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A B S T R A C T   

Introduction: Predicting pathological complete response (pCR) for patients receiving neoadjuvant chemotherapy 
(NAC) is crucial in establishing individualized treatment. Whole-slide images (WSIs) of tumor tissues reflect the 
histopathologic information of the tumor, which is important for therapeutic response effectiveness. In this 
study, we aimed to investigate whether predictive information for pCR could be detected from WSIs. 
Materials and methods: We retrospectively collected data from four cohorts of 874 patients diagnosed with biopsy- 
proven breast cancer. A deep learning pathological model (DLPM) was constructed to predict pCR using biopsy 
WSIs in the primary cohort, and it was then validated in three external cohorts. The DLPM could generate a deep 
learning pathological score (DLPs) for each patient; stromal tumor-infiltrating lymphocytes (TILs) were selected 
for comparison with DLPs. 
Results: The WSI feature-based DLPM showed good predictive performance with the highest area under the curve 
(AUC) of 0.72 among the cohorts. Alternatively, the combination of the DLPM and clinical characteristics offered 
a better prediction performance (AUC >0.70) in all cohorts. We also evaluated the performance of DLPM in three 
different breast subtypes with the best prediction for the triple-negative breast cancer (TNBC) subtype (AUC: 
0.73). Moreover, DLPM combined with clinical characteristics and stromal TILs achieved the highest AUC in the 
primary cohort (AUC: 0.82) and validation cohort 1 (AUC: 0.80). 
Conclusion: Our study suggested that WSIs integrated with deep learning could potentially predict pCR to NAC in 
breast cancer. The predictive performance will be improved by combining clinical characteristics. DLPs from 
DLPM can provide more information compared to stromal TILs for pCR prediction.  
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1. Introduction 

Breast cancer is a malignant tumor affecting females with the highest 
incidence worldwide [1]. Neoadjuvant chemotherapy (NAC) has been 
guided as the standard care for patients with breast cancer [2]. Ideally, 
the response to NAC is described by the pathological complete response 
(pCR), which is associated with favorable outcomes [3]. Thus, the pre-
diction of pCR before the treatment is crucial to stratify patients early 
and guide the subsequent treatment regimen. 

Molecular subtype and clinical staging are important indicators for 
the implementation of NAC [3]. These factors, such as the tumor size [4] 
and immunohistochemistry markers of estrogen receptor (ER), proges-
terone receptor (PR), human epidermal growth factor 2 (HER2) and 
Ki67 index, were associated with pCR [5]. In addition, some models 
have been proposed for predicting the pCR to NAC from different 
prospects, including clinic-pathological variables [6,7], genomic signa-
tures [8], and even radiomic features from pretreatment [9] and 
mid-treatment [10] magnetic resonance imaging (MRI). Although these 
predictive factors showed potential in predicting response to NAC, 
developing novel predictors was still essential for clinical management. 
Microscopic examination of tissue stained with hematoxylin and eosin 
(H&E) is one of the standard diagnostic procedures for breast cancer. 
These stained tissues can be digitally scanned as whole-slide images 
(WSIs). However, few studies have attempted to use WSIs to predict 
therapeutic response in breast cancer using state-of-the-art techniques. 

WSIs for tumor tissues can disclose microscopic histopathologic in-
formation of the tumor that can be highly associated with patients’ 
prognosis and therapeutic response [5,11]. Several studies have 
demonstrated that the extracted quantitative features from WSIs are 
associated with the therapy response. The WSI’s spatial information, 
such as stromal tumor-infiltrating lymphocytes (TILs) density, has been 
reported to be associated with the therapeutic response and prognosis 
[12,13]. Some studies have also shown that the morphological features 
extracted from WSI could predict therapeutic responses in rectal cancer 
[14,15]. On the other hand, the distribution statistics of WSI patch-level 
features could be aggregated to patient-level features to predict clear cell 
renal cell carcinoma prognosis [16]. These earlier studies guided us to 
investigate pretreatment pCR prediction based on WSIs in breast cancer. 

In recent years, deep neural network (DNN) has shown superior 
performance in learning features from medical images. Previously, the 
procedures for morphological feature extraction for whole-slide analysis 
were time-consuming, and the annotation of the region of interest (ROI) 
for WSIs required manual efforts. However, with DNN, high dimension 
spatial information of WSI could be automatically captured and repre-
sented. Earlier studies of WSI that focused on quantitative analysis using 
DNN have shown promising results in survival prediction in hepato-
cellular carcinoma resection [17], outcome prediction of colorectal 
cancer [18], and pathomic fusion for cancer diagnosis and prognosis 
[19]. These achievements in deep learning have motivated us in 
developing a DNN-based model for high-level image feature represen-
tation without involving pathologists’ annotation. 

In this multicenter retrospective study, we aimed to develop a deep 
learning pathological model (DLPM) using WSIs in breast cancer and 
validate whether it could predict pCR to NAC. We also investigate 
whether the combination of DLPM with clinical information would 
improve prediction performance. In addition, a comparison was per-
formed between the stromal TILs and deep learning pathological scores 
(DLPs) generated by DLPM. 

2. Materials and methods 

2.1. Patients 

Our study was approved by the West China Hospital of Sichuan 
University Ethics Committee (2021–764) and Guangdong Provincial 
People’s Hospital Ethics Committee (GDREC2019800H). The written 

informed consent of patients was waived as this was a retrospective 
study. In total, 874 patients diagnosed with biopsy-proven breast cancer 
were collected between January 2015 and December 2019 from four 
cohorts. The cohort with the largest number of patients was assigned as 
the primary cohort (PC), and the other three hospitals were used as 
external validation cohorts (VC1-VC3) (Supplementary Section 1 and 2). 

2.2. The acquisition and preprocessing of WSIs 

H&E-stained slides from formalin-fixed paraffin-embedded (FFPE) of 
pretreatment needle biopsies, were requested within 1–4 weeks before 
NAC. All slides were digitized for further analysis. WSIs, each having 
approximately 10 gigapixels, were preprocessed before further analysis. 
The preprocessing procedure involved three main steps: foreground 
mask extraction, image tiling, and staining normalization (Supplemen-
tary Section 3 and 4). 

2.3. DLPM construction based on ResNet18 using WSIs 

In this study, we hypothesized that only cell-predominant patches 
within the WSI contained predictive information of treatment response 
to NAC. Herein, we first built a patch-level classifier based on pre- 
trained ResNet18 [20] to determine each patch’s category. For the 
patches classified as cancer cell predominant patches or stromal cell 
predominant patches, 512-dimension output was extracted from the last 
convolutional layer of ResNet18 as the patch-level feature. Then, the 
patch-level features of each patient were combined to generate a 
patient-level feature by computing the 6 statistics (mean, standard 
variation, max, median, kurtosis, skew) along the patch axis [16]. 

After the feature aggregation and selection, 11 features remained for 
the primary cohort. Multivariate logistic regression with 10-fold cross- 
validation was performed on the primary cohort to build DLPM for 
pCR prediction. The output of DLPM was then used to generate DLPs for 
each patient. To gather information from clinical characteristics, age, 
tumor stage (cT), lymph node stage (cN), ER/PR/HER2 status, and Ki67 
status were selected to build the solely clinical model, named multi-
variate logistic regression clinical model (MLCM). MLCM was also 
trained in the PC with 10-fold cross-validation. We then combined the 
DLPM and MLCM to build up a deep learning pathological clinical model 
(DLPCM) (Supplementary Section 5). The output of DLPCM was referred 
to deep learning pathological clinical score (DLPCs). 

To assess the quantitative performance of DLPM, MLCM, and 
DLPCM, the receiver operating characteristic (ROC) curves and the AUC 
was computed. 

2.4. DLPM performance in different breast cancer subtypes 

According to ASCO/CAP guidelines [21], nuclear staining of ER/PR 
by immunohistochemistry (IHC) with <1% positive tumor cells was 
defined as ER/PR negative, while that with ≥1% positive tumor cells 
was defined as ER/PR positive. ER and/or PR was also referred as 
Hormone receptors (HR). The cutoffs of the Ki67 index were <20% for 
low expression and ≥20% for high expression [22]. HER2 positive was 
determined with IHC 3+ or IHC 2+ with amplification by in situ hy-
bridization (ISH), while HER2 negative was defined as IHC 0/1+ or IHC 
2+ without amplification by ISH [23]. Subtypes of breast cancer were 
significantly variant in the standard treatment and prognosis [24]. The 
patients from our four cohorts were divided into three molecular sub-
types based on the receptor status of primary tumors: HR positive and 
HER2 negative (HR+ and HER2-), HER2 positive (HER2+), and ER, PR, 
HER2 negative (TNBC). The AUC of ROC was chosen for the DLPM 
model quantitative performance evaluation in three subgroups. 

2.5. Comparison between DLPs and TILs 

We selected stromal TILs for comparison with DLPs. The stromal TILs 

B. Li et al.                                                                                                                                                                                                                                        



The Breast 66 (2022) 183–190

185

were a predictor of the response to NAC therapy in breast cancer patients 
[25]. The assessment of TILs scores was conducted in the PC and VC1, 
using the international TILs working group guidelines [26]. The com-
parison between DLPs and stromal TILs was performed in combination 
with the clinical score. Then the two new scores were combined to 
evaluate the overall performance (Supplementary Section 6). We also 
categorized TILs into three predetermined groups following Denkert 
et al. [12]: low subgroups (≤10% TILs), intermediate subgroups 
(11–59%), and high subgroups (≥60% TILs). 

2.6. Statistics 

The age was treated as a continuous variable and summarized as 
mean ± standard deviation. It was compared between pCR and non-pCR 
patients by the Mann-Whitney U test. Differences in ER, PR, HER2, Ki67, 
cT, cN and histological grade between patients with and without pCR 
were tested using the Chi-square test or Fisher exact test among all co-
horts. All statistical tests were two-sided and significant at P < 0.05. 
Statistical analyses were performed in python (version 3.6.10). The 95% 
confidence interval (CI) was used for AUC. This analysis was performed 
on R software (version March 1, 1093). 

3. Results 

3.1. Patient characteristics 

The clinical characteristics of the patients were summarized in 
Table 1. The results showed that the pCR rate across the four cohorts was 
variant, with 17.2%, 41.4%, 29.6%, and 27.3% in PC, VC1, VC2, and 

VC3, respectively. Regarding age, we did not observe a significant dif-
ference (P > 0.05) between patients with and without pCR for all co-
horts. Meanwhile, the cT characteristic in VC1 differed between pCR and 
non-pCR patients, whereas such a difference in cN characteristic was 
only observed in VC3. A significant difference was detected in ER, PR, 
HER2 status and stromal TILs concentration in both PC and VC1. As for 
VC2, only ER and HER2 status were associated with pCR. However, the 
cohort with limited patients like VC3 showed no difference for the three 
clinical molecular characteristics. Furthermore, the Ki67 index was 
associated with pCR in the PC only. Meanwhile, we observed that his-
tological grade in PC and VC2 differed between pCR and non-pCR pa-
tients but not in VC1 and VC3. These results suggested that the status of 
ER, PR, HER2, and stromal TILs were correlated with pCR, especially in 
large cohorts like PC and VC1. 

3.2. Prediction performance of models for pCR 

The ResNet18-patch classifier demonstrated an efficient automatic 
detection of the cell predominant patches labeled red or light red 
(Fig. 1). After feature extraction, aggregation, and selection, 11 deep 
learning pathological features were used for the DLPM construction. The 
DLPM showed reliable performance on pCR prediction with PC and 
external VCs (Fig. 2, Table 2). Specifically, the AUC of DLPM was 0.72 
(95% CI 0.66–0.78) in the PC, while the best AUC value among the 
external VCs reached 0.71 (95% CI 0.57–0.85). On the other hand, the 
clinical model also achieved good performance in PC and VC1, with AUC 
values of 0.79 (95% CI 0.74–0.84) and 0.76 (95% CI 0.70–0.82) 
respectively. The MLCM achieved poor performance in VC2 and VC3 
properly due to the lack of enrolled patients. 

Table 1 
Clinical characteristics of patients in the primary and validation cohorts.  

Characteristic Primary cohort Validation cohort 1 Validation cohort 2 Validation cohort 3 

(N = 482) (N = 222) (N = 115) (N = 55) 

N (pCR rate%) P-value N (pCR rate%) P-value N (pCR rate%) P-value N (pCR rate%) P-value 

Age (years) mean ± SD 48.4 ± 10.1 0.212 48.7 ± 9.3 0.160 49.9 ± 9.3 0.480 49.6 ± 11.2 0.200 
ER  <0.001*  <0.001*  0.046*  0.847 

Positive 308 (9.7%)  143 (30.1%)  78 (23.1%)  25 (28.0%)  
Negative 174 (30.5%)  79 (62.0%)  37 (43.2%)  30 (26.7%)  

PR  <0.001*  <0.001*  0.495  0.978 
Positive 286 (9.4%)  128 (31.3%)  78 (26.9%)  20 (30.0%)  
Negative 196 (28.6%)  94 (55.3%)  37 (35.1%)  35 (25.7%)  

HER2  <0.001*  <0.001*  <0.001*  0.172 
Positive 137 (38.0%)  87 (63.2%)  40 (50.0%)  23 (39.1%)  
Negative 345 (9.0%)  135 (27.4%)  75 (18.7%)  32 (18.8%)  

Ki67  0.013*  0.488  0.879  0.886 
Positive 357 (19.9%)  165 (43.0%)  92 (30.4%)  50 (28.0%)  
Negative 125 (9.6%)  57 (36.8%)  23 (26.1%)  5 (20.0%)  

cT stage  0.253  <0.001*  0.661  0.284 
cT1 18 (27.8%)  15 (46.7%)  9 (33.3%)  0 (0.0%)  
cT2 193 (16.6%)  170 (47.6%)  85 (31.8%)  14 (42.9%)  
cT3 90 (22.2%)  30 (13.3%)  8 (25.0%)  30 (20.0%)  
cT4 181 (14.4%)  7 (0.0%)  13 (15.4%)  11 (27.3%)  

cN stage  0.285  0.426  0.815  0.046* 
cN0 37 (18.9%)  87 (48.3%)  15 (20.0%)  7 (28.6%)  
cN1 207 (20.8%)  117 (36.8%)  79 (30.4%)  19 (10.5%)  
cN2 101 (13.9%)  13 (38.5%)  14 (35.7%)  21 (47.6%)  
cN3 137 (13.9%)  5 (40.0%)  7 (28.6%)  8 (12.5%)  

Histological grade  <0.001*  0.054  0.023*  0.446 
Grade 1, 2 380 (13.9%)  110 (34.5%)  78 (24.4%)  24 (4.1%)  
Grade 3 102 (29.4%)  112 (48.2%)  28 (50%)  6 (0%)  
Unknown 0 (0%)  0 (0%)  9 (11.1%)  25 (56%)  

Stromal TILs  <0.001*  0.007*  – – – 
Low (0–10%) 372 (12.6%)  115 (32.2%)  –  –  
Intermediate 103 (31.1%)  90 (48.9%)  –  –  
(11–59%)         
High (≥60%) 7 (57.1%)  17 (64.7%)  –  –  

Note: Data are mean (SD) or N (pCR rate%). Chi-square (χ2) tests were used to test whether the variable composition varied significantly between pCR and non-pCR 
patients. P-value<0.05 indicates that the variable distribution varied significantly between pCR and non-pCR patients. pCR = pathological complete response. non- 
pCR = non-pathological complete response. 
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The combination of MLCM with DLPM offered a better prediction 
performance in all cohorts (Fig. 2). Notably, the AUC of the DLPCM was 
close to 0.8 in both the PC and VC1. Possibly due to a limited number of 
patients enrolled, the prediction performance in VC2 and VC3 was not as 
good as that in PC and VC1. The case was more unpleasant in VC3, in 
which the sample size (55 patients) was the lowest. Even with this 
limited sample size, the VC2 and VC3 data yield AUC >0.70 in DLPCs. 

We also divided the enrolled patients into three subgroups based on 
receptor status: HR+ and HER2- (453 patients), HER2+ (287 patients), 
and TNBC (134 patients). Of these subgroups, TNBC had the highest 
performance of DLPM with an AUC of 0.73 (95% CI, 0.63–0.83). Fig. 3 
shows the ROC curves and corresponding AUCs of each subgroup. 

3.3. Comparison between DLPs and TILs 

To further determine the predictive value of DLPs, the stromal TILs 
score was used for the comparison. TILs, as a continuous variable, 
showed its predictive ability for pCR in PC (AUC: 0.66; Fig. S4A), VC1 

(AUC: 0.63; Fig. S4B) and among all subtypes (AUC; HR+ and HER2-: 
0.69, HER2+: 0.63, TNBC: 0.57; Fig S5). When the TILs were catego-
rized into three predefined groups, TILs were significantly associated 
with pCR in all breast subtypes (Table S3) and higher TILs were related 
to a higher pCR rate among all subtypes (Fig. S6). With the MLCM as the 
baseline model, we evaluated the incremental value with the inclusion 
of DLPs or TILs. We observed only a slight improvement in VC1 (AUC, 
0.77 vs 0.76; not significant) when predicting pCR using MLCM with 
TILs score. Nevertheless, the MLCM with DLPs achieved an AUC of 0.81 
in PC and 0.79 in VC1. These results (AUC of MLCM with DLPs vs MLCM 
with TILs; 0.81 vs 0.79, in PC; 0.79 vs 0.77, in VC1) suggested that the 
WSIs’ DLPs were different from TILs and that DLPs could provide more 
supplementary information for clinical signatures about the pCR pre-
diction than the TILs score. Under the combination of all these scores 
(MLCM with TILs and DLPs), the highest performance score was ach-
ieved with an AUC of 0.82 in PC and 0.80 in VC1, suggesting a lower 
contribution of TILs than DLPs in predicting pCR (Fig. 4). In the uni-
variate and multivariate analyses, TILs showed significance in both PC 

Fig. 1. Schematic of Deep Learning Pathological Feature Extraction. (A) The automatic deep learning pathological feature extraction procedure. Patches were tiled 
with a size of 512 × 512. And a patch-level classifier was trained using transfer learning with ResNet18. For the patches classified as the cancer cell or stromal cell 
predominant patches, the patch-level feature was extracted from the last convolutional layer output of the patch classifier. The patient’s patch-level features from all 
WSIs were then aggregated to create patient-level features. (B) Left: The patient’s original WSI. Right: visualization of labeled patches. Cancer cell predominant 
patches are labeled in red. Stromal cell predominant patches are labeled in light red. Other patches are labeled in blue. Background patches are labeled in white. WSI 
= whole-slide image. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(Table S4) and VC1 (Table S5). When DLPs were included in the 
multivariate analysis, TILs were no longer significant in the PC. How-
ever, DLPs remained statistically significant in both PC and VC1, 

indicating that DLPs contained predictive information from TILs and 
even outperformed it. 

3.4. Visualization of DLPM 

We used the Full-Grad [27] visualization approach to better interpret 
the findings obtained by the WSI feature-based DLPM (Supplementary 
Section 7). We randomly selected all the cell-predominant patches of 
three patients with pCR and three patients with non-pCR. The Full-Grad 
then generated an overlaid attention map for each input tile. For the 
visualization results, we frequently observed lymphocyte infiltration 
and aggregation (Fig. S7A), vacuoles around the tumor cells (Fig. S7B), 
the presence of mitosis (Fig. S7C), and pleomorphic nuclei with multiple 
atypical nucleoli (Fig. S7D), which contributed to the DLPM prediction. 

4. Discussion 

In this study, we have shown that DLPM constructed from WSIs could 
potentially predict response in patients with breast cancer. In addition, 

Fig. 2. The ROC curve for prediction performance in the (A) DLPM, (B) MLCM, and combined model (C) DLPCM among all cohorts. ROC = receiver operating 
characteristic. AUC = area under the receiver operating characteristic curve. DLPM = deep learning pathological model. MLCM = multivariate logistic regression 
clinical model. DLPCM = deep learning pathological clinical model. 

Table 2 
The predictive performance of models for pCR across cohorts.  

Cohort DLPM AUC (95% 
CI) 

MLCM AUC (95% 
CI) 

DLPCM AUC (95% 
CI) 

Primary Cohort 0.72 (0.66–0.78) 0.79 (0.74–0.84) 0.82 (0.77–0.87) 
Validation 

Cohort 1 
0.63 (0.56–0.70) 0.76 (0.70–0.82) 0.78 (0.72–0.84) 

Validation 
Cohort 2 

0.63 (0.53–0.73) 0.65 (0.53–0.77) 0.70 (0.60–0.80) 

Validation 
Cohort 3 

0.71 (0.57–0.85) 0.55 (0.38–0.72) 0.72 (0.56–0.88) 

Note: pCR = pathological complete response. DLPM = deep learning patho-
logical model. MLCM = multivariate logistic regression clinical model. DLPCM 
= deep learning pathological clinical model. AUC = area under the curve. CI =
confidence interval. 

Fig. 3. The ROC curve for prediction performance using DLPM in the (A) HR+ and HER2-, (B) HER2+, and (C) TNBC subgroup. ROC = receiver operating char-
acteristic. AUC = area under the receiver operating characteristic curve. DLPM = deep learning pathological model. HR = hormone receptor. HER2 = human 
epidermal growth factor 2. TNBC = triple-negative breast cancer. 
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we demonstrated that a combined model, DLPC, which was based on 
DLPM and MLCM could achieve the best AUC for pCR prediction among 
all cohorts. We have also seen that patients with TNBC were more likely 
to have their NAC responses be predicted than the rest subgroups. 
Moreover, DLPs can provide MLCM with more information regarding 
pCR prediction than TILs. 

The promising performance of DLPM indicated that the deep 
learning features from WSI were relevant for predicting pCR of NAC in 
breast cancer, which was also confirmed in external VCs. Also, when 
DLPM and clinical information were combined, the model, DLPCM, 
performed best in all cohorts, demonstrating that DLPM might be used as 
a complement to the model for pretreatment prediction of pCR. The 
DLPM represented the high-dimension of visually spatial features from 
WSIs; the stromal TILs score was manually assessed from the stromal 
region of WSIs, and the ER, PR, HER2, and Ki67 index were molecular 
features. These three types of information could complement each other 
in predicting the therapeutic response of cancer treatment. Besides, our 
findings demonstrated that DLPM had the highest predictive perfor-
mance for pCR in patients with TNBC, which was consistent with those 
reported in the previous study [9]. We also explained our model by the 
attention map generated from Full-Grad [27]. By the attention map, we 
found that the pCR prediction in our model was associated with 

histological features of lymphocytes, vacuoles, mitosis, and nuclear 
atypia. These findings were in accord with the previous results that high 
histological grade [28] and density of TILs were correlated with pCR 
[12]. In addition, we found that the presence of vacuoles around the 
tumor cells may be associated with efficacy, which was not observed 
before. This finding suggests that AI facilitates the discovery of novel or 
potential diagnostic features. Therefore, DLPM had the potential to 
improve pCR prediction and facilitate the better stratification of breast 
cancer patients in NAC settings, particularly those with TNBC. 

Our model selected content area patches and extracted pathological 
features automatically instead of using manual annotations. This 
method had several benefits, including reduced feature variances and 
enhanced feature repeatability. In the preprocessing procedure, patch 
resizing and staining normalization were performed to reduce the 
inconsistency from different cohorts or scanners which could improve 
the feature reproducibility. Furthermore, not only DLPM was proven 
predictive of pCR in PC but also its results were validated in three 
external cohorts. Meanwhile, WSIs were available for almost every 
breast cancer patient. WSI-based quantitative analysis via state-of-the- 
art methods could facilitate resolving complex clinical matters, with 
wide prospects for automated cancer analysis systems in the clinic. 
Although its adaption may seem challenging at present, the potential of 

Fig. 4. The ROC curve for prediction performance by combining MLCM with (A) DLPs, (B) TILs, (C) DLPs and TILs in the PC, and (E) DLPs, (F) TILs, (G) DLPs and 
TILs in the VC1. ROC = receiver operating characteristic. AUC = area under the receiver operating characteristic curve. MLCM = multivariate logistic regression 
clinical model. DLPs = deep learning pathological score. TILs = tumor-infiltrating lymphocytes score. PC = primary cohort. VC1 = validation cohort 1. 
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WSIs in pCR prediction is quite promising; and more enthusiastic and 
creative works need to be devoted to realizing the final breakthrough. 

Regarding the comparison of DLPs and TILs, earlier studies have 
reported that TILs score is associated with the response to NAC in all 
breast cancer subgroups [12]. Only a few studies report the AUC of 
single-center pCR prediction using TILs, and these results have not been 
verified in external cohorts [29,30], with AUCs of 0.645 in the TNBC 
subgroup with 166 patients and 0.683 in the HER2+ subgroup with 143 
patients, respectively. Meanwhile, an AUC of 0.768 was reported in a 
study of 105 patients with HER2+ breast cancer [31]. These results 
reveal that the ability of manually assessed TILs to predict pCR varied 
among cohorts. In addition, according to the ASCO guideline [32], there 
is no sufficient evidence to support the use of TILs in guiding the decision 
of neoadjuvant chemotherapy. In most studies, TILs inside the stromal 
region’s area are evaluated since it is a superior and more reproducible 
parameter [26]. However, TILs mainly contain the information of the 
stromal lymphocytes and do not involve the tumor cells, while charac-
teristics of the tumor cells such as tumor nuclear features [33] could also 
be correlated with the response to NAC in breast cancer. Meanwhile, 
TILs require manual evaluation, resulting in inter/intra-observer vari-
ability. With all this in mind, it guides us to explore more high-level 
information from WSIs associated with therapy efficiency. Alterna-
tively, different from TILs, DLPs is generated automatically from WSI 
without the need for manual evaluation, implying that DLPs is a good 
complement to TILs for predicting pCR. 

Despite the better performance offered by our study, the limited 
results of WSIs-based DLPM in VC1 and VC2 may be attributable to 
patient heterogeneity in breast cancer [34]. Another reason may be the 
fact that biopsy WSIs are sampled from representative tumor sections 
but not the whole tumor area. They microscopically reflect the intrinsic 
characteristics of histopathologic information but lack a macroscopic 
description of the entire tumor tissue. Medical images, such as MRI [9, 
35], CT [36], and PET [37], can perform whole tumor area scanning on a 
macroscopic scale and represent the intra-tumor heterogeneity [35] and 
the entire tumor environment [38]. Therefore, our model could not 
achieve the equivalent prediction performance compared to the above 
modal images and we speculate that the fusion of multiple modal images 
could lead to a greater breakthrough in pretreatment prediction. Addi-
tionally, it is important to note that predicting pCR before NAC is more 
challenging than after NAC [9], which may also explain our results. 

There are some limitations worth addressing in our study. First, 
although this is a multicenter study, limited numbers of patients were 
enrolled in our research, especially in VC2 and VC3. More patients who 
received standard NAC treatment should be recruited in future studies. 
Second, DLPM in our study was only developed from WSIs reflecting the 
microscopic scale of histopathologic information. The radiomics signa-
tures can be used to represent the intra-tumor heterogeneity [35] and 
the entire tumor environment [38]. Hence, MRI, CT, or PET signatures 
could be combined with DLPM in future investigations. Furthermore, 
our study was a retrospective study; a well-designed prospective study 
should be designed to validate the DLPM in the clinical trial to guide 
NAC treatment. 

5. Conclusion 

Our study demonstrated that WSI feature-based DLPM could poten-
tially predict pathological complete response to neoadjuvant chemo-
therapy in breast cancer. When combined with clinical information, the 
performance of DLPM was improved in all cohorts. Furthermore, our 
results suggested that the DLPs generated from DLPM can provide more 
information for pCR prediction than the TILs score. 
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