the constraint. For example, in Fig. 3, row ii, the
maximum possible constraint violation is 1 (if SPN remains at 0),
whereas in Fig. 3, row iii, the violation can be over 100 if ORI
starts increasing exponentially at time 0. The Ci were hand-
chosen to offset these differences in magnitude, such that each

Table 1 Bounds on parameters (in μM−1) using quantitative,
qualitative, or both datasets, assuming a maximum relative
objective function value of 0.15

Parameter Ground truth value Quant. Qual. Combined

log10(K3) 3.6 2.8–4.8 2.6–4.6 3.0–4.2
log10(K5) −1.0 <−0.1 <−0.5 <−0.6
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constraint contributed roughly equally (values are given in
Supplementary Table 1). Additionally, we note that although
most constraints should be treated as soft constraints as in the
Raf example, we can be absolutely certain about the constraints
on wild type cells. Therefore, for constraints on wild type cells,
we used Ci 1000 times larger than the Ci for corresponding
constraints on mutant cells.

fquant(x) is once again a standard sum of squares error function
based on DNA microarray time courses for 10 species monitored
under three experimental conditions22 (Fig. 4d, f and Supplemen-
tary Fig. 1).

When constructing ftot(x) (Eq. (1)), we scaled the Ci in
Supplementary Table 1 by a factor of 1/15. This factor was tuned
by trial and error such that the best fit achieved good agreement
with both the qualitative and quantitative data (as opposed to
focusing on only one of the datasets). We minimized ftot(x) using
a version of enhanced scatter search, an evolutionary optimiza-
tion algorithm designed for high-dimensional problems15,23,24.
Our optimization algorithm considered a search space spanning
±2 orders of magnitude around the nominal values of ref. 7.

Our best-fit parameter set (Supplementary Table 3) achieved
good agreement with both the quantitative and qualitative datasets.
Consistent with the qualitative data, outputs of the model have
different behaviors depending on the known phenotype of the
mutant (Fig. 4a–c and Supplementary Fig. 2). For example, the
output ORI has an oscillatory time course in viable cells, remains
near 0 in a mutant with a G1 arrest phenotype, and increases
without bound in a mutant with a telophase arrest phenotype.

Our best fit also shows good agreement with the quantitative
data (Fig. 4d–f and Supplementary Fig. 1). Note that our fit
matches the cell cycle length that is suggested by the experimental
time series, and also has the level of each species reach a peak at a
point in the cell cycle consistent with these data.

Our fit achieved objective function values fquant(x)= 42, and
fqual(x)= 420. The performance of our parameter sets for each
individual constraint is shown in Supplementary Table 2. For
comparison, we also show the performance of the fit reported
by Oguz et al. (ref. 7).

We also want to compare our overall quality of fit to that
achieved in ref. 7. For the quantitative dataset, our fit outperforms
that of ref. 7, which has an objective function value of fquant(x)= 81.
This result is unsurprising given that ref. 7 did not include the
quantitative data in the optimization. In fact, it is notable that the fit
of ref. 7 performs so well on the quantitative data (within 2-fold of
our result), which could be seen as an independent confirmation
of that fit. To compare performance on the qualitative data, it is
not fair to directly compare fqual(x)—in some cases where both
parameter sets are inconsistent with a particular qualitative
observation, the fit of ref. 7 incurred a very high penalty, whereas
our fit optimized fqual(x) to lower the penalty. Although the penalty
functions are useful in guiding our fit to a good result, they are not
as useful for comparison against a fit obtained by another method.
We instead use another evaluation metric, used in ref. 7, which is to
count the number yeast strains (out of the total 119) for which the
model predicts a phenotype consistent with the data (i.e., satisfies all
system properties in Supplementary Table 1). We score the model
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as consistent with a strain if the total penalty value for that strain is
below a threshold (either zero or a small positive value). This
evaluation metric effectively checks that each constraint of interest
is satisfied, without overpenalizing large constraint violations. At
any chosen threshold, our fit outperforms the fit of ref. 7 in terms of
number of consistent strains (Supplementary Fig. 3).

As with the Raf model, we assessed the uncertainty of model
parameters using a profile likelihood approach (Fig. 5). We
computed profiles using fquant(x), fqual(x), and ftot(x). Again we see
that by using both the quantitative and qualitative datasets,
we achieve the tightest bounds on the model parameters. For
several parameters (Fig. 5a, c, d, left side of panel), the profile for
the combined datasets had higher relative objective values than
the profiles for either individual dataset, suggesting a contribution
from both datasets. Other parameters (Fig. 5b, d, right side of
panel) were constrained primarily by the qualitative data.

The profile likelihood results demonstrate the value of
combining quantitative and qualitative data, in the context of
this detailed model of yeast cell cycle control which is the subject
of current active research.

Discussion
We have demonstrated how qualitative and quantitative data may
be used together for parameter identification in biological modeling.
We show the generality of the approach with three examples

of increasing complexity: a toy problem with polynomial functions,
a biologically relevant but simple model of Raf inhibition,
and a detailed model of cell cycle control in yeast. In each case, we
were able to apply penalty function-based constrained optimization
because there were qualitative data available, which could be
expressed as inequality constraints on the outputs of the model.

We used one particular optimization algorithm (a variant of
scatter search), which yielded an acceptable fit for our model of
interest. It remains an avenue for future work to determine which
algorithms are most effective in the general case for constrained
optimization in systems biology.

We enforced qualitative data by means of static penalty func-
tions. A known limitation of this method is the need to choose
penalty constants Ci for each constraint25. Although progress has
been made in developing constrained optimization algorithms
that do not require hand-chosen constants8, future work is
required to adapt such algorithms to biological applications—in
particular, available algorithms are not designed for problems
such as that of the yeast cell cycle model, in which not every
constraint is satisfied in the best fit. At the end of this section, we
discuss how to handle the limitations of static penalty functions
by making reasonable choices for the Ci.

Our work addresses what has been a fundamental disconnect
between experimentalists and modelers. Modelers want quanti-
tative time courses to identify model parameters, but experi-
mentalists are reluctant to acquire time courses, which are more
costly than qualitative or semi-quantitative measurements.
Our approach allows modelers to make use of data that experi-
mentalists may more easily generate, and data that already exists
in the literature. Every successful experiment provides at least
a qualitative statement about the biological system of interest,
and many such statements can be cast as inequality constraints.
As we have shown, these constraints can be used in fitting to
improve confidence limits on model parameters.
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We expect that our approach will open new opportunities for
the development of experimentally validated models for cellular
networks. We now provide some practical advice for modelers
seeking to apply the methodology presented here to new biolo-
gical questions.

To apply our methodology, one must first obtain qualitative
data pertaining to the system of interest. Examples of assembled
qualitative datasets can be found in refs. 6,26. Next, one must
define the objective function ftot (Eq. (1)). A user-defined setting
in the objective function is the weight Ci of each constraint. In the
absence of additional information, a good choice is to use the Ci

to normalize to the order of magnitude of the model output. For
example, if one constrained output is of order 1 and another is of
order 100, the Ci for the latter should be smaller by a factor of
100. If additional information is available indicating that some
constraints are more strict than others, this information can be
incorporated by increasing the appropriate Ci.

The Ci affect the relative weighting of the qualitative and
quantitative data, and the modeler must choose the relative
importance. To help choose Ci, we suggest performing optimi-
zation on fquant alone, and then on fqual alone. Then, all the Ci can
be scaled such that the optimal values of fquant and fqual are in the
desired proportion (this is not identical to directly optimizing ftot,
but is a useful heuristic to set Ci).

Finally, one must choose an optimization algorithm to find the
best-fit parameter set. For biological models with a large number
of parameters, metaheuristic algorithms such as differential evo-
lution or scatter search are likely to be effective. Software
packages implementing these algorithms are freely available27,28.
The software BioNetFit29 is under active development by the
authors of the present study, and in the near future will
streamline constrained optimization for models defined in
SBML30 or BioNetGen language (BNGL)31.

Methods
Polynomial model. A system of linear equations for computing the polynomial
coefficients was implemented with the Python Numpy module. We suppose we
have n+ 1 equally spaced qualitative data points, which divide the range x=
[0, 10] into n equally-sized intervals. Exactly two of these intervals will be bounded
on one end by a “−” point and on the other by a “+” point; these two intervals
must contain the intersection points x1 and x2.

To generate Fig. 1b, within the possible intervals for x1 and x2, we sampled all
possible combinations of 100 (evenly spaced) values of x1 and 100 values of x2, and
solved for the coefficients. Considering only the fits that yielded positive values for
all coefficients, we report the minimum and maximum possible values for each
coefficient.

Raf inhibitor model. The model shown in Fig. 2a was implemented in Python
(Supplementary Software 1). We generated synthetic data points at various values
of I and constant Rtot= 50 μM, and populated the other species concentrations
based on the equations of the model. To generate quantitative data, we calculated
�Y = (RI+ RIR+ 2RIRI)/Rtot, and perturbed results by adding normally distributed
noise with standard deviation 0.1. To generate qualitative data, we calculated A=
RR+ RIR, and compared the result to the value A(0)= 15.24. If the difference
from A(0) was <1.5, the data point was labeled as “0” (within error), otherwise it
was labeled as “+” or “−” appropriately.

For fitting, the objective function was created as described in Results.
Minimization was performed with the Scipy function optimize.
differential_evolution(), with a maximum of 1000 iterations, strategy of “best1exp”,
and search range of [10−4, 104] for each parameter.

To perform profile likelihood analysis, for each parameter, we considered 100
possible fixed values (log uniformly distributed in the range [102, 105] for K3 and
[10−3, 100] for K5). At each fixed value considered, minimization was performed by
the same method as above, except that the parameter of interest was held at the
fixed value. We report the resulting minimum objective function values in the
profile likelihood plots (Fig. 2d, e).

Yeast cell cycle model. The yeast model was implemented in C++ code adapted
from ref. 7. We edited this code to be callable from Python, and to include addi-
tional output variables required for our constraints.

Fitting was performed using purpose-built Python code (Supplementary
Software 1). To specify qualitative constraints, we generated a text file that
maps parameter changes for a yeast mutant to a list of constraints to be
applied to that mutant. Our code reads the text file to generate a qualitative
objective function. To use quantitative data in fitting, we first obtained the
raw DNA microarray data from Spellman et al.22. We used the three
datasets that were fully analyzed in the original study: cells synchronized with
alpha factor, a cdc15-ts mutation, or a cdc28-ts mutation (a dataset originally
from Cho et al.32). From each dataset we extracted the mRNA levels
corresponding to all proteins included in the cell cycle model. The data
were renormalized such that the highest point in each time course had a
value of 1, and these points were used as our input to generate a quantitative
objective function. Since we do not know a priori where within in our model’s
cycle the synchronized cells started from, we added one additional model
parameter for each of the 3 experimental conditions: ϕα, ϕcdc15, ϕcdc28,
representing the time offset at which we should start fitting to the quantitative
data. To make a fair comparison with the fit of ref. 7 (Fig. 4d–f and
Supplementary Fig. 1), we also selected ϕ values for that parameter set that led
to its best possible fit.

To compute the overall objective function for a given parameter set,
123 simulations were run. For each mutant strain in the data (119 total), we ran
one simulation and totaled any penalties associated with the constraints for that
strain’s phenotype. For the quantitative data, one simulation with wild type
parameters was run for each of the three datasets, and the sum-of-squares error
was calculated for each simulation output. In these simulations, the parameter for
mean doubling time (MDT) was set to the average value suggested in ref. 22:
66 for alpha factor, 70 for cdc15-ts, and 90 for cdc28-ts.

Finally, it was necessary to add two problem-specific terms to the objective
function. For wild type cells, we ran a separate simulation at MDT= 90, and
required that the values of volume V at each of the last three cell divisions of the
simulation were almost equal to each other. A penalty term proportional to the
difference in V was added. This prevents fits that alternate between two or more
sizes at division, which would be non-biological behavior. A similar restriction was
used in ref. 7. Second, we observed the possibility of time courses that rapidly
oscillate to overfit the quantitative data. To avoid these fits, we imposed a penalty
for each time course of a quantitative variable that contained more than 20 local
maxima. Because each simulation includes only ≈7 cell cycles, a reasonable time
course should have <20 local maxima.

The objective function was minimized using scatter search, an evolutionary
optimization algorithm15. We incorporated some features from enhanced scatter
search23,24. Our specific implementation of scatter search is summarized as
follows. A reference set was maintained consisting of 12 parameter sets. In each
iteration, a parameter set was proposed for each possible pair of elements in the
reference set (12 × 11 total per iteration), by the combination method described
by Egea et al.23. If a parameter went outside the search range (prior value in the
study of Oguz et al.7 ± two orders of magnitude) it was reset to the boundary of
the range. A proposed parameter set replaced its own parent in the reference set
if it had a lower objective value. If a parameter set remained for five iterations
without improvement, it was assumed to be a local minimum, and was replaced
with a new random parameter set. To avoid re-sampling the same area of
parameter space, the new random parameter sets were drawn from a queue that
was initialized with 70,000 Latin-hypercube-distributed random parameter sets
at the start of fitting. The fitting was run for 70,000 iterations, totaling 1.1 × 109

individual simulations.
Profile likelihood analysis was performed as follows. At each point in the profile

likelihood plot, the indicated parameter value was held fixed. Minimization of the
appropriate objective function (fquant, fqual, or ftot) over the remaining parameters
was performed by differential evolution (chosen here instead of enhanced scatter
search because it provided faster convergence in the smaller search space used in
these calculations), with each parameter allowed to vary ±50% from its best fit
value. The population size was 80. Optimization was run until the population
converged, defined as less than a 1% difference in the objective values between the
best and worst members of the population, up to 2000 iterations. Five replicates
were performed for each point.

Code availability. Python and C++ source code for the Raf inhibitor and yeast
cell cycle models, as well as implementations of both models in SBML format,
are provided as Supplementary Software 1.

Data availability
All data generated or analyzed during this study are included in this published article and
its supplementary information files.
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