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GoToCloud optimization of cloud
computing environment for accelerating
cryo-EM structure-based drug design
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Cryogenic electronmicroscopy (Cryo-EM) is a widely used technique for visualizing the 3D structures
of many drug design targets, including membrane proteins, at atomic resolution. However, the
necessary throughput for structure-based drug design (SBDD) is not yet achieved. Currently, data
analysis is a major bottleneck due to the rapid advancements in detector technology and image
acquisition methods. Here we show “GoToCloud”, a cloud-computing-based platform for advanced
data analysis and data management in Cryo-EM. With GoToCloud, it is possible to optimize
computing resources and reduce costs by selecting themost appropriate parallel processing settings
for each processing step. Our benchmark tests on GoToCloud demonstrate that parallel computing
settings, including the choice of computational hardware, as well as a required target resolution have
significant impacts on the processing time and cost performance. Through this optimization of a cloud
computing environment, GoToCloud emerges as a promising platform for the acceleration of Cryo-
EM SBDD.

Cryogenic electron microscopy (Cryo-EM) single particle analysis (SPA) is
the most widely used method for the 3D structural visualization of mem-
brane proteins and large macromolecular assemblies at a resolution where
atomic modelling is possible1. Although such large molecules are major
targets for drug discovery, most of them are difficult to crystallize and
therefore not applicable for X-ray crystallography2–5. As an alternative for
compound screening in structure-based drug design (SBDD), Cryo-EM
SPA would be the logical choice, but the throughput required for this
purpose has not been achieved. Additionally, in the last few years, it has
become possible to acquire a large number of micrographmovies in a short
period of time (over 10,000 movies per day) owing to advances in detector
technology and image acquisition methods6–8. Consequently, data analysis
has become a major bottleneck in Cryo-EM SPA, and huge amounts of
computational resources are nowneeded to analyse themassive amounts of
data. Therefore, it is critical to establish a computational platform and an
efficient Cryo-EM SPA workflow specifically designed for rapid determi-
nation of compound-binding protein structures to realize the practical
application of Cryo-EM to SBDD.

Researchers in fields that require massive amounts of calculations
basedonahugedataset, such asCryo-EMSPA, are turning their attention to
high-performance computing (HPC), especially cloud computing

(Cloud)9–15. By utilizing Cloud services such as Amazon Web Services
(AWS), Google Cloud Platform, and Microsoft Azure, users can perform
calculations using virtually limitless computational resources, including
storage. These services operate on an on-demand basis, allowing users to
quickly and inexpensively procure the required amount of computational
resources as needed, in contrast to computational resources that must be
acquired and maintained on-premise. With Cloud services, it is relatively
easy to improve cost performancewithout specialized knowledge ofHPCor
experience in operating computing facilities over a long period of time.

Particularly, AWS offers a service called AWS ParallelCluster (pclus-
ter), which allows users to build, configure, andmanageHPC clusters on an
on-demand basis with a relatively simpler procedure than designing and
building a cluster from scratch by themselves. The service automatically and
securely distributes the necessary computational resources for the applica-
tions based on user-specified configurations. AWS supports over 200 types
of virtual machines, called “Amazon Elastic Compute Cloud (EC2)
instances”. Each of the EC2 instance types has a different configuration of
the central processing unit (CPU), memory, graphics processing unit
(GPU), storage, and networking resources. Notably, different EC2 instance
types can coexist in the compute nodes (or simply “nodes”) of a single
pcluster instance by defining multiple queues of the job scheduler
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(e.g. Slurm) in the associated configuration file. Therefore, it is possible for
users to build customized HPC clusters having a variety of hardware con-
figurations. Since AWS continuously introduces the latest hardware in a
timely manner, by utilizing the pcluster mechanism effectively, one can try
out the latest computing hardware promptly. In this way, scientists can
design and build any number of HPC clusters with various hardware
configurations that meet their current needs and priorities and then
immediately utilize them.However, this task is still difficult for themajority
of structural biologists.

Cloud applications for Cryo-EM SPA have already been attempted.
Cianfrocco et al. developed “cryoem-cloud-tools”16,17, an analysis environ-
ment for running SPA jobs on AWS Cloud, which supports multi-node
processing for each SPA job. As a similar system, “ScipionCloud”18, which
utilizes a single GPU-enabled computer for each SPA job, has also been
developed. The “Stion” system (https://aws.amazon.com/jp/blogs/hpc/
stion-a-saas-for-cryo-em-data-processing-on-aws/)19 also assumes the use
of a single GPU-enabled computer for each SPA job, and was designed as a
training environment for SPA beginners rather than a resource for practical
data analysis. Recently, a practical analysis environment for “CryoSPARC”20

using pcluster has also been announced (https://assets.thermofisher.com/
TFS-Assets/MSD/Reference-Materials/pharma-cryosparc-wp0028.pdf).
However, the implementation of CryoSPARC currently supports only
multi-GPU processing and multi-threading on a single node and does not
support multi-node processing. This results in a significant constraint—
namely, the scalability is limited by the available machine types (e.g. the
number of GPU cards on a single EC2 instance type is 1 GPU, 4 GPU,
8 GPU, or 16 GPU cards on AWS). Thus, the strengths of pcluster are not
fully exploited.

To address the issues of the previously developed AWS cloud-based
Cryo-EM SPA environments, we developed “GoToCloud”, a practical
platform that achieves a performance level suitable for industrial applica-
tions using the multi-node processing of pcluster (Fig. 1a). The aim is to
establish a practical computational infrastructure for the cryo-EM field
using the latest cloud computing technologies through a publicly available
service for both academia and industry. Our approach can centralize the
technical aspects of maintaining and optimizing the data processing soft-
ware, and optimizing the use of AWS resources, letting the users focus on
processing their data. We conducted benchmark tests using practical
datasets to verify the scalability and cost-effectiveness of the GoToCloud
platform. Based on the benchmark results, we determined an optimal bal-
ance between processing speed and cost. In addition, by performing
structure determination at a resolution higher than 2 Å, we evaluated the
relationship between resolution improvement and cost.

Results
Design philosophy of the GoToCloud platform
A major challenge of using AWS is that expertise in various AWS-specific
services is required to ensure optimal system configuration and security.
AWS has a large set of managed services that allowmany advanced features
to be used easily, providing flexibility and scalability to accommodate var-
ious purposes, and the number of such services is still increasing rapidly.
Ironically, this strength also requires users to be familiar with the AWS
system to design and build a platform that meets their own needs. To
achieve specialized goals, a system must be built with the optimal combi-
nation ofmultiple managed services. In addition, in fields such as Cryo-EM
structural biology, where dataset size and analysis computation are enor-
mous, it is necessary to guarantee minimum storage size, storage access
speed, memory capacity, and processing speed that meet practical
requirements. Furthermore, the selection of aminimum set of EC2 instance
types from over 200 types while allowing sufficient flexibility for a given
purpose is indispensable, making the barrier even higher. Because of these
difficulties, it is evident that building a domain-specific platform is an
extremely heavy burden for most scientists.

To address these issues, we designed and developed the “GoToCloud”
platform specialized for data analysis in Cryo-EM SPA (see also ‘sections

1.1–1.4’ in the Supplementary Information). The design mainly targeted
those researchers in the field of structural biology, most of whom are not
familiar with the AWS services and implementation details of parallel
computing supported by required analysis software packages. Accordingly,
we aimed to automate the design and construction of pcluster instances as a
ready-to-use Cryo-EM SPA computational platform by (1) pre-selecting
machine specifications (EC2 instance types), (2) pre-installing dependent
components (e.g. pcluster library, JSON processor (jq), and JavaScript
runtime environment (Node.j)), and (3) pre-selecting and pre-installing
analysis software with optimal compilers with an optimal set of the compile
options (Fig. 1a). An additional reason for pre-installing the analysis soft-
ware was to provide a set of the latest software packages within a secure
environment in a timely manner, so that users would not be required to
update any of these packages by themselves.We adopted RELION21,22 as the
main SPA software because of its multi-node computing support with a
message-passing interface (MPI). Multiple RELION executables were built
with various compilers with various sets of compiler flags and pre-installed
on theplatform, toprovide anoptimal executable for eachRELIONjob type.

For GoToCloud, we adopted a system architecture that maps the
relevant real-world objects to AWS-managed services by considering a
common use case in Cryo-EM SPA (Fig. 1b). We assume that there are
multiple research groups, and that the analysis data is held confidentially
within each research group. Therefore, we define that a security unit cor-
responds to each research group and assume that each of the groups has its
own AWS account (AWS account (User)). This way, we can utilize the
robust security services already provided on an AWS per-research-group
basis. Another crucial component in this architecture is an AWS account
maintained by the GoToCloud management group (AWS account
(GoToCloud)). The management account has an Amazon Elastic File
System (EFS) as storage to be shared by all users. The related software
packages are pre-installed in this shared EFS. With this architecture,
GoToCloud can allow all users to instantly use the latest analysis software
environment maintained by the Cryo-EM SPA experts.

To build the GoToCloud platform, various AWS-managed services
must be built and set up (Fig. 1b), which can be a cumbersome task to
perform manually. Therefore, to allow users to perform these preparations
with as few steps as possible, we have developed a set of scripts called
GoToCloud scripts (GTC scripts)23, which enables the construction of a
ready-to-use Cryo-EM SPA computing platform in just three steps (Sup-
plementary Fig. S1). In the third step, users can remotely access the NICE-
DCV remote desktop environment on the head node of the constructed
pcluster instance through a WEB browser, and start analysis immediately
using the graphic user interface (GUI) of the analysis software (e.g.
RELION4.022 and UCSF Chimera24) as before (Supplementary Fig. S2).
These scripts are also stored in the shared EFS so they can be accessed by the
users of all AWS accounts where the GoToCloud platform is set up. A
manual procedure for building a GoToCloud platform instance typically
takes approximately half a day to a full day even for the developers who are
well familiar with the steps. With the GTC scripts and online documenta-
tionof step-by-step instructions (see the ‘Code availability section’), this task
can be completed in 30–60min for users at any level of familiarity with the
AWSsystem,making theGTCscripts highly valuable.Moreover, sincemost
of the time spent is just waiting for the command executions, the actual time
spent by the user is even shorter. In addition, by carefully designing the
specifications of the GTC scripts, the possibility of users making mistakes
has beenminimized. The detailed descriptions of the GTC scripts are given
in the ‘Methods’ section (see also ‘section 1.4’ of the Supplementary
Information).

Benchmark tests with a realistic dataset
To verify the effectiveness of the GoToCloud platform, we conducted
benchmark tests using a realistic dataset (EMPIAR-1058125 in Supple-
mentary Table S1) to validate scalability and cost-performance because it is
essential to achieve high practicality by selecting the optimal machines and
parallel computing parameter settings for each processing job. In this
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benchmark, we used Nitrite reductase (NiR), which is a small protein with
C3 symmetry and a total molecular weight of 110 kDa. The original work
achieved a 2.85 Å resolution26. Here, we targeted the 3D Refinement
(Refine3D), 3D Classification (Class3D), 2D Classification (Class2D), and
Bayesian Polishing (Polish) jobs of RELION4.027. These processes are the
most important but time-consuming processes in the Cryo-EM SPA
workflow. The benchmark tests were conducted using on-demand and spot
instances with AWS ParallelCluster v3.0.3 in the US East (Northern

Virginia) AWSRegion. Two EC2 instance-type groups, G5 andG4dn, were
used for the processes that support GPU and C6i was used for the other
processes. Each of the G5 and G4dn instance type groups has multiple
instance sizes equippedwith the samenumber ofGPUs (i.e. 1, 4, and8) but a
different number of virtual CPUs (vCPUs). Therefore, a single EC2 instance
type among those with a particular number of GPUs that achieved the best
performance, meaning the best balance between the numbers of GPUs and
vCPUs, in preliminary trial runs was selected for each RELION job type.

Fig. 1 | TheGoToCloudplatform, systemmapping and architecture.Adiagramof
the “GoToCloud” platform and system mapping between the relevant real-world
objects appears in a common practice of Cryo-EMSPA andAWS-managed services.
a Schematic diagram depicting the conceptual layers and examples of their com-
ponents in the GoToCloud platform. b Schematic diagram of the system mapping
used to design the GoToCloud architecture. A security unit corresponds to each
research group having its own “AWS account (User)”. The “AWS account
(GoToCloud)” is maintained by the GoToCloud management group. The

management account has shared “Amazon EFS” storage where the GoToCloud
scripts for building and setting up the computational platform instance are stored
and where related software packages are pre-installed. By sharing this storage, the
GoToCloud can allow all users to instantly use the latest analysis software envir-
onment maintained by the Cryo-EM SPA experts in the GoToCloud management
group. The circled numbers indicate the step numbers of the GoToCloud scripts
which build, delete, or set up each associated AWS managed service(s) (Supple-
mentary Fig. S1).
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The P4 (p4d.24xlarge) and P5 (p5.48xlarge) instances were also con-
sidered, but we chose the G4dn and G5 instance types over P4 and P5
primarily because of theirflexibilities inGPUcard numbers and hourly rates
that allowus tooptimize thenumber ofGPUs (i.e. less thaneightGPUcards)
and so reduce the cost for each RELION job type.While P4 and P5 instance
types support only the eight GPU configurations, G4dn and G5 instance
types offer configurations with 1 GPU, 4 GPU, and 8 GPU cards. Addi-
tionally, thehourly rates forP4 (32.7726USD)andP5 (98.32USD) instances
are significantly higher than those forG4dn (USD7.824 for g4dn.metal) and
G5 (USD16.288 for g5.48xlarge) instanceswith eightGPU cards. Therefore,
finer adjustments for cost performance are achievable with G4dn and G5.

All the EC2 instance types used in the benchmark are selectable within
a pcluster instance built by the GTC scripts and their specifications are
summarized in Supplementary Table S2. Three types of pre-installed
RELION4.0 executables were prepared by compiling the source code using
the GCC 9.3.0 and 9.4.0 compiler and the classic compiler in the Intel®
oneAPI Base Toolkit 2022.1.2.146 and Intel® oneAPI HPC Toolkit
2022.1.2.117 (Intel Inc.) with different compilation settings. The details of
the executables their compilation settings, and their applied RELION job
types are summarized in Supplementary Data 1. The input parameters for
each processing job that strongly affect processing speed are summarized in
Supplementary Table S3. The results of all benchmark tests are provided in
Supplementary Data 2. As a reference for readers, Supplementary Data 2
also contains a breakdownof all the associated costs, as well as a “grand total
cost”, including the storage costs. Since the pricing of the S3 and EFS
provided by AWS is listed as a monthly rate per GB (USD/GB/month), the
costs associated with the S3 and EFS were extracted from the billing state-
ment of our AWS account for the month (February 2023) when the
benchmark tests were conducted (provide in the “Pricing” sheet). For the

calculation of the grand total cost for each RELION job execution, these
storage costs in the month are further multiplied by the ratio of the pro-
cessing time (in hours) relative to a month.

Results of the 3D refinement (Refine3D) benchmark test
The results of theRefine3Dbenchmark test are summarized inFig. 2.Thekey
goals of GoToCloud are to improve the processing speed and optimize cost-
effectiveness. For this, along with a bar graph (Fig. 2a) of the type frequently
used for benchmark tests, we devised a scatter plot with total processing time
on the x-axis and total processing cost on the y-axis (Fig. 2b). A near-ideal
scalability, where increasing the number of computer resources improves the
processing speedwithout any significant addition of costs, is represented by a
horizontal line in this plot. The worst scalability, where increasing the
number of computer resources does not enhance processing speed at all but
only the cost increases, is represented by a vertical line. The ideal cost per-
formance should be no cost and no processing time, which corresponds to
the origin of the plot. Therefore, we define that the parallel computing set-
tings associated with the closest point to the origin achieve the optimal cost
performancewhere thebalancebetweenprocessing speed andcost is thebest.

The scalability of Refine3D was saturated with relatively few GPUs: 8
GPU and 16 GPU configurations of the G4dn and G5 instance types,
respectively (Fig. 2a). Sixteen GPUs with two nodes of g4dn.metal (eight
GPUs) showed theoptimal cost performance (closest to the origin) (Fig. 2b).
In addition, eight GPUswith two nodes of g5.12xlarge (four GPUs) showed
a similar cost performance to the optimal (second closest to the origin).
Notably, up to the saturation point of the scalability, configurations withG5
instance types achieved nearly the same processing speed and total cost
using half the number of GPUs with the G4dn instance types. This means
that the single G5 GPU showed twice the performance in terms of

Fig. 2 | NiR dataset benchmark result of 3D refinement (Refine3D).The bar graph
and scatter plot of the NiR dataset benchmark result of Refine3D using the RELION
executable EXE01_GPU in Supplementary Data 1. The data of AWS EC2 instance
types of g5.48xlarge (light blue) and g5.12xlarge (orange) from the G5 instance type
group (solid bars or circles), and g4dn.metal (green) and g4dn.12xlarge (blue) from
G4dn (striped bars or rectangles) are shown. a Bar graph for the scalability assess-
ment showing the processing time in hours relative to the total number of GPU cards
used for a single Refine3D job. b Scatter plot for investigation of the virtual cluster
configuration achieving the optimal cost performance. The horizontal axis is the
processing time in hours and the vertical axis is the total cost of processing in US
dollars, where the aspect ratio is 10 US dollars per 0.5 h. The dashed arc indicates the

distance of this globally optimal configuration from the origin. For the optimal
configuration in each EC2 instance type, the format of the marker label is “[the total
number of GPUs used]@[the number of nodes]x [EC2 instance type group]([the
number of GPUs per node],[the number of vCPUs per node])”. For other non-
optimal configurations, the format is “[the total number of GPUs used]@[the
number of nodes]x”. To clarify the associations, the configurations using the same
EC2 instance type are connected by a line. In both panels, the optimal configuration
in each EC2 instance type is outlined. The asterisk (*) indicates the globally optimal
configuration. The raw data of all AWS EC2 instance types used in this benchmark,
including g5.4xlarge and g4dn.4xlarge, are provided in the Refine3D sheet of Sup-
plementary Data 2.
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processing speed compared to the single G4dn GPU, but the price per hour
with G5 was approximately twice that with G4dn (e.g. 16.288 USD for
g5.48xlarge and 7.824USD for g4dn.metal; bothwith eightGPUs), resulting
in nearly the same total cost. Comparing CPU-optimized executions to
GPU-optimized ones demonstrated that both computation time and cost
were greatly increased (Supplementary Fig. S3a).

Results of the 3D classification (Class3D) benchmark test
The scalability ofClass3D showed a similar trend to that ofRefine3D, but the
Class3D scalabilitywas saturatedwith a larger number ofGPUcards: 16 and
32 GPU configurations of the G4dn and G5 instance types, respectively
(Fig. 3a).Again, theG5GPUsachievednearly the sameprocessing speed and
total cost with half the number of G4dn GPUs up to the saturation point of
the scalability. 30GPUswith eight nodes of g5.12xlarge (fourGPUs) showed
the optimal cost performance (Fig. 3b). The comparison of CPU-optimized
executions relative to GPU-optimized ones showed again that both com-
putation time and cost were greatly increased (Supplementary Fig. S3b).

Results of the 2D classification (Class2D) benchmark test
The Class2D with the expectation maximization (EM) algorithm showed a
near-ideal scalability proportional to the number ofGPUsup to~32 (Fig. 4a).
Thirty GPUs with eight nodes of g4dn.12xlarge (four GPUs) instance type
resulted in the optimal cost performance (Fig. 4b). Interestingly, unlike
Refine3D and Class3D, G4dn showed significantly better cost performance
than G5 with Class2D. The comparison of CPU-optimized executions rela-
tive to GPU-optimized ones showed that computation time decreased, and
while cost still increased, the amount of increase was much smaller than that
in the cases of Refine3D and Class3D (Supplementary Fig. S3c).

An additional benchmark test of the 2D classification job was con-
ducted using the variable-metric gradient descent with the adaptive
moments algorithm option (Class2D-VDAM)22. The original report by the
developer has shown that the Class2D-VDAM is faster than Class2D with
the EM algorithm28,29, especially for large datasets. Since Class2D-VDAM
supports multiple GPU cards but notMPI, the effect of the number of GPU
cards usedwithin a single EC2 instance typewas evaluated. The preliminary
trial runs showed that the number of threads should be the same as the

number of GPU cards used for the processing job to achieve the best per-
formance. The results demonstrated that more GPU cards achieved shorter
processing time and cheaper cost (Supplementary Fig. S4). The scalability
was saturated at fourGPUs (Supplementary Fig. S4a), and the configuration
of four GPUs with one node of g5.12xlarge (four GPUs) achieved the best
cost performance (Supplementary Fig. S4b). The best cost performance of
Class2D-VDAM was not significantly different from that of Class2D with
the EM algorithm because the distances of the associated optimal setting
points from the origin were close to each other.

Results of the Bayesian polishing (Polish) benchmark test
With polish, only C6i was used since this job type does not support GPU.
Polish exhibited almost perfect scalability proportional to the number of
nodes, up to 4 (Fig. 5). Beyond this, although the total processing time
decreased, the total cost substantially increased. The four nodes of
c6i.32xlarge (256 vCPU) with four MPIs per node gave the optimal cost
performance. Interestingly, in settings with four or fewer nodes, processing
time decreased as the number of MPIs per node increased, but as the
number of nodes increased, theprocessing timedifferencedependingon the
number of MPIs per node disappeared.

Results of the benchmark tests with spot instances
On AWS, the user can request an unused EC2 instance as a spot instance
with a significantly reduced price. Comparisons of spot instance executions
relative to on-demand executions in NiR dataset benchmarks showed that
spot instances had superior cost performance without any influence on the
execution time (Supplementary Fig. S5). During the benchmark executions,
the weekly average of the discount rates of spot instances was 68% for
g4dn.metal (Refine3D), 70% for g5.12xlarge (Class3D), 70% for
g4dn.12xlarge (Class2D), and 60% for c6i.32xlarge (Polish). The average
values were obtained from the “Spot Instance pricing history” page in the
AWS management console. The mean and standard deviation of cost
reduction percentage for Refine3D, Class3D, Class2D, and Polish were
66 ± 4.1%, 70 ± 0.3%, 70 ± 0.3%, and 56 ± 7.1%, respectively, where each
reductionpercentage is calculated for apair of on-demandand spot instance
with the same parallel computing settings using the discount rates above.

Fig. 3 | NiR dataset benchmark result of 3D classification (Class3D). The bar
graph and scatter plot of the NiR dataset benchmark result of Class3D. The data
obtained with the same RELION executable and AWS EC2 instance types as in Fig. 2
are shown. aBar graph for assessment of the scalability. b Scatter plot for investigation

of the virtual cluster configuration achieving the optimal cost performance. The axes,
colours, bars, maker symbols, andmarker labels are the same as in Fig. 2. The rawdata
of all AWS EC2 instance types used in this benchmark, including g5.4xlarge and
g4dn.2xlarge, are provided in the Class3D sheet of Supplementary Data 2.
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Results of a further optimization for the G5 instance types
A further optimization for the G5 instance types equipped with NVIDIA
A10G Tensor Core GPUs was attempted. We built another RELION
executable using the cmake configuration optimal for the compute

capability of the CUDA architecture of A10G (i.e. “-DCUDA_ARCH=
86”), in addition to the onewhich is optimal for theG4dnwithNVIDIAT4
Tensor Core GPU (i.e. “-DCUDA_ARCH= 75”), and conducted bench-
marks for Refine3D,Class3D, andClass2Dusing theG5 instance types. The

Fig. 4 | NiR dataset benchmark result of 2D classification (Class2D). The bar
graph and scatter plot of the NiR dataset benchmark result of Class2D. The data
obtained with the same RELION executable and AWS EC2 instance types as in Fig. 2
are shown. aBar graph for assessment of the scalability. b Scatter plot for investigation

of the virtual cluster configuration achieving the optimal cost performance. The axes,
colours, bars, maker symbols, andmarker labels are the same as in Fig. 2. The rawdata
of all AWS EC2 instance types used in this benchmark, including g5.xlarge and
g4dn.2xlarge, are provided in the Class2D sheet of Supplementary Data 2.

Fig. 5 | NiR dataset benchmark result of Bayesian polishing (Polish). The bar
graph and scatter plot of theNiRdataset benchmark result ofPolishusing theRELION
executable EXE03_CPU in Supplementary Data 1. With the AWS EC2 instance type
of c6i.32xlarge from the C6i instance type group (dotted bars or triangles), the MPI
processes per node (MPIs/node)were varied: 1 (light blue), 2 (orange), 3 (green), and 4
(blue). Settings ofmore than fourMPIs/node resulted inmemory capacity issues.Only
physical CPUs (i.e. half of vCPUs) were used in the Polish jobs. a Bar graph for the
scalability assessment showing the processing time in hours relative to the number of

nodes used for a single Polish job. b Scatter plot for investigation of the virtual cluster
configuration achieving the optimal cost performance. For the optimal configuration
in each MPI/node-set, the format of the marker label is “[the total number of vCPUs
used]@[the number of nodes]x [EC2 instance type group]([the number of GPUs per
node],[the number of vCPUs per node])”. For other non-optimal configurations, the
format is “[the total number of vCPUs used]@[the number of nodes]x”. The other
attributes of the panels are the same as inFig. 2. The rawdata are provided in the Polish
sheet of Supplementary Data 2.
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results showed clear improvements in execution times and costs for
Refine3D, a slight improvement for Class3D, and no improvement for
Class2D (Supplementary Fig. S6). The improvements become more pro-
nounced as the number of nodes increases.

Relationship between cost and resolution improvement in the
Cryo-EM SPA workflow
We also investigated the relationship between cost and resolution
improvement by determining an atomic resolution structure. The motiva-
tion of this case study was to find how the processing time and cost of a
practical usage increases when one tries to improve resolution by doing
additional processes on the GoToCloud platform and if the relationships
between theprocessing timeandcost relative to the resolution improvement
are more like linear or exponential using a typical SPA workflow. For this
verification,RELION3.1.221wasused.The analysiswas performedusingon-
demand usage in the Asia Pacific (Tokyo) Region. We chose a streptavidin
dataset (EMPIAR-1064130 in Supplementary Table S1), since the associated
EMDBmap has a resolution of 1.93 Å (EMD-3091331), which is higher than
the 2.0 Å preferred for drug discovery, making it a practical dataset for the
SBDD application. Streptavidin, a tetrameric protein with the point group
symmetryofD2, is a challenging target because of its smallmolecularweight
(~53 kDa). With GoToCloud, a map with a resolution of 1.83Å was
obtained. We extracted jobs directly related to the final map and provided
the parallel computing settings, input parameters that strongly influence
processing speed, and important output values in Supplementary Data 3.

The resolution along with the accumulated total processing time and
total costs at the key steps of Cryo-EM SPA are summarized in Fig. 6. The
resolutions improved from 3.20Å to 2.23Å, 1.95Å, 1.87Å, and finally

1.83Å. The accumulated total processing times were 34.41 h, 42.06 h,
77.65 h, 136.55 h, and 150.33 h, while the associated total costs increased
from 957 USD to 1129 USD, 2204 USD, 4546 USD, and 4885 USD. The
total processing time and cost were approximately doubled from the
second step to the third to obtain a resolution improvement of 0.28Å,
and from the third step to the fourth for a resolution improvement of
0.08Å due to repeated use of the computationally intensive Polish. As
evident from the comparison of the appearance of the holes in the aro-
matic ring side chains, the improvements of 0.28 Å, 0.08 Å, and 0.04 Å in
the resolution range of around 2.0 Å greatly improved the appearance of
the side chains.

Discussion
In the current study, we demonstrated the validity of GoToCloud in
Cryo-EM SPA by performing several benchmark tests. The results
demonstrated that our optimization of parallel computing settings had a
significant impact on both processing time and cost performance, so it is
important to use the optimal settings for each combination of computer
hardware and image processing job. Particularly, conducting a long-term
operation with an automated workflow using suboptimal parallel com-
puting settings can result in significant losses of time and money. From
the processing of the streptavidin dataset, it is evident that the total
processing time and cost increase exponentially as the resolution
becomes higher. This result indicates that one should consider omitting
jobs in the later stage of the SPA processing if the resolution sufficient for
research purposes is achievable without them. Specifically, employing a
smaller number of Polish cycles is effective in reducing the processing
time and cost. Therefore, in the SBDD application, it is suggested that

Fig. 6 | The relationship between resolution improvement and cost.TheCryo-EM
SPA image processing results of the streptavidin dataset (EMPIAR-10641) for
assessment of the relationship between resolution improvement and cost. a Results
of the stack cleaning process using Class2D and Class3D with a binning factor of 4.
b The results after reducing the binning factor to 2 and selections by Class3D. c The

point where the resolution reached higher than 2.0Å with the 2nd CTF refinement
during the repeated cycles of CTF refinement and Polish. d The result at the end of
the 5th cycle of CTF refinement and Polish. eThe finalmapwas obtained by refining
the homogeneity of the particle stack using no-alignment Class3D.
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setting a minimum necessary resolution while considering the corre-
sponding appearances of the side chains is crucial to achieve a shorter
processing time and cost reduction.

We reported here the closest point to the origin as the optimal
setting where the processing time and cost are most well balanced.
However, the meaning of “optimal” can be changed for each Cryo-EM
SPA project. As expected, a clear common trend of cost performance
relative to the increase of computer resources can be seen from the
graphs of all benchmark tests. For a given combination of sample nature,
imaging quality, dataset size, RELION job type, and parallel computing
settings including specific computer hardware (i.e. for a given EC2
instance type), there are apparently ultimate limitations for the attainable
shortest processing time and lowest cost. Starting from a small number of
computer resources (right side of each curve), the curve remains roughly
horizontal, and its y-axis value defines the lowest attainable processing
cost of a particular combination. Then, the curve starts to go up from
right to left and finally asymptotes a vertical line and its x-axis value
defines the shortest attainable processing time. Therefore, for a project
where cost reduction is more important than minimizing the processing
time, one should choose the point nearest the leftmost position on this
horizontal part of a curve. Conversely, when a decrease in processing
time must be prioritized over a decrease in cost, one may want to choose
the point nearest the bottom of the vertical part of a curve. A general
guideline is to select a point on a sloping portion of a curve based on the
required weight ratio between processing time and cost for a given
project. To this end, the results of this study can be useful in optimizing
the parallel computing settings for a fully automated Cryo-EM SPA
workflow aiming at the practical industrial application of SBDD.

An important consideration is the general applicability of the proposed
optimal parallel computing settings for each RELION job type and/or other
datasets. Our benchmarking results, based on a single system and dataset,
serve as an illustrative example specific to the configuration used in this
study. While these results offer valuable insights into optimizing parallel
computing settings on the GoToCloud platform, they are primarily inten-
ded to help users customize these settings according to their research
priorities, as discussed above. Unlike on-premise computing resources,
which are often not publicly accessible and likely offer limited availability to
external users, the AWS cloud computing service is publicly available. This
accessibilitymakes it easier for researchers in both academia and industry to
optimize parallel computing settings on the same platform according to
their needs by referring to our benchmark results. Nevertheless, our
benchmarking results should be viewed as an example rather than a com-
prehensive validation. Therefore, outside the GoToCloud platform, we
encourage readers to conduct their own benchmarks on their specific sys-
tems, to achieve optimal performance. Additionally, the transferability of
these results to other datasets is another important consideration, and this
should be explored in future work to fully automate the cryo-EM SPA
workflow.

By leveraging the benefits of the Cloud service and our robust
benchmark testing, GoToCloud has provided a solution for the bottle-
neck in the current data analysis practice of Cryo-EM SPA. Additionally,
because of our shared EFS, all users connected to GoToCloud can always
use the latest software in a secure analysis environment, even if the
analysis software is frequently updated. This is particularly true for fields
where the methodologies are still immature but growing fast, as often
seen in academia. Therefore, it is expected that similar data analysis
platforms will soon be constructed on Cloud services in more fields. At
that time, the design philosophy of GoToCloud presented here should
provide sound guidance.

We are now ready to develop a fully automated workflow for data
processing of the highly demanded Cryo-EM SBDD on top of the GoTo-
Cloud platform to accelerate drug design significantly by processing all
datasets simultaneously with large-scale parallelization using the optimal
settings. As the processing result of the streptavidin dataset indicated, an
important issue for automation is to define the stopping condition of the

workflow to achieve a high level of practicalitywhich should be addressed in
this future study. Furthermore, by utilizing the effectiveness of the Cloud
service, GoToCloud can be extended to a more advanced system that
supports the Internet of Things (IoT) for this analysis method, which
connectsmultiple Cryo-EM facilities to the Cloud through the Internet, and
developmental environments for machine learning (e.g. Amazon Rekog-
nition and Amazon SageMaker) and quantum computing technology (e.g.
Amazon Braket)-based algorithms for more advanced automation and
acceleration. Thus, GoToCloud can be an essential standard platform for
Cryo-EM SPA.

Methods
GoToCloud system mapping
In theGoToCloudarchitecture, the real-worldobjects relevant to a common
Cryo-EM SPA practice are mapped to AWS-managed services as shown in
Fig. 1b. As mentioned in the ‘Results’ section, multiple research groups are
assumed to have their own AWS accounts to utilize the robust security
services already provided by AWS on a per-research-group basis. There are
multiple users within each research group who perform analysis. In
GoToCloud, a user is mapped to an AWS identity and access management
(IAM) user. Each user is responsible for multiple projects and a project is
associated with a cloud-based integrated development environment (IDE)
called AWS Cloud9 (Cloud9). The raw input dataset analysed in each
project is expected to be processed using various analysis methods. There-
fore, multiple configuration files that define the analysis environment, such
as the hardware specifications of the virtual cluster and the required set of
software optimized for a given analysis method, can be created for each
project. To make it unnecessary for users to maintain these software
environments, we developed GTC scripts (see the next section). By placing
these scripts in the shared EFS of the GoToCloud management group’s
account, all the GoToCloud users can instantly use the latest analysis soft-
ware environment, which is maintained by the Cryo-EM SPA experts.

GTC scripts
By using GTC scripts23, a user can construct a ready-to-use Cryo-EM SPA
computing platform in just three steps without any input parameters
(Supplementary Fig. S1). To do so, a user must first create a Cloud9 for the
project. Only two input parameters are required: (1) the project name and
(2) the network (VPC). Then, the user executes GTC scripts in the Cloud9
terminal. The two conceptual layers of the GoToCloud platform in Fig. 1a
are constructed and set up with the Steps 1 and 2 GTC scripts. The Step 1
GTC script prepares for the generation of pcluster instances. This script
performs the setup for various AWS services and components altogether
(see ‘section 1.4’ in the Supplementary Information). A project-specific
Amazon Simple Storage Service (S3) bucket is generated in this step, and the
input dataset is uploaded to the bucket. The Step 2GTC script creates a new
pcluster instance,which consists of a headnode, computenodes, and ahigh-
performance Lustre parallel file system provided by the service called
Amazon FSx for Lustre (Lustre). This script automatically mounts the
shared EFS on the head node of the constructed pcluster instance, and then
sets up the system environment for a selected set of the software packages
which have been pre-installed in the shared EFS, such as RELION3.1.221,
RELION4.022, crYOLO32, CTFFIND433, andUCSFChimera24. RELION5.0-
beta (an online release announcement in October 2023) has been also pre-
installed and can be used already in the GoToCloud platform but this
version is not set to default currently (RELION4.0 is current default). Given
that anunstable version is likely to be supersededbya stable release soon, it is
inefficient to invest development efforts in it because repeating the opti-
mization for each new software release requires considerable effort.
Therefore, our basic policy is to support only the latest stable version as the
default in GoToCloud. The final Step 3 GTC script obtains the URL of the
NICE-DCV remote desktop environment on the head node of the pcluster
instance constructed in Step 2. Accessing this link in a WEB browser, the
user can display the OS desktop of the head node and start the analysis
immediately (Supplementary Fig. S2).

https://doi.org/10.1038/s42003-024-07031-6 Article

Communications Biology |          (2024) 7:1320 8

www.nature.com/commsbio


When the user wishes to pause the analysis work and does not plan to
use this GoToCloud platform instance for a while, it is recommended that
the pcluster instance be deleted to stop billing for the relatively expensive
head node and Lustre. For this additional step for pausing analysis work, the
Step 4 GTC script is prepared. To resume the analysis work, the user can
execute Steps 2 and3 again.Upon completionof theproject, the user canuse
the Step 5 GTC script to delete the associated AWS S3 bucket and EC2 key
pair for permanent removal of the GoToCloud platform instance. Finally,
the user should delete the Cloud9 IDE for the project from the AWS
management console.

Tagging computational resources for cost calculation
Another important issue is the cost management. While on-demand usage
is convenient, if users do not carefully control the use of computing
resources, the cost can quickly expand.As it is partly the user’s responsibility
to use the necessary computing resources only when needed, careful
attention is required for cost management. GoToCloud utilizes the tag
feature of each AWS service for cost management. The tagging of all AWS
services used in GoToCloud, including the head node, compute nodes, and
storage of HPC clusters, is automatically performed by the GTC scripts in
Step 1 and Step 2 based on the tag settings in Supplementary Table S4,
eliminating the need for users to manually perform this task. By utilizing
these tag settings, each research group can easily confirm the resource usage
and its associated costs for each user and project.

Supporting multi-accounts and multi-regions
The Step 2 GTC script reduces the setup time of the software environment
after generatingpcluster instances byutilizing the sharedEFSwhere related
software packages are pre-installed. While sharing the analysis software
environment between multiple AWS accounts brings various benefits as
mentioned above, it is also necessary to ensure strong security at the AWS
account level by building the shared EFS in the Amazon Virtual Private
Cloud (VPC), which is a logically isolated virtual network that is not
directly connected to the internet (Supplementary Fig. S7). Additionally,
there are also numerous numbers of AWS Regions, each of which is a unit
of AWS’s cloud server data centre group and geographically separated
from the other Regions. Therefore, the support for multi-regions was also
addressedwithGoToCloud alongwith the support formulti-accounts. For
the details of the multi-account and multi-region support of the GoTo-
Cloud shared EFS using the VPC service, refer to ‘section 1.2’ in the Sup-
plementary Information.

There are alsomultiple independent zones in eachAWSregion, known
as availability zones, which indicate the physical location of the hardware.
The resources available in each availability zone differ, particularly the set of
available EC2 instance types, their quantities, and the availability of Lustre.
Typically, to create a specificEC2 instance type, theusermust select anAWS
Region and an associated VPC, and then choose a subnet associated with
one of the availability zones within the selected AWS Region. To eliminate
the need for this selection process, the GoToCloud management group has
pre-determined themost suitable availability zone forCryo-EMSPA in each
AWSRegion andprepared a configurationfile forCloudFormation, thereby
reducing the user’s burden.

Statistics and reproducibility
In this study, no statistical analyses were conducted as each data point in all
graphs represents a single measurement. To effectively utilize the limited
resources for our evaluation of GoToCloud, we decided to cover a wider
range of parallel computing settings, specifically the types of RELION jobs,
EC2 instance types, and the number of computing nodes, by sacrificing
more robust reproducibility of each measurement. This approach allowed
us to capture clear common trends in cost performance relative to the
increase in computing resources, leading to a key finding from our
benchmark tests: the saturation points of scalability, the minimum
achievable cost, and the optimal parallel computing settings differ among
Refine3D, Class3D, Class2D, and Polish jobs.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this paper are publicly available from EMPIAR and EMDB.
For benchmark tests of the most important but time-consuming heavy
processes in RELION, a dataset of native nitrite reductase (EMPIAR-
1058125) with a small molecular weight of 110 kDa and C3 symmetry col-
lectedwith 200 kVacceleration voltagewasused to verify the effectiveness of
GoToCloud. The resolution of the associated EMDBmap is 2.85 Å (EMD-
073134). For assessment of the relationship between cost and resolution
improvement, a dataset of streptavidin (EMPIAR-1064130) with a small
molecular weight of ~53 kDa andD2 symmetry was used. The resolution of
the associated EMDB map is 1.93 Å (EMD-30913)31. The detailed
descriptions of sample handling, protein purification, Cryo-EM grid pre-
paration, and data acquisition of these datasets can be found in previous
publications24. All the relevant parameters of the data collection are sum-
marized in Supplementary Table S1. All data and parameter settings needed
to evaluate the conclusions in the paper are present in the paper, the Sup-
plementary Information, and the Supplementary Data 1–3. All other data
are available from the corresponding author (or other sources, as applicable)
on reasonable request.

Code availability
All necessary scripts23, including the GTC scripts and associated template
files, for the construction of the GoToCloud platform and the shared EFS
and shared S3 in the user’s ownAWSaccount are available at https://github.
com/KEK-SBRC-CryoEM/gotocloud. The README file in the GitHub
repository provides step-by-step instructions on how to use theGTC scripts
for setting up the GoToCloud platform and creating the instances on the
user’sAWSaccount. It also includes links towebsiteswhere readers canfind
detailed versions of these procedures, comprehensive tutorials on using the
GTC scripts, and installation instructions for the main software supported
by the GoToCloud platform. The versions of relevant software used in this
paper are RELION 4.0, RELION 3.1.2, UCSF Chimera version 1.14, AWS
ParallelCluster v3.0.3 (Amazon Web Services, Inc.), GCC 9.3.0 compiler,
GCC 9.4.0 compiler, Intel® oneAPI Base Toolkit 2022.1.2.146 (Intel Inc.),
and Intel® oneAPI HPC Toolkit 2022.1.2.117 (Intel Inc.).
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