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Abstract
Background: Novel approaches to treat human cancer that are effective with minimal toxicity
profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and
pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2)
external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal
destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines
(Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and
propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and
GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1,
2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity.

Results: GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that
GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was
observed. For Hep3B cells treated with a 67 μM/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes
of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 μM/L dose, cytotoxicity at
1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with
significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not
treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B:
17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01).

Conclusion: We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative
effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF
field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro.
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Background
Radiofrequency ablation (RFA) is now used in clinical
practice to treat some malignant tumors, yet it suffers
from serious limitations [1-4]. These shortcomings
include: 1) RFA is currently an invasive treatment requir-
ing insertion of needle electrodes directly into the
tumor(s) to be treated; 2) incomplete tumor destruction
occurs in 5% – 40% of the treated lesions, particularly if
lesions are > 4–5 cm in diameter; 3) the treatment is non-
specific with both malignant and normal tissues around
the needle electrode undergoing thermal injury; 4) com-
plications arise in up to 10% of patients, frequently
related to thermal injury to normal tissues; 5) and inva-
sive RFA is limited to treatment of tumors in only a few
organ sites (liver, kidney, breast, lung, bone) [5,6]. Inter-
estingly, the tissue penetration in humans by focused
external RF energy fields is known to be excellent [7]. In
theory, non-invasive RF treatment of malignant tumors at
any site in the body should be possible, but such a treat-
ment would require the presence of intracellular or intra-
tumoral agents that release heat under the influence of the
RF field. For such a novel RF treatment approach to be
effective, it will require identification of agents that have
little or no intrinsic cellular or tissue toxicity that can also
be targeted or directed to malignant cells while sparing
normal cells. Clearly, a non-invasive approach with the
potential to treat many types of cancers effectively with
minimal or no toxic effects to normal cells would be
highly beneficial.

Nanoparticles have piqued the interest of the medical
community for use in cancer diagnosis, treatment, and as
delivery vectors for biologic or pharmacologic agents [8-
16]. The ability to affect diagnostic or therapeutic changes
on a nanoscale could provide significant gains in medical
care. Gold nanoparticles (GNPs) are particularly interest-
ing for several reasons. First, they are easily prepared.
Additionally, the binding of molecules to the GNPs in
order to target cancer cells, including antibodies, carbohy-
drates, and pharmacologic agents, is easily achieved [17-
21]. Also, the GNPs themselves have anti-angiogenic
properties [13].

A previous study revealed that gold-silica nanoshells
release significant heat when exposed to near-infrared
(NIR) light (650–950 nm) and have been used to produce
thermal cytotoxicity in vitro [22]. Unfortunately, this treat-
ment approach is mechanistically limited to use in super-
ficial malignant tumors because of the minimal tissue
penetration (< 2–3 cm depth) by NIR wavelength light
[23]. However, the gold-silica nanoshell study demon-
strated that nanogold has potential clinical use as a ther-
mal conductor of non-invasive energy sources. Gold, like
most metals, is an excellent conductor of electrical and
thermal energy, thus we studied the potential role of

GNPs as intracellular molecules that would release heat
when treated with RF irradiation.

We hypothesized that 1) the addition of GNPs to hepato-
cellular and pancreatic human cancer cell lines would not
be intrinsically cytotoxic to the cells and 2) cancer cells
containing GNPs exposed to a focused, non-invasive RF
field would develop lethal, thermal-induced injury.

Results
GNP heating
Heating of GNPs with the external RF device occurred in a
nonlinear fashion (Fig. 1). Increasing GNP concentration
and increasing RF generator power (increasing field volt-
age) both contributed to increased total heating and rate
of heating of water to a boiling point. Figure 1 displays
representative heating curves for each concentration of
GNPs in deionized water tested at 200 Watts (W), 400 W,
600 W, and 800 W of RF generator power.

GNP cytotoxicity
Initial evaluation of the GNPs for constitutive anti-prolif-
erative effects against Hep3B and Panc-1 were required
before proceeding with RF experimentation. Therefore,
MTT assays with serial dilutions of GNPs were performed
and revealed no significant effect on Panc-1 or Hep3B cel-
lular proliferation at any of the concentrations measured
(1, 10, or 67 μM/L versus media alone). Specifically,
Hep3B absorbance as a percentage of untreated controls
was 100 ± 5%, 98 ± 6%, and 86 ± 8%, respectively for the
GNP concentrations of 1, 10, and 67 μM/L. Similarly,
Panc-1 absorbance was negligibly different between con-
centrations of GNPs and media (98 ± 10%, 90 ± 11%, and
81 ± 9% for 1, 10, and 67 μM/L GNPs). While there is less
absorbance at the highest concentration of GNPs (67 μM/
L), this absorbance remains within the standard deviation
of the DMEM media controls for both Hep3B and Panc-1.

GNPs alone at all concentrations produced no evidence of
necrosis in either Hep3B or Panc-1 cells; both cell lines
displayed normal cell cycle elements by PI-FACS (data not
shown). There was also no major cellular distortion
present on TEM images of Panc-1 cells exposed to GNPs
alone (Fig. 2, Panel 2). All organelles are intact and all
cells imaged are unchanged except for the intracellular
presence of GNPs within endosomal structures. This was
also true for Hep3B cells; there was no evidence of cellular
disruption or organelle damage in the presence of intrac-
ellular GNPs (images not shown).

External RF treatment of cells
Both Hep3B and Panc-1 cells treated with 67 μM/L GNPs
and then exposed to the external RF field had markedly
higher rates of cell death than the control samples not
treated with GNPs at all time-points as measured by PI-
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FACS (p < 0.01). These results are included in Table 1.
Cells treated with external RF after a GNP dose of 1 μM/L
had no increased cytotoxicity compared with control cells
grown only with media (no GNPs). Cells receiving 10 μM/
L GNPs had slightly, but not significantly greater cytotox-
icity compared to cells treated without GNPs (data not
shown).

Shorter exposure times resulted in decreased amounts of
cellular death in control samples (< 20% at 1 minute, <
27% at 2 minutes), while the 67 μM/L GNP-treated sam-

ples showed on average more than 98% of cells killed at
all time-points of RF exposure (both cell lines at both 1
and 2 minutes, Table 1). This killing differential was sta-
tistically significant for each time-point when compared
to control except for the Hep3B-5 minute sample. The
control samples in this 5 minute Hep3B group averaged
75.0% cellular death. The final temperatures recorded for
each sample are generally higher for each of the GNP sam-
ples tested (Table 1). Representative PI-FACS graphs of
cell viability following RF treatment are demonstrated in
Figure 3. Interestingly, there was not a significant differ-

Thermographic results of heating of solutions of gold nanoparticles (GNPs) exposed to external radiofrequency (RF) fields at different RF generator power outputsFigure 1
Thermographic results of heating of solutions of gold nanoparticles (GNPs) exposed to external radiofrequency (RF) fields at 
different RF generator power outputs. Panel A: Graphic depiction of heating rate of deionized water with increasing concentra-
tions of GNPs treated at 200 W of power. B. RF treatment at 400 W of power. C. RF treatment at 600 W of power. D. RF 
treatment at 800 W of power. Heating curves which conclude prior to 300 seconds are indicative of specimen boiling.
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ence in media temperatures in the RF-treated cells com-
paring control cells (no GNPs) to cells with various
concentrations of GNPs (data not shown). This suggests
that heat release from GNPs in the microenvironment of
the cells is sufficient to produce lethal injury in the cells
even though the concentration of GNPs in the cells is not
sufficient to produce significant heating of the relatively
large volume media solutions.

Discussion
The application of nanomaterials to the biohealth arena is
an exciting prospect given that most cellular chemical and
enzymatic interactions occur on the nanoscale. Therefore,
the ability to manage or modify these processes with engi-
neered molecules represents a new frontier for therapeu-
tics.

Conventional RFA is a useful treatment option for
destruction of hepatic malignancies, both primary and
metastatic lesions, as well as a few additional solid cancers
[4]. Currently, RFA is limited in the size of the tumors that
it can effectively treat [3,5]. Treating tumors larger than 5
cm in diameter with invasive RFA results in incomplete

tumor destruction in 10–40% of cases [2,4,5]. The tumor
must be treated with an ablation needle precisely placed
to assure optimal tumor destruction. In treating hepatic
malignancies, the RF energy applied to the invasive needle
electrode produces indiscriminate heating of any tissue
type within which it is placed, including normal liver
parenchyma, bile ducts, and other organs or structures in
proximity to the malignant cells. Additionally, tumor
location can prevent percutaneous or laparoscopic (mini-
mally invasive) approaches for RFA. Theoretically, an
external RF field generator would eliminate the need for
an invasive needle electrode, be able to focus energy at any
tumor location and body site, and not be limited by the
size of the tumor. In order to produce thermally-induced
cancer cell death in response to the RF field in vivo, intrac-
ellular or intratumoral resonant or metallic heat-produc-
ing molecules are required. GNPs are excellent conductors
of electrical and thermal energy and in our system provide
non-specific RF targeting to human gastrointestinal cancer
cells in vitro. GNPs appear to be taken into the cancer cells
in vitro by endocytosis with evidence of cytoplasmic vesi-
cles containing GNPs seen in our electron microscopy
images. We have evidence that solid tumor treatment in
vivo is feasible and effective using intracellular single-
walled carbon nanotubes as the heating releasing entity
[24], but this in vivo approach needs to be validated using
GNPs. Ideally, GNPs can be targeted to malignant cells in
vivo by attaching tumor-specific or tumor-related targeting
molecules such as antibodies, peptides, or pharmacologic
agents.

The data here represent the combination of these two
novel approaches, intracellular GNPs and a unique non-
invasive RF field generator. Other researchers have dem-
onstrated some decreased cellular proliferation with GNP
exposure. For example, GNPs have been shown to have
anti-proliferative activity in multiple myeloma cells [25].
GNPs were not cytotoxic to these myeloma cells and the
anti-proliferative activity was reversible. GNPs are not
cytotoxic or anti-proliferative in vitro in the two solid
tumor cancer cell lines studied here. This is demonstrated
in the MTT assays, PI-FACS control specimens without RF,
and the normal TEM appearance of GNP-treated Hep3B

Table 1: External radiofrequency (RF) field treatment of Panc-1 human pancreatic adenocarcinoma and Hep 3B human hepatocellular 
cancer cell cultures

Cell Type and Treatment

RF Exposure Hep 3B Control
Cell Death (%)

Hep 3B GNPs 
Cell Death (%)

P Value Panc-1 Control 
Cell Death (%)

Panc-1 GNPs 
Cell Death (%)

p Value

5 minutes 75.0 ± 12.2 99.8 ± 3.1 0.4 39.8 ± 34.0 96.5 ± 8.4 0.001
2 minutes 21 ± 14.1 98.5 ± 0.5 0.001 26.4 ± 15.8 98.7 ± 3.7 0.001
1 minute 17.6 ± 8.4 99.0 ± 0.2 0.001 15.3 ± 9.8 98.5 ± 2.1 0.001

GNPs = gold nanoparticles 67 μM/L concentration

Transmission electron microscopy of Panc-1 cells treated with 67 μM/L gold nanoparticlesFigure 2
Transmission electron microscopy of Panc-1 cells treated 
with 67 μM/L gold nanoparticles. Panel 1: 2 minutes of exter-
nal radiofrequency (RF) field treatment. Note loss of nuclear 
stability and prominent vacuolization. Panel 2: No RF treat-
ment. Nuclear integrity and normal appearing organelles.

Gold 
Nanoparticles
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and Panc-1 cancer cells not exposed to the RF field. Trans-
mission electron microscopy was also able to confirm the
internalization of GNPs into these human gastrointestinal
cancer cell lines. As seen in Fig. 2, the GNPs in the
untreated cells appear to be within endosomes.

Gold salts have been utilized as an immunomodulator for
decades in the United States, but they are not considered
cytotoxic [26]. GNPs are particularly interesting as a ther-

apeutic target for non-invasive RF because a number of
gold preparations are already used in clinical practice.
Intramuscular gold and oral gold compounds are already
approved for use by the Food and Drug Administration as
a therapeutic agent for rheumatoid arthritis [25,26]. These
gold formulations used to treat rheumatoid arthritis are
well tolerated in a majority of patients [27]. Parenteral
gold typically causes side effects in about 35% of patients,
which can include dermatitis, diarrhea, or stomatitis.

Propidium Iodide-Fluorescent Activated Cell Sorting (PI-FACS) representative graphsFigure 3
Propidium Iodide-Fluorescent Activated Cell Sorting (PI-FACS) representative graphs. Each sample from one minute radiofre-
quency (RF) treatment with and without gold nanoparticles (GNPs) at 67 μM/L. Panel A: Hep 3B human hepatocellular cancer 
cells control with DMEM; Panel B: Hep 3B GNPs; Panel C: Panc-1 human pancreatic cancer cells control with DMEM; Panel D: 
Panc-1 GNPs.

C D

A B
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More severe reactions such as nephritis, bone marrow
suppression, colitis, and hepatotoxicity are more rarely
observed [28,29]. While the toxicity profile for colloidal
gold and GNPs does not demonstrate any hematologic or
biochemical sequelae, these gold formulations are not
currently used in the treatment of rheumatoid arthritis
[30]. Our findings here are consistent with reports
describing the current therapeutic use of gold for rheuma-
toid arthritis with no apparent cytotoxicity to our cell lines
in vitro [26,31,32]. However, the potential systemic toxic-
ity of GNPs in humans is not currently known and
requires further preclinical investigation before these mol-
ecules are deemed safe for clinical trials. We believe this
approach is promising and have initiated preclinical tox-
icity studies of GNPs in normal and tumor-bearing ani-
mals.

Once the GNPs are internalized, they serve as target mol-
ecules to produce increased intracellular heat when
exposed to the external RF field. The PI FACS data dis-
played in Table 1 and Figure 3 demonstrates the increased
percentage of cell death in the GNP-treated cells exposed
to the external RF field. TEM reveals disruption and
destruction of normal intracellular structures and archi-
tecture. Importantly, the difference in RF-induced cytotox-
icity between the GNP-treated group and control cells is
significant, with over 98% cell death in both Panc-1 and
Hep3B GNP-treated groups. The cytotoxicity noted in the
control cells is related to non-specific ionic stimulation
and heat production that is known to occur in powerful
RF fields [33]. It will be important to study our system
carefully to determine the optimal duration of RF expo-
sure, use of pulsed RF, and RF field strengths necessary to
produce lethal injury in GNP-laden malignant cells while
avoiding RF-induced damage to normal cells. The current
experiments indicate that GNPs are suitable targets for RF-
induced thermal destruction of cancer cells. It is possible
that shorter duration RF exposures may be sufficient to
produce apoptosis-inducing injury in cancer cells bearing
GNPs while sparing adjacent normal cells not containing
GNPs. To achieve this goal, methods to deliver the GNPs
exclusively or preferentially to the cancer cells must be
investigated.

It is clear from our data that as an intracellular target mol-
ecule, GNPs release substantial heat in the nanoenviron-
ment after exposure to a high-voltage focused RF field.
This heating occurs very rapidly (as quickly as one
minute) in vitro. The amount of heating related to the
intracellular GNPs represents a marked difference com-
pared with the ion rich control samples which contain
DMEM and 10% fetal calf serum, but no GNPs. The GNPs
in the current experimental system are acting as nonspe-
cific target molecules. Future experimental steps include
wrapping the surface of GNPs with a targeting agent to

selectively deliver GNPs to malignant cells followed by
generation of hyperthermia using non-invasive RF. In this
respect, the surface area of GNPs is an important factor for
surface functionalization. The reason for selecting GNPs
as a target for this study is manifold: 1) recently, GNPs
have been used in various biomedical applications
[13,15,19,22,23,34-42]; 2) as mentioned earlier, colloidal
gold and gold compounds have a long history of use in
humans [43,44]; 3) they are easy to synthesize and char-
acterize due to the presence of a characteristic surface plas-
mon resonance (SPR) band (absent in all other organic
based nanoparticles systems such as polymeric nanoparti-
cles, liposomal nanoparticles, dendrimeric nanoparticles)
[23]; 4) their surface chemistry is relatively simple and
surface modification (attaching biomolecules including
proteins/antibodies, drugs, and DNA) can be done fairly
easily [45-49] than other relevant technologies (lipo-
somal, polymeric, etc); 5) they have high surface area that
allows multiple drug loading on a single particle, and
most importantly, 6) they are biocompatible and do not
elicit toxic effects [22,30,41,50-52]. Recent in vitro and in
vivo reports have confirmed the absence of chronic bio-
chemical and hematological toxicity in mice up to one
year after injection of GNPs (1.9 nm in diameter) [30]. All
of these qualities associated with GNPs make it a poten-
tially ideal molecule for targeted hyperthermia.

We selected GNP of ~5 nm diameter due to the simple
synthesis process and high surface area with this size. A
spherical GNP of 5 nm size has 23% surface atoms,
whereas a 10 nm particle has 11.5%, a 50 nm particle has
2.3% surface atoms and a 1000 nm particle has only 0.2%
surface atoms [53,54]. Due to this higher surface atoms
feature, a 5 nm particle will have maximum loading
capacity with a minimum gold content. Furthermore, the
small size of these nanoparticles may allow them to
escape uptake by mononuclear phagocytic cells and pene-
trate through the smallest capillary pores within the
human vasculature.

The preliminary findings here are promising for the use of
GNPs as a heat-releasing substrate for this completely
non-invasive RF technique. Development of an in vivo
tumor model will be important to establish this technique
as a feasible treatment modality for solid tumors. Addi-
tionally, specific targeting of the GNPs, either through
antibodies, peptides, or other entities will likely be neces-
sary to provide tumor-only destruction by the RF and
thus, provide significant advantage over current invasive
radiofrequency technology.

Conclusion
Our preliminary studies here indicate that GNPs added to
the media of human cancer cells in vitro are taken up and
localized in vesicles in the cytoplasm of the cells. The pres-
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ence of these GNP-laden vesicles has no apparent cyto-
toxic or anti-proliferative effect on the cells. Furthermore,
GNPs exposed to an external, non-invasive 13.56 MHz RF
field release significant amounts of heat, in fact often suf-
ficient to raise water temperatures to the boiling point.
Exposing GNP-bearing human cancer cells to this external
RF field in vitro produced dose-dependent lethal injury in
> 96% of the cells. Based on these promising results, we
have initiated studies to evaluate in vitro cytotoxicities of
GNPs and methods to target the GNPs to tumors in vivo to
affect RF-induced thermal destruction of malignant
tumors.

Methods
GNP production
GNPs were prepared using previously described methods.
In brief, 50 mL of aqueous solution containing 4.3 mg of
solid sodium borohydride was added to 100 mL of 100
μmol/L aqueous solution of tetrachloroauric acid under
vigorous stirring for at least 12 hours. Nanogold particles
formed and were then filtered through a 0.22 μm filter.
Transmission electron microscopy (TEM) was utilized to
confirm uniform creation of 5 nm GNPs [25].

External radiofrequency field generator
A variable power 0–2 KW 13.56 MHz RF field generator
(Therm Med LLC, Erie, Pennsylvania, USA) was built to
specifications for use in these experiments. The RF gener-
ator was connected to a high Q coupling system (Therm
Med LLC, Erie, Pennsylvania, USA) with a Tx head
(focused end-fired antenna circuit) and reciprocal Rx head
(as a return for the generator) mounted on a swivel
bracket allowing the RF field to be oriented in either a hor-
izontal or vertical direction. The distance between the
heads was also adjustable. The coaxial end-fire circuit in
the Tx head produced an electronic focused RF field up to
15 cm in diameter. Each time the RF field was activated,
the couplers were checked and fine tuned to assure that
there was no reflective power between the Rx and Tx
heads. The electromagnetic field strength between the Tx
and Rx head was established in a Farraday-shielded room
to exclude any interference from external RF sources. The
field was measured using a Hewlett Packard Spectrum
Analyzer (model 8566B, Agilent, Santa Clara, California,
USA) and an isotropic field monitor and probe (models
FM2004 and FP2000, Amplifier Research Inc., Souderton,
Pennsylvania, USA). In our instrument, output powers of
200, 400, 600, 800, and 1000 watts were used, giving
maximum estimated electric field strengths (Ep) 2.5 cm
from the Tx head of 8.0, 10.1, 12.4, 14.3, and 16.0 kV/m,
respectively.

RF heating of GNPs
Thermal properties of GNPs in the external RF field were
obtained using 1.0 mL GNP samples at concentrations of

1.1 μM/L, 11.1 μM/L, 33.5 μM/L, and 67 μM/L in deion-
ized water. The RF field was generated in the horizontal
plane at powers of 200 W, 400 W, 600 W, and 800 W with
exposure times up to 5 minutes or until boiling of the
solution occurred. Temperature measurements were
obtained using the FOT Fluoroptic Lab Kit (Luxtron Corp,
Santa Clara, California, USA). Samples for each concen-
tration and power were repeated in triplicate at the mini-
mum.

Human gastrointestinal cancer cell lines
Panc-1 and Hep3B cells were utilized for all experiments
(American Type Culture Collection, Bethesda, Maryland,
USA). The cells were maintained in standard culture con-
ditions with 10% fetal calf serum and penicillin/strepto-
mycin at 37°C. For experimental purposes, each cell line
was only utilized from passages 2–9.

MTT assay
Hep3B and Panc-1 cells were plated in 96-well plates at a
density between 4–8,000 cells per well. Nearly confluent
(10–20,000 cells per well) Hep3B and Panc-1 cell lines
had increasing concentrations of GNPs in media added (1
μM/L, 10 μM/L, 67 μM/L) with media alone without
GNPs as a control. Cells were maintained at 37°C for 24
hours after adding GNPs. 3-(4,5-Dimethylthiazol2-yl)-
2.5-diphenyltetrazolium bromide (MTT) was then added
to each well and incubated for 4 hours. Absorbance was
interpreted at 570 nm for each well. Each concentration
was repeated in triplicate with five wells in each group for
a total of 15 samples per tray per condition. MTT assay
could not be combined with RF treatment. The 96-well
plates were too large to reliably focus the RF field on a sin-
gle GNP concentration in a uniform fashion.

External RF treatment
Hep3B and Panc-1 cells were grown to near confluence on
60 mm Pyrex dishes. Cells were incubated for 24 hours in
media with 1, 10, or 67 μM/L GNPs, or with media alone.
Media containing GNPs not taken up by the cancer cells
was aspirated and fresh media without GNPs was then
added to each dish. The cell cultures were then treated
with RF exposure times of 1, 2 or 5 minutes. Culture tem-
peratures were measured prior to and at completion of RF
exposure with a FOT Fluoroptic Lab Kit (Luxtron Corp,
Santa Clara, California, USA). Cells were then returned to
the 37°C incubator for 18 hours. All RF exposure times
were repeated in triplicate at the minimum.

Propidium iodide-fluorescent activated cell sorting (PI-
FACS)
Cells were harvested after completion of the post-RF incu-
bation and fixed in 95% EtOH. Cells were prepped with
propidium iodide (PI) and DNase free RNase. The BD
FACS Calibur (BD, San Jose, California, USA) was utilized
Page 7 of 9
(page number not for citation purposes)



Journal of Nanobiotechnology 2008, 6:2 http://www.jnanobiotechnology.com/content/6/1/2
as the fluorescence activated cell sorter (FACS). CellQuest-
Pro (BD, San Jose, California, USA) analyzed the data.

Transmission electron microscopy
Cells were harvested in similar fashion to FACS protocol
following RF exposure as well as control conditions. The
cells were then fixed in 10% formalin. Cells were rinsed
for 30 minutes in 3 changes of 0.1 M phosphate buffer,
pH 7.2, followed by a 1 hour postfix in phosphate-buff-
ered 1% OsO4. After washing with distilled water thrice
for 30 minutes, the tissue was en-bloc stained with 2%
uranyl acetate for 30 minutes at 60°C. The cells were then
rinsed again in three changes of distilled water, dehy-
drated in progressively higher concentrations of ethanol
and 100% propylene oxide, and embedded in Spurr's
resin. Thin (90 nm) sections were cut on a Reichert
Ultracut E ultramicrotome, placed on 200 mesh copper
grids, and stained with lead citrate. Micrographs were
taken on a TECNAI 12 (FEI/Philips, Hillsboro, Oregon,
USA) operating at 120 KV.
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