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Abstract: Human exposure to organophosphate esters (OPEs) is more pervasive in industrial areas
manufacturing OPE-related products. OPE exposure is of great concern due to its associations with
adverse health effects, while studies on OPE exposure in industrial districts are scarce. This study
aimed to assess human exposure to OPEs in a typical industrial area producing large amounts of OPE-
related products in Shenzhen, China. Tris (2-chloroethyl)-phosphate (TCEP), tris (2-chloroisopropyl)
phosphate (TCPP) and other common OPEs were analyzed in urine (n = 30) and plasma (n = 21)
samples. Moreover, we measured five OPE metabolites (mOPEs) in plasma samples (n = 21). The
results show that TCPP and TCEP are dominant compounds, with moderate to high levels compared
with those reported in urine and plasma samples from other regions. In addition, di-n-butyl phos-
phate (DnBP) and diethyl phosphite (DEP) were frequently detected in plasma samples and could be
considered as biomarkers. Risk assessment revealed a moderate to high potential health risk from
TCEP exposure. Our results provide basic data for human exposure to OPEs in industrial areas and
call for the prevention and mitigation of industrial chlorinated OPE pollution.

Keywords: organophosphate esters; industrial area; internal exposure; heath risk

1. Introduction

Recently, some widely used brominated flame retardants, e.g., polybrominated diphenyl
ethers (PBDEs), were banned or restricted due to their persistence, long-range atmospheric
transport, bioaccumulation and potential adverse effects on mammals [1]. As alternatives
to PBDEs, the consumption of organophosphate esters (OPEs) has surged, with an annual
increase of 15% in China [2]. OPEs are applied as flame retardants, plasticizers and
defoamers in products. Because they are mainly added to materials by doping and mixing
rather than by chemical bonding, OPEs could easily enter the environment. Consequently,
OPEs have been widely detected in various environmental media globally [3], including
sediments from the Futian Mangrove Nature Reserve [4], indoor dust [5], human urine
samples from primary school students and primiparas [6,7] and human blood samples
from Shenzhen [8]. These findings revealed ubiquitous environmental occurrences and
human exposure to OPEs. However, information regarding human exposure to OPEs in
industrial areas is rather scarce.
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Epidemiological studies have reported OPE exposure potentially associated with
health effects, such as altered hormone levels [3], metabolic syndrome [9], sphingolipid
homeostasis [8], oxidative stress [10,11], neurodevelopment [12] and even cancers [13].
Given the increasing industrial demand and potential health effects of OPEs, human
exposure to OPEs is of great concern, especially for high-risk populations such as residents
in industrial areas.

The Pearl River Delta (PRD) in southern China, at which lie industrial clusters of
electronics, building materials, textiles, coatings and other plastic products, is the main
OPE-applying and high-OPE exposure-risk area in China. Previous studies reported the
worldwide highest concentrations of OPEs among the rivers and fish in the PRD [2].
Shenzhen, located on the south coast of the PRD, is a rapidly urbanized and highly industri-
alized city. Compared with other cities of the PRD, Shenzhen possesses more agglomerated
industries, which manufacture large amounts of OPEs or OPE-related products. Approx-
imately 70% of the factories in Shenzhen are distributed in the Maozhou River Basin of
Bao’an District.

Therefore, we hypothesized that residents from the industrial area in Shenzhen might
be at a higher exposure risk than the general population. The present study aimed to (1)
determine commonly used OPEs and their metabolites in urine and plasma samples of
residents from an industrial area and (2) calculate the estimated daily intakes and assess
potential health risks.

2. Materials and Methods
2.1. Sample Collection

During October 2020, 30 urine samples and 21 plasma samples of residents from
Shajing Street in the Maozhou River Basin (Figure A1) were collected for OPE analysis.
We collected voluntary informed consent of the participants through the Shenzhen Bao’an
District People’s Hospital when they had a routine physical examination. Urine samples
(20 mL) and blood samples (10 mL) were collected in glass bottles. The samples were
transported in a box with dry ice to the laboratory and stored at −20 ◦C for further analysis.
The volunteer’s information is shown in Table A1. The ethical committee of the School of
Public Health (Shenzhen), Sun Yat-sen University, approved the present study.

2.2. Standards and Reagents

A full list of the 17 target OPE compounds and 5 mOPE compounds, along with their
full chemical names, physicochemical properties and respective manufacturers, can be
found in Table A2. Internal standards, including TiBP-d27, TBOEP-d27 and TMP-C13, were
purchased from Toronto Research Chemicals Inc. (Toronto, ON, Canada). The purities of
all analytical standards used in this study were ≥95%.

Methanol and dichloromethane of HPLC grade were purchased from Merck, Germany.
Ultrapure water was obtained from a Millipore Waters Milli-Q water purification system.
An Agilent 1260-6460 high-performance liquid chromatography-triple quadrupole mass
spectrometry instrument (HPLC-MS/MS) was obtained from Agilent Technologies Co., Ltd.
(Shanghai, China). An HZQ-Q constant temperature oscillator was obtained from Donglian
Electron Technology Exploiter Co., Ltd. (Harbin, China). A vacuum freeze drier was
obtained from Pharmaceuical Machinery Co., Ltd. (Shanghai, China). A WAX Plus column
(60 mg, 3 mL) was purchased from Waters Corp. (Milford, MA, USA). Other materials
included automatic Multi-channel Solid Phase Extraction (Thermo Fisher, Waltham, MA,
USA), a 0.45 µm glass fiber filter membrane (GF/F Whatman), organomationn-evap 24 Tube
Water Bath Nitrogen Blower (Organomation, Berlin, MA, USA) and a high-speed bench
centrifuge (Sigma Aldrich, Shanghai, China).

2.3. Sample Pretreatment and Instrumental Analysis

OPEs in the urine and plasma samples were extracted according to published meth-
ods [12,14] with minor modifications.
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Briefly, for urine samples, 1 mL urine was added with standard substitute to obtain a
concentration of 100 ng/mL and for purification with solid-phase extraction. First, 2 mL
of methanol solution containing 5% ammonia was added to the column, and the solution
dripped naturally. When the solution was equal to the substance in the column, 2 mL of
ultrapure water containing 8‰ formic acid was added for the same operation. Second,
1 mL of spiked urine was passed through the activated small column, and the effluent was
discarded. Third, we washed the column with 2 mL of ultrapure water containing 8‰
formic acid and discarded the leaching solution. Subsequently, after elution, a vacuum
pump was used to pump for about 15 min to ensure the drying of the solid-phase extraction
column. After drying, the solid phase extraction column was eluted with 1 mL of methanol
solution containing 5% ammonia and 1 mL of acetonitrile with 2 min. Lastly, after the solid-
phase extraction of the sample, the eluent was dried under mild nitrogen flow, concentrated
to 1 mL with ultrapure water, and was stored at −20 ◦C for mass spectrometry analysis.

For plasma samples, 800 µL acetonitrile (containing 1% formic acid), 200 µL plasma
and 100 ng/mL standard substitutes were added to a 1 mL PRiME HLB column. Then, the
standard substitute was fully mixed in the column and allowed to drop naturally under
the action of gravity. After the filtrate was blown and concentrated with mild nitrogen
flow, the volume was fixed to 0.2 mL with ultrapure water and stored at −20 ◦C for mass
spectrometry analysis.

The concentrations of OPEs were detected via an Agilent 1260 HPLC coupled to an Ag-
ilent 6460 MS/MS with positive electrospray ionization (ESI+). For chromatographic
conditions, separation of analytes was conducted using an Agilent ZORABX SB-C18
(6 mm × 150 mm × 5 µm) column. The column temperature was 35 ◦C. Mobile phase
A was methanol, and mobile phase B was ultrapure water containing 5 mM ammonium
acetate. The flow rate, injection volume and ion source temperature were set at 250 µL/min,
10 µL and 550 ◦C, respectively. The gradient elution procedure is shown in Table A3. For
mass spectrometry, we used an electrospray ionization source (ESI) with the ion source
temperature at 550 ◦C, and the ionization mode was positive ionization mode. The capillary
voltage was 3500 V, and the atomizer pressure was 45 psi. The carrier gas was high-purity
nitrogen, the carrier temperature was 330 ◦C, the flow rate was 9.5 L/min and multiple
reaction monitoring mode (MRM) detection was performed. A standard solution of an
analyte with a concentration of 500 µg/L was prepared, the parent and daughter ions of
each compound were determined by the total ion flow diagram and the corresponding
mass spectrometry results and the voltage (Fragment) and collision energy (CE) were
optimized according to the response. The optimized qualitative/quantitative ion mass
spectrometry parameters are shown in Table A4.

2.4. Quality Assurance and Quality Control

The analytical method was validated based on precision, a spike–recovery experi-
ment, blank contamination, the linearity of the calibration curve, method detection limits
(MDLs) and method quantitation limits (MQLs). A standard addition method based on
six concentration levels (5, 10, 50, 100, 500 and 1000 ng/mL) was used for individual
target compounds, and recoveries of OPEs in urine and plasma samples were 58–126% and
64–131%, respectively (Table A5).

Signal-to-noise ratios of 3 and 10 were assumed to correspond to the MDLs and MQLs,
respectively. Both were based on the lowest concentration and signal-to-noise ratio in
actual samples. In urine samples, MDLs and MQLs ranged from 0.02 to 0.3 ng/mL and
0.08 to 1 ng/mL for all compounds, respectively. In plasma samples, MDLs and MQLs
ranged from 0.08 to 1 ng/mL and 0.4 to 3 ng/mL (Table A5). Moreover, in order to reduce
the potential background interference, the glassware used in this study (such as a brown
bottle and flask) were immersed in chromic acid for more than 2 h, then washed with
ultrapure water (>18.2 MΩ·cm) and roasted at 450 ◦C for 4.5 h, as far as possible to reduce
the pretreatment process of experimental pollution.



Int. J. Environ. Res. Public Health 2022, 19, 3126 4 of 12

2.5. Heath Risk Assessment

Based on methods in the published literature [13,15], we calculated the estimated daily
intakes (EDI) and compared them with the tolerable intake value (RfD) to assess potential
health risks (HQ). An HQ greater than 1 indicates that the contaminant poses a potential
non-carcinogenic risk to human health; the formula is as follows:

EDI =
UC × UV

f × bw
(1)

HQ =
EDI
RfD

(2)

where EDI (µg·kg·bw−1·day−1) is the estimated daily intake of OPEs; UC (µg·L−1) is the
concentration of various OPEs in individual urine; UV (L·day−1) is the daily excretion
of human urine; bw (kg) is the body weight; f is the mole fraction of OPEs absorbed and
excreted in the human body; RfD (ng·kg·bw−1·day−1) is the tolerable daily intake. The
values of UV (2 L·day−1), bw (55 kg), f (0.18) and RfD (TCPP, 5000 ng·kg·bw−1·day−1, TCEP
2200 ng·kg·bw−1·day−1, TBOEP 1500 ng·kg·bw−1·day−1) were adopted from a previous
study [15].

2.6. Data Analyses

All statistical analyses were performed using SPSS version 18.0 software (SPSS Inc.,
Chicago, IL, USA). Pictures and other illustrations were developed using Origin 19 (Origin-
Lab Corp., Northampton, MA, USA). In the process of concentration data analysis, the
value below MQLs was set to 1/2 of the MQL, and the value below MDLs was regarded as
zero.

3. Results and Discussion
3.1. Concentrations and Profiles of OPEs in Urine and Plasma Sample

The detection frequencies (DFs) and concentrations of detectable OPEs measured in
urine and plasma samples are presented in Table 1. In urine samples, four detectable OPEs
including TCPP, TCEP, tris(2-butoxyethyl) phosphate (TBOEP) and 2-ethylhexyl diphenyl
phosphate (EHDPP) were found, with DFs of 90%, 50%, 63.33% and 6.67%, respectively.
TCPP, TCEP, triethyl phosphate (TEP) and triphenylphosphine oxide (TPPO) with DFs of
100%, 28.57%, 85.71% and 4.76% were found in plasma samples. The high DFs of TCPP and
TCEP may be related to their high water solubility and hydrophilicity [16]. Other alkyl and
aromatic OPEs were not detected in urine and plasma because the DFs were low, which is
related to the rapid degradation and metabolism of alkyl and aromatic OPEs into phosphate
diesters in the human body, making them difficult to detect [17]. Due to the low DFs,
EHDPP and TPPO were not analyzed in this study. TCPP had the highest concentration
( geometric mean(gm) 1.07 ng/mL)followed by TCEP (gm 0.47 ng/mL) and TBOEP (gm
0.12 ng/mL) in urine samples. In plasma samples, TCPP had the highest concentration (gm
15.89 ng/mL) followed by TEP (gm 3.59 ng/mL) and TCEP (gm 0.39 ng/mL). Apparently,
TCPP had the highest concentration in urine and plasma samples. Notably, a novel aryl-
OPE, TPPO, is widely used as a synthetic intermediate in pharmaceutical products, and
also as a ligand for various transitional metals. In recent years, it has begun to be widely
detected in various environments [18,19], but no related previous reports have been seen in
human urine, blood, plasma or serum. In this study, TPPO was first detected in one serum
sample with a value of 12.68 ng/mL. This indicates that TPPO is beginning to be exposed
in humans and that people are facing TPPO exposure. Considering the structural similarity
of TPPO to triphenyl phosphate (TPHP), a proven endocrine disruptor [20], the health risk
of TPPO warrants further investigation.
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Table 1. Summary of detectable OPE concentrations in urine and plasma samples (ng/mL).

DF(%) Median Mean Geometric
Mean

Standard
Deviation Min Max

Urine Samples (n = 30)

TCPP 90 1.35 1.52 1.07 0.99 n.d. 4.79
TCEP 50 n.d. 3.37 0.47 5.19 n.d. 15.82

TBOEP 63.33 0.26 0.51 0.12 0.84 n.d. 3.41
EHDPP 6.67 n.d. 0.60 n.d. 0.1 n.d. 0.67

Plasma Samples (n = 21)

TCPP 100 17.21 17.09 15.89 6.49 7.27 29.92
TCEP 28.57 n.d. 3.79 n.d. 6.5 n.d. 17.77
TEP 85.71 4.85 4.64 3.59 2.18 n.d. 8.04

TPPO 4.76 n.d. n.d. n.d. - n.d. 12.68

DF: detection frequency. n.d.: <MQL.

The profiles of detectable OPEs in urine and plasma are shown in Figure 1. In urine
samples, the average ratio of TCPP to the total concentration was 47.51%; for TCEP, it was
36.26%; and for TBOEP, it was 16.22%. In plasma samples, the average ratio of TCPP to the
total concentration was 49.18%; for TEP, it was 12.63%; and for TCEP, it was 8.70%. It can be
seen that chlorinated OPEs (TCPP, TCEP) are the main monomers of OPEs in both urine and
plasma samples. TCEP and TCPP are widely used as substitutes for pentabromodiphenyl
ether as flame retardants for flexible and rigid polyurethane foams, rubber and fabric
coatings. Due to carcinogenicity, there has been a gradual restriction of TCEP in some
developed countries, and TCEP has been gradually replaced by TCPP in recent years [21]. A
previously study on OPEs in the urine of primary school students and pregnant women in
Shenzhen revealed that the DFs, concentrations and profiles of TCEP were higher than those
TCPP [13]. On the contrary, in this study, TCPP was higher than TCEP, which indicates that
TCPP is widely used, and that there is widespread exposure to TCPP in industrial areas
in Shenzhen.
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3.2. MOPEs in Plasma and Recommendations for Biomarkers

Thus far, data on the concentration of OPE metabolites (mOPEs) in human blood/serum
or plasma samples have remained limited [14]. In this study, we analyzed five mOPEs
corresponding to their parent TnBP, TEP or TBOEP in plasma samples, and the results are
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shown in Table 2. As shown in Table 2, TBOEP and its three corresponding metabolites,
BBOEP, BBOEHP and 3-OH-TBOEP, were not detectable. The metabolite–parent pairs with
sufficient DFs (>50%) were TnBP–DnBP and TEP–DEP.

Table 2. mOPEs and their parent OPEs in plasma samples considered in the present study.

Parent OPEs DF (%) Mean
(Min–Max) mOPEs Properties DF (%) Mean

(Min–Max)

TnBP 0 n.d. Di-n-butyl phosphate(DnBP) Dialkyl
metabolites

85.71 8.22 (n.d.–13.78)

TEP 85.71 4.64 (n.d.–8.04) Diethyl phosphate(DEP) 52.38 2.29 (n.d.–9.96)

TBOEP 0 n.d.

Bis(2-butoxyethyl)
phosphate (BBOEP)

Dialkyl
metabolites 0 n.d.

Bis(2-butoxyethyl)2-
hydroxyethyl phosphate

trimester (BBOEHP)
Hydroxylated

metabolites

0 n.d.

Bis(2-butoxyethyl)2-(3-
hydroxybutoxy)ethyl
phosphate trimester

(3-OH-TBOEP)

0 n.d.

DF: detection frequency. n.d.: <MQL.

For TnBP–DnBP, TnBP was not detected in all plasma samples, but DnBP, in contrast,
was widely detected, with a median of 9.92 ng/mL. Zhao et al. reported that TnBP (the
parent compound of DnBP) had the highest level and was the main monomer in the
blood/serum (median 37.8 ng/mL) from 257 participants recruited in Shenzhen [5]. Zhang
et al. recently reported that urine DnBP (median 3.1 ng/mL) in Shenzhen had the highest
level and was the main monomer detected in eight cities [22]. These findings indicate that
Shenzhen is exposed to a high level of DnBP. DnBP is industrially produced and used for
metal extraction, as a plasticizer and as an additive in the textile industry [23]. In recent
studies, DnBP was found at higher concentrations than its parent compound (TnBP) in
house dust in Guangzhou, at up to 163 ng/g. The high concentrations of DnBP in plasma
samples in the present study may be a result of both DnBP metabolism in the body and
direct exposure to DnBP via dust and dietary ingestion [24].

For TEP–DEP, DEP (DF 52.38%, median 2.62 ng/mL) was found at lower concentra-
tions than its parent compound (TEP) (DF 85.71%, median 4.85 ng/mL) (see Figure 2a). As
can be seen in Figure 2b, the profiles of DEP in 7 of the 21 plasma samples were higher than
for its parent compound (TEP), indicating that the DEP in plasma samples may come from
direct ingestion from the environment. In recent studies, DEP was found in an effluent
of an industrial sewage treatment plant [25] and the water of Dongting Lake, China [26].
Above all, DnBP and DEP in plasma samples may come from other sources in addition to
OPE metabolism in the body and can be used as alternative exposure biomarkers in future.

3.3. Global and Regional Comparison of OPEs and Health Risk Assessment

The concentrations of OPEs in urine and plasma samples measured in our study
were compared to previous studies in several locations (Table 3). In urine samples, TCPP
(geometric mean (gm) 1.07 ng/mL) and TCEP (gm 0.47 ng/mL) were significantly higher
than those reported in Australia and Beijing, Hong Kong and Jinan in China (Table 3).
TBOEP (gm 0.12 ng/mL) was lower than in Australia (gm 0.59 ng/mL), but significantly
higher than in Beijing, Hong Kong and Jinan in China. In plasma samples, TCPP (median
17.21 ng/mL) in this study was significantly lower than in Spain (median 93.9 ng/mL), but
higher than in other reported regions (Table 3). TEP (median 4.85 ng/mL) had the highest
value, 10 times higher than that of other studies. Above all, the exposure levels of TCEP,
TCPP and TEP to the residents from industrial areas manufacturing large amounts of OPEs
or OPE-related products in Shenzhen may be higher than those of other regions. TCPP,
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TCEP and TEP have been proved to have potential toxic and health effects in a number of
studies [3,27], and the high level of exposure in this area deserves attention.
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Jinan, China 2018 0.298 0.743 - 0.4 - - 0.209 [24]

Australia 2014 n.d n.d n.d n.d n.d n.d n.d [29]
Australia 2015 n.d n.d 0.024 - - 0.59 n.d [30]

Blood/Serum or Plasma (Median, ng/mL)

Shenzhen, China 2020 n.d 17.21 n.d n.d 4.85 n.d n.d This study
Shenzhen, China 2012 n.d 0.71 n.d. 0.43 0.49 0.54 1.22 [5]

Hebei, China 2017 0.18 0.25 n.d 0.46 - n.d. 0.78 [31]
Jinan, China 2018 0.3 0.74 0.11 0.4 0.14 - 0.21 [24]

Beijing, China 2018 n.d n.d n.d 0.37 0.43 0.16 1.1 [14]
Jiangsu, China 2013 0.1 0.05 n.d 0.35 0.15 0.05 0.85 [32]

Shandong, China 2018 214 n.d. - - n.d. - 7.2 [33]
Spain 2016 3.69 93.9 n.d. 22.7 n.d. 56.4 425.8 [34]

-: no analysis, n.d.: <MQL.

The estimated daily intake (EDI) and potential health risk (HQ) values were calculated
based on TCPP, TCEP and TBOEP in urine, and the results are shown in Figure 3. The HQ
value (Figure 3b) shows that the HQ of TCPP and TBOEP is 0–0.19 and 0–0.45, respectively,
both far below 1. The highest HQ value was found for TCEP, with a 95% percentile
value of 1.23, higher than 1, revealing a moderate to high potential health risk from TCEP
exposure. Compared with other OPEs, TCEP is more persistent. Due to potential toxicity
and health effects, restrictions or prohibitions of TCEP have been issued in Canada, the
United States and some European countries [1]. However, as a high-yield chlorinated OPE,
TCEP is still widely used in some industrialized areas in China, and its health effects call
for more attention.
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4. Conclusions

In summary, this study reported on the OPE internal exposure and associated health
risk of residents from a typical industrialized area in Shenzhen, China. TCPP and TCEP
are the predominant OPEs and were found at concentrations higher than or comparable
to those in other studies. In addition, DnBP and DEP were frequently detected in plasma
samples and could be considered as biomarkers. Notably, the 95th HQ value of TCEP
was higher than 1, revealing a potential health risk from TCEP exposure. In conclusion,
human exposure to chlorinated OPEs (TCPP, TCEP) in industrialized areas calls for further
investigation. The main limitation of this study lies in the small sample size. Further studies
are needed to better assess OPE exposure in industrial areas with larger populations.
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Table A1. Detailed information of the study population (n = 51).

Category Number (Percentage)

Age

<18 6 (11.76%)
18–44 37 (72.55%)
45–59 7 (13.73%)
>59 1 (1.96%)

Gender
Male 12 (23.53%)

Female 39 (76.47%)

Table A2. Abbreviations, CAS numbers, molecular formulas, molar masses and manufacturers of
targeted OPEs and di-OPE compounds in this study.

No. Compound Abbreviation Molecular
Formula CAS No. Manufacturers

1 Tris(2-butoxyethyl) phosphate TBOEP C18H39O7P 78-51-3 Dr. Ehrenstorfer GmbH
(Augsburg, Germany)

2 Trimethyl phosphate TMP C3H9O4P 512-56-1 AccuStandard (New Haven,
CT, USA)

3 Tri-n-butyl phosphate TnBP C12H27O4P 126-73-8 Dr. Ehrenstorfer GmbH
(Augsburg, Germany)4 2-Ethylhexyl diphenyl phosphate EHDPP C20H27O4P 1241-94-7

5 Tri-iso-butyl phosphate TIBP C12H27O4P 126-71-6
ANPEL Laboratory

Technologies Inc. (Shanghai,
China)

6 Triethyl phosphate TEP C6H15O4P 78-40-0
AccuStandard (New Haven,

CT, USA)7 Tetraphenyl m-phenylene
bis(phosphate) RDP C30H20O8P2 57583-54-7

8 Tripentyl phosphate TNP C15H33O4P 2528-38-3
9 Tripropyl phosphate TPrP C9H21O4P 513-08-6 Dr. Ehrenstorfer GmbH

(Augsburg, Germany)10 Triphenyl phosphate TPHP C18H15O4P 115-86-6
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Table A2. Cont.

11 Triphenylphosphine Oxide TPPO C18H15OP 791-28-6 Toronto Research Chemicals
Inc. (Toronto, ON, Canada)

12 Cresyl Diphenyl Phosphate CDP C19H17O4P 26444-49-5 Dr. Ehrenstorfer GmbH
(Augsburg, Germany)13 Tris(2-ethylhexyl) phosphate TEHP C24H51O4P 78-42-2

14 Tris(2-chloropropyl) phosphate TCPP C9H18CL3PO4 13674-84-5 AccuStandard (New Heavn,
CT, USA)15 Tris(1,3-dichloro-2-propyl) phosphate TDCIPP C9H15Cl6O4P 13674-87-8

16 Tris(2-chloroethyl) phosphate TCEP C6H12Cl3O4P 115-96-8 Dr. Ehrenstorfer GmbH
(Augsburg, Germany)

17 Triisopropyl phosphate TiPrP C9H21O4P 513-02-0 AccuStandard (New Heavn,
CT, USA)18 Diethyl phosphate DEP C4H11O4P 598-02-7

19 Di-n-butyl phosphate DnBP C8H19O4P 107-66-4 Dr. Ehrenstorfer GmbH
(Augsburg, Germany)

20 Bis(2-butoxyethyl)2-hydroxyethyl
phosphate triester BBOEHP C14H31O7P 1477494-86-2 Toronto Research Chemicals

Inc. (Toronto, ON, Canada)21 Bis(butoxyethyl)phosphate BBOEP C12H27O6P 14260-97-0

22
Bis(2-butoxyethyl)2-(3-

hydroxybutoxy)ethyl phosphate
ttriester

3-OH-TBOEP C18H39O8P 1477494-87-3

Table A3. Liquid chromatography solvent gradient elution procedure.

Time (min) Mobile Phase A (%) Mobile Phase B (%)

0 30 70
2 60 40
22 85 15
24 98 2
25 98 2
30 30 70

Table A4. Detailed information of the mass spectrum parameters.

Analyte Precursor Ion
(m/z) Fragment (V) Product Ion

(m/z) CE (V)

TBOEP 399 124 45/57 25/37
TMP 141 96 109/47 17/29
TnBP 267 81 99/211 13/5

EHDPP 251 117 51/77 69/33
TIBP 267 81 99/81 13/61
TEP 183 61 99/81 17/49
RDP 575 210 77/152 85/70
TNP 309 101 99/81 17/77
TPrP 225 76 99/141 13/5
TPHP 327 157 77/152 49/45
TPPO 279 170 201/77 25/53
CDP 341 175 91/65 37/73

TEHP 434 130 99/113 40/10
TCPP 327 100 99/175 18/10

TDCIPP 431 110 99/209 15/12
TCEP 285 85 99/63 20/26
TiPrP 225 64 99/81 13/57
DEP 155 75 99/127 13/5

DnBP 211 75 99/63 9/89
BBOEHP 343 95 45/243 17/9
BBOEP 299 95 45/199 17/9

3-OH-TBOEP 415 105 45/55 25/37
TBOEP-d27 426 105 46/66 25/37
TMP-C13 144 90 111/80 20/40
TnBP-d27 294 95 102/83 17/77
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Table A5. Recoveries (%), method detection limits (MDLs, g/mL) and method quantitation limits
(MQLs, ng/mL) of the target analytes in urine and plasma samples.

Analyte
Recoveries Urine Plasma

Urine Plasma MDLs MQLs MDLs MQLs

TBOEP 85.4 ± 20.3 86.9 ± 14.4 0.05 0.2 0.2 0.8
TMP 82.3 ± 17.4 84.3 ± 12.1 0.05 0.2 0.2 0.8
TnBP 76.5 ± 10.4 86.1 ± 15.3 0.05 0.2 0.2 0.8

EHDPP 91.0 ± 22.6 79.6 ± 13.4 0.1 0.4 0.4 1.5
TIBP 84.8 ± 17.4 84.5 ± 16.7 0.05 0.2 0.2 0.8
TEP 93.1 ± 20.2 83.1 ± 18.3 0.1 0.4 0.4 1.5
RDP 85.6 ± 18.8 89.2 ± 22.6 0.2 0.8 0.8 3
TNP 79.5 ± 12.9 76.8 ± 12.6 0.1 0.4 0.4 1.5
TPrP 86.7 ± 21.3 87.9 ± 23.7 0.02 0.08 0.1 0.4
TPHP 89.6 ± 20.8 89.7 ± 19.5 0.02 0.08 0.1 0.4
TPPO 68.3 ± 10.1 86.1 ± 15.3 0.05 0.2 0.2 0.8
CDP 78.8 ± 15.5 90.3 ± 23.2 0.2 0.8 0.8 3

TEHP 73.8 ± 16.2 86.8 ± 16.2 0.1 0.4 0.4 1.5
TCPP 76.2 ± 8.6 91.8 ± 21.3 0.2 0.8 0.8 3

TDCIPP 81.1 ± 15.2 103.2 ± 16.8 0.3 1 1 4
TCEP 103.1 ± 23.2 107.3 ± 24.0 0.3 1 1 4
TiPrP 79.2 ± 16.6 84.9 ± 14.3 0.02 0.08 0.08 0.4
DEP 89.3 ± 13.3 89.1 ± 8.3 0.08 0.3 0.3 1

DnBP 76.3 ± 5.6 79.3 ± 5.4 0.05 0.2 0.2 0.8
BBOEHP 87.2 ± 7.9 76.8.4 ± 3.6 0.05 0.2 0.2 0.8
BBOEP 78.4 ± 14.3 82.6 ± 11.3 0.05 0.2 0.2 0.8

3-OH-TBOEP 84.5 ± 15.2 82.9 ± 12.6 0.04 0.15 0.15 0.6
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