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Background. Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several 
genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is 
the major genotype worldwide. Epidemiological studies have highlighted the prevalence of GII.2. Although recent advances using 
human tissue– and induced pluripotent stem cell (iPSC)–derived intestinal epithelial cells (IECs) have enabled in vitro replication 
of multiple HuNoV genotypes, GII.2 HuNoV could replicate only in tissue-derived IECs and not in iPSC-derived IECs.

Methods. We investigated the factors influencing GII.2 HuNoV replication in IECs, focusing on histo-blood group antigens. We also 
assessed the immunogenicity of GII.2 virus-like particles (VLPs) and their ability to induce neutralizing antibodies. Antibody cross- 
reactivity was tested to determine whether GII.2 VLPs could neutralize other HuNoV genotypes, including GII.4, GII.3, GII.6, and GII.17.

Results. Our findings indicated that GII.2 HuNoV replication in vitro requires the presence of both H and B antigens. Moreover, 
GII.2 VLPs generated neutralizing antibodies effective against both GII.2 and GII.4 but not against GII.3, GII.6, or GII.17. 
Comparatively, GII.2 and GII.17 VLPs induced broader neutralizing responses than GII.4 VLPs.

Conclusions. The findings of this study suggests that GII.2 and GII.17 VLPs may be advantageous as HuNoV vaccine candidates 
because they elicit neutralizing antibodies against the predominant GII.4 genotype, which could be particularly beneficial for infants 
without prior HuNoV exposure. These insights will contribute to the development of effective HuNoV vaccines.
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Human norovirus (HuNoV) is the leading cause of diarrheal 
infections in people of all ages worldwide [1]. HuNoV is highly 
contagious and causes symptoms like vomiting and diarrhea 
at an infectious dose as low as 10 000 viral genome copies [2– 
4]. It spreads predominantly through contaminated food and 
fecal-oral transmission, affecting individuals across all age 
groups. Notably, immunocompromised infants and elderly 
persons face heightened risks, which often culminate in severe 
and potentially fatal consequences, such as dehydration and as
piration pneumonia [5]. Therefore, HuNoV outbreaks in day
care facilities, schools, elderly care facilities, and hospitals 
necessitate prompt and meticulous decontamination and pa
tient isolation, imposing a significant economic and social bur
den [6–9]. Nevertheless, the development of vaccines and 
specific therapeutic agents against HuNoV has been challeng
ing, and no vaccines are currently available.

Norovirus is a non-enveloped virus with a single-stranded 
RNA genome containing 3 open reading frames (ORFs). 
ORF1 encodes a single polyprotein cleaved into ≥6 viral pro
teins (VPs), while ORFs 2 and 3 encode structural proteins 
VP1 and VP2, respectively. Currently, noroviruses are classified 
into 10 genogroups (GI–GX) based on their VP1 gene sequence, 
with GI, GII, GIV, GVIII, and GIX infecting humans [10]. 
Among these, the GII genogroup is the most common cause 
of HuNoV epidemics, with GII.4 the predominant genotype 
globally [11]; 7 HuNoV epidemics that occurred between 
2002 and 2012 were attributed to mutations in amino acids 

within the highly antigenic region of VP1 of GII.4 [12]. 
However, other genotypes, such as GII.17, which was predom
inant in Asia during 2014–2015 and GII.2, the dominant 
HuNoV genotype causing infections during 2016–2017 in 
Europe and Asia, outpaced GII.4 [13–17]. Although the inci
dence rate of HuNoV infections has been shown to have 
declined temporarily in children during and after the coronavi
rus disease 2019 pandemic, GII.4 and GII.2 remain the most 
prevalent genotypes, particularly in Japan [18].

For years, the in vitro culture of HuNoV has remained unat
tainable. Consequently, virological studies on HuNoV relied on 
binding experiments with virus-like particles (VLPs) or, alterna
tively, on using mouse norovirus (genogroup GV) as a surrogate 
virus that can infect and propagate within the macrophage- 
based cell line RAW 264.7 [19]. However, although structurally 
similar to HuNoV, mouse norovirus does not infect humans or 
cause symptoms like diarrhea or vomiting in mice.

In 2016, Ettayebi et al [20] introduced an in vitro HuNoV rep
lication method using intestinal epithelial cells (IECs) prepared 
from human small intestinal tissues. After terminal differentia
tion of monolayered IECs on Matrigel-coated culture plates, 
the addition of GII.4 HuNoV resulted in several-hundred-fold 
replication of the virus after only a few days of culture. 
Furthermore, GII.3, which could hardly multiply, showed a 
dozen-fold multiplication with the addition of bile to the cell cul
ture medium. The addition of bile also increased the growth ef
ficiency of GII.4 viruses. This advance in in vitro cultivation has 
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facilitated research on HuNoV to gain insights into the mecha
nisms of human cell invasion and symptom development, such 
as vomiting and diarrhea.

Studies using human intestinal tissue-derived IECs have re
ported that the HuNoV genotypes GI.1, GII.1, GII.2, GII.3, 
GII.4, GII.6, GII.8, GII.12, GII.13, GII.14, and GII.17 can replicate 
in vitro [20–22]. Our group’s previous study also demonstrated 
replication of GI.7, GII.3, GII.4, GII.6, and GII.17 in IECs derived 
from human induced pluripotent stem cells (iPSCs) [23]. For 
non-enveloped viruses like HuNoV, infection often depends on 
interactions between viral capsid proteins and protein receptors 
on host mucosal epithelial cells. In mouse norovirus, CD300lf 
functions as a host protein receptor [24, 25]; however, the corre
sponding human protein receptor for HuNoV remains unknown. 
Nonetheless, the histo-blood group antigens (HBGAs), particu
larly the H antigen, plays an important role in HuNoV infection. 
GI.1, GII.4, and GII.17 HuNoV genotypes require H antigens for 
entry into IECs and subsequent replication in vitro [26]. The ex
pression of H antigen in IECs and secretions, such as intestinal 
mucus and saliva, is regulated by fucosyltransferase 2 (FUT2). 
Individuals with normal FUT2 activity are termed “secretors” 
and those with defective or inactive mutations of FUT2 are called 
“non-secretors.”

In the current study, we aimed to investigate the in vitro in
fection and replication requirements of HuNoV genotype 
GII.2, a recently emergent genotype. In addition, using the 
GII.2 HuNoV replication system with human iPSC–derived 
IECs, we assessed whether immunization with GII.2 VLPs 
could produce neutralizing antibodies that are cross-reactive 
with other HuNoV genotypes. The findings of this study may 
aid in vaccine development and enhance immunity, particular
ly in infants who lack prior exposure to HuNoV.

MATERIALS AND METHODS

Cell Culture

Each conditioned medium was prepared as described elsewhere 
[27, 28]. Human iPSC lines TkDN4-M [29], TkPP7 [30], 
TkC01, and TkD2 [31] were supplied by The University of 
Tokyo, and 1383D6 was provided by RIKEN BRC through 
the National BioResource Project of MEXT/AMED in Japan. 
TkC01-derived IECs (IEC#33) were prepared using a 
STEMdiff Intestinal Organoid Kit (STEMCELL Technology), 
according to the manufacturer’s protocol. Differentiation of 
other iPSC lines into IECs was performed as described else
where [23, 28, 31, 32]. Human jejunal crypts were isolated as 
described elsewhere [28].

The experiments were approved by the human ethics com
mittees of Wakayama Medical University, Osaka University, 
and Mie University. All tissue samples were obtained after ob
taining informed consent. Intestinal organoids were cultured in 
Matrigel with organoid culture medium (Advanced Dulbecco’s 

modified Eagle medium/F12 [Thermo Fisher Scientific] supple
mented with 10 mmol/L HEPES [pH 7.3; Thermo Fisher 
Scientific]; 2 mmol/L GlutaMAX [Thermo Fisher Scientific]; 
100 U/mL penicillin plus 100 μg/mL streptomycin; 25% mouse 
Wnt3a, human R-spondin 1, human noggin, and human hepato
cyte growth factor [WRNH] conditioned medium; 1×B-27 
[Thermo Fisher Scientific]; 50 ng/mL mouse epidermal growth 
factor [Peprotech]; 10 μmol/L SB202190 [Sigma-Aldrich]; and 
500 nmol/L A83-01 [Tocris] plus 10 μmol/L Y-27632 [Wako]). 
For HuNoV inoculation, IECs dissociated using TrypLE 
Express (Thermo Fisher Scientific) were seeded on 2.5% 
Matrigel-coated 96-well plates at 2 × 104 cells per well in 100 μL 
of organoid culture medium.

After 2 days of culture, the medium was changed to differen
tiation medium (Advanced Dulbecco’s modified Eagle medi
um/F12 supplemented with 10 mmol/L HEPES [pH 7.3]; 
2 mmol/L GlutaMAX; 100 U/mL penicillin plus 100 μg/mL 
streptomycin; 1×B-27; 12.5% human R-spondin 1 and human 
noggin conditioned medium; 50 ng/mL mouse epidermal 
growth factor; and 500 nmol/L A83-01). After another 2 days, 
the medium was changed to a differentiation medium with or 
without 0.03% porcine bile (Sigma-Aldrich). The cells were in
cubated for another 2 days and used for subsequent 
experiments.

HuNoV Preparation and Infection

GII.4_2006b[P4]–containing stool samples (identification no. 
13499) were collected from a child with acute gastroenteritis 
who visited a pediatric outpatient clinic in Osaka Prefecture, 
Japan. All other viral samples used in this study were 
HuNoV-positive stool specimens collected from Osaka 
Prefecture, Japan, during the 2016–2019 endemic seasons.

HuNoV preparation and infection were performed as de
scribed elsewhere [23, 32]. Briefly, HuNoV-positive stool sam
ples were suspended in 10% (wt/vol) phosphate-buffered saline 
by means of vigorous vortexing. The suspensions were centri
fuged at 12 000g for 30 minutes, and the supernatants were se
rially filtered with 0.45 μm and 0.22 μm filters. The filtered 
samples were aliquoted and stored at −80°C as an undiluted vi
rus solution (see Table 1 for strain details). Immediately before 
use, each virus solution was diluted to 2 × 107 genome equiva
lents/mL with base medium (Advanced Dulbecco’s modified 
Eagle medium/F12 supplemented with 10 mmol/L HEPES 
[pH 7.3], 2 mmol/L GlutaMAX, and 100 U/mL penicillin 
plus 100 μg/mL streptomycin).

The prepared IECs (3–6 wells per sample) were inoculated 
with 100 μL (2 × 106 genome equivalents) of diluted virus sol
ution and then left for 1 hour in a 5% carbon dioxide incubator 
at 37°C. The inoculum was then removed, and the cells were 
washed twice with 150 μL of base medium. Differentiation me
dium (100 µL), with or without 0.03% porcine bile, was added 
to the cells, which were pipetted lightly twice and collected. 
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This step was performed again, and the samples were collected 
at 1 hour after infection as reference samples (total, 200 μL). 
Another 100 μL of differentiation medium was added to each 
well, with or without 0.03% bile, and the mixtures were then 
cultured for 72 hours in a 5% carbon dioxide incubator at 
37°C. The supernatants were collected with one wash in the 
same manner as the reference samples collected 1 hour after in
fection (total 200 μL).

For blocking experiments, the diluted virus solutions were 
incubated with 100 ng of anti-VLP polyclonal antibody (pAb) 
or normal rabbit immunoglobulin G (IgG) at 37°C for 90 min
utes before inoculation into the prepared IECs (6 wells per 
sample).

Statistical Analysis

Each experiment was performed at least twice, with 3–6 tech
nical replicates. All statistical analyses were performed using 
GraphPad Prism 8 and 9 software. Comparison between nor
mal antibody and either anti-GII.2, anti-GII.3, anti-GII.4, or 
anti-GII.17 antibody at 72 hours after infection was per
formed using Student t test or 1-way analysis of variance 
with Dunnett multiple comparisons test. Significance was 
set at P < 0.05.

For details on the following methods not listed here, please 
refer to the Supplementary Materials and Methods, which in
cludes genotyping of HBGA, quantification of virus genome 
equivalents, preparation of VLPs, generation of antibodies to 
GII.2 and GII.3 VLPs, HBGA-binding assay of HuNoV VLPs, 
lentiviral infection, and immunofluorescence staining.

RESULTS

Replication of GII.2 HuNoV in Tissue-Derived IECs but Not Human  
iPSC–Derived IEC#17

HuNoV genotypes, including GII.3, GII.4, GII.6, GII.17, and 
GI.7, can infect and replicate in IECs from the human iPSC 

TkDN4-M line (IEC#17) [23, 32]. In the current study, we 
showed that GII.2 genotype HuNoV could not replicate in 
IEC#17 (Figure 1A), even in the presence of bile, an essential 
factor for GII.3 HuNoV replication [35]. Although electron mi
croscopy showed that our specimens contained virus particles 
of the appropriate diameter (Figure 1B), these particles may 
have lost their ability to infect or replicate in IECs.

Costantini et al [21] observed non-GII.4 HuNoV strains, 
including GII.2, replicating in human tissue-derived IECs. 
Therefore, we checked whether our GII.2 samples could replicate 
in such IECs. Human IECs prepared from 2 jejunal samples 
(jej#1 and jej#2) and inoculated with 3 GII.2 HuNoV samples 
showed replication in all tested GII.2 viruses in both IECs in a 
bile addition–dependent manner (Figure 1C).

Both H and B Antigens Required for GII.2 HuNoV Replication In Vitro

Gene expression analysis revealed that pluripotent stem cell–de
rived IECs are more similar to fetal IECs than adult IECs [36]. To 
confirm whether the in vitro replication of GII.2 HuNoV is spe
cific to adult tissue–derived IECs, we prepared IECs from several 
other human iPSC lines: 1383D6 (to IEC#25), TkPP7 (to 
IEC#29), TkC01 (to IEC#33), and TkD2 (to IEC#34), and infect
ed them with GII.2 HuNoV. Similar to IEC#17, GII.4 HuNoV 
replicated in IEC#29 and IEC#33 but not in IEC#25 and 
IEC#34 (Figure 2A). In IEC#33, GII.2 HuNoV, which could 
not replicate in IEC#17, replicated sufficiently, although at a low
er rate than GII.4 HuNoV (Figure 2A). These results suggest that 
GII.2 HuNoV can replicate in human iPSC–derived IECs re
gardless of the derivation method (from intestinal tissues or 
from iPSCs).

Next, we evaluated H antigen expression in each IEC using 
UEA1 staining. UEA1-positive H antigens were detected in all 
cells except IEC#25 and IEC#34 (see Supplementary Figure 1), 
suggesting that these may have been derived from non-secretor 
individuals. To confirm this, we amplified exon 2 of FUT2 by po
lymerase chain reaction and analyzed the nucleotide sequence of 
the resulting amplicon. These findings revealed that both IEC#25 
and IEC#34 possess a homozygous A385T mutation, which is 
known to result in a non-functional FUT2 enzyme [37] 
(Table 2).

Subsequently, we analyzed the ABO(H) blood group types of 
the cell lines. Jej#1 and Jej#2 IECs, derived from individuals 
with blood types B and AB, respectively, were confirmed to ex
press these antigens through immunostaining (Supplementary 
Figure 2). Similarly, immunostaining of iPSC-derived IECs re
vealed that none of the cells expressed A antigens, but B anti
gens were detected in IEC#25 and IEC#33 (Supplementary 
Figure 2). The ABO genotypes of each IEC were identified us
ing the polymerase chain reaction–restriction fragment length 
polymorphism method [38]. IEC#17, IEC#29, and IEC#34 were 
of the OO type, whereas IEC#25 and IEC#33 were of the BO 
type (Table 2). These findings indicated that cells supporting 

Table 1. Human Noroviruses Used in Current Study

Sample ID 
No. Genotype

Titer, Genome 
Equivalents/µL

Collection 
Date

Replication of 
Virus in IECs

16-464 GII.2[P16] 7.85 × 106 March 2017 In current 
study

16-482 GII.2[P16] 1.34 × 108 March 2017 In current 
study

OSN1926 GII.2[P16] 2.68 × 106 June 2019 In current 
study

17B93 GII.4[P31] 1.60 × 106 October 2017 [23, 31]

17-53 GII.4[P31] 3.14 × 107 June 2017 [23, 31, 32]

17-231 GII.4[P31] 3.88 × 107 October 2017 [23, 32]

13499 GII.4[P4] 1.69 × 106 April 2015 [33, 34]

16-50 GII.3[P12] 6.64 × 106 April 2016 [23, 32]

18-78 GII.6[P7] 8.70 × 105 May 2018 [23, 32]

16-421 GII.17[P17] 9.48 × 107 February 2017 [23, 32, 34]

Abbreviations: ID, identification; IECs, intestinal epithelial cells.
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GII.2 HuNoV replication (Jej#1, Jej#2, and IEC#33) express 
type B antigens.

Therefore, we hypothesized and tested whether the group B 
antigen is essential for GII.2 replication, similar to the H antigen 
in GII.4 HuNoV. Using lentiviruses, we previously established a 
highly efficient gene transfer method for IECs through 

monolayer formation [39]. Genes encoding α-1,3-N-acetylgalac
tosaminyltransferase and α-1,3-galactosyltransferase, which are 
responsible for adding group A and B antigens, respectively, 
were forcibly expressed in IEC#17, IEC#29, and IEC#34. The ex
pression of each antigen was confirmed using immunocyto
chemistry (Supplementary Figure 3).

A

C

B

Figure 1. Replication of GII.2 genotype human noroviruses (HuNoVs) in intestinal epithelial cells (IECs) derived from human induced pluripotent stem cells (iPSCs) or human 
jejunum tissues. A, C, Monolayered human iPSC–derived IECs (IEC#17) (A) and human jejunum-derived IECs (Jej#1 and Jej#2) (C ) were inoculated with 2 × 106 genome 
equivalents of GII.2 HuNoVs. Inoculation and sampling were performed as described in Materials and Methods. Viral genomic RNA was extracted from both supernatants 
(1 and 72 hours post infection [hpi]), and genome equivalents were quantified by means of reverse-transcription quantitative polymerase chain reaction. Samples collected 1 
hour after infection were used as references. Each value is representative of ≥3 independent experiments and is shown as the mean (SD) of 4–6 wells of supernatants from 
each culture group. Dashed lines represent limits of detection. B, Electron microscopic images of GII.2 HuNoV in fecal suspensions (scale bars represent 50 nm).
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A B

Figure 2. Replication of GII.2 and GII.4 genotype human noroviruses (HuNoVs) in intestinal epithelial cells (IECs) established from different human induced pluripotent stem 
cells (iPSCs). A, Monolayered IECs established from the indicated human iPSCs were inoculated with 2 × 106 genome equivalents of the indicated HuNoVs. Inoculation and 
sampling were performed as described in Materials and Methods. Viral genome equivalents present in culture supernatants at 1 (white bars) or 72 (black bars) hours after 
infection were quantified using reverse-transcription quantitative polymerase chain reaction. Each value is representative of ≥2 independent experiments and is shown as 
the mean (SD) of 4–6 wells of supernatants from each culture group. B, Monolayered IECs transfected with genes encoding α-1,3-N-acetylgalactosaminyltransferase (for 
A-type antigen) or α-1,3-galactosyltransferase (for B-type antigen) were inoculated with 2 × 106 genome equivalents of the indicated GII.2 HuNoVs. Sampling and quanti
fication of genome equivalents were performed as shown in Figure 1. Dashed lines represent limits of detection.
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Infection of each cell with GII.2 revealed no replication 
in group A antigen-transfected cells but strong replication 
in IEC#17 and IEC#29 transfected with the group B antigen 
(Figure 2B). Furthermore, confocal laser-scanning microscopy 
showed that GII.2 HuNoV adhered to and invaded only B-type 
antigen-positive cells (Supplementary Figure 4). These findings 
indicate that group B antigens on IECs are essential for GII.2 

virus growth in vitro. We also speculated that H antigens are 
necessary for the replication of this genotype, similar to GII.4 
HuNoV. This is because IEC#25 and IEC#34, categorized as 
non-secretory types, lack H antigen expression on the cell sur
face due to a homozygous loss-of-function mutation in FUT2 
[31] (Table 2 and Supplementary Figure 1).

To verify this hypothesis, cells expressing the H antigen in 
IEC#25 and the B or H antigen, or both, in IEC#34 were prepared 
and confirmed by means of immunocytochemistry (see 
Supplementary Figure 5). Forced expression of the H antigen re
stored the in vitro replication of GII.4 HuNoV in both IEC#25 
and IEC#34, whereas expression of the B antigen in IEC#34 
had no effect (Figure 3A and 3C). In contrast, GII.2 HuNoV rep
lication was observed in H antigen–expressing IEC#25 
(Figure 3B). GII.2 HuNoV replication was not observed when 
the H and B antigens were independently expressed in IEC#34 
cells but only when they were simultaneously expressed 
(Figure 3D). These findings indicate that the in vitro replication 
of GII.2 HuNoV in IECs requires both H and B antigens and 
that these antigen complexes serve as viral receptors for the entry 
of GII.2 HuNoV into cells.

A B

DC

Figure 3. Replication of GII.2 and GII.4 human noroviruses (HuNoVs) in fucosyltransferase 2 (FUT2)–inactivated intestinal epithelial cells (IECs). A, B, Non-secretory type 
(FUT2-negative) IEC#25 cells were transfected with or without genes encoding FUT2. C, D, FUT2-negative IEC#34 cells were transfected with or without genes encoding 
α-1,3-galactosyltransferase (B antigen [B-Ag]), FUT2, or both. Monolayer cells were inoculated with 2 × 106 genomic equivalents of HuNoVs. Sampling and quantification 
of genome equivalents were performed as shown in Figure 1. Dashed lines represent limits of detection.

Table 2. Human Induced Pluripotent Stem Cell Line and Jejunum 
Intestinal Epithelial Cells Used in Current Study

iPSC Line IEC ABO Type FUT2 Secretor

TkDN4-M #17 OO Se, se428 Positive

1383D6 #25 BO se385, se385 Negative

TkPP7 #29 OO Se, Se Positive

TkC01 #33 BO Se, Se Positive

TkD2 #34 OO se385, se385 Negative

Not applicable Jej#1 BO or BB Se, se385 Positive

Not applicable Jej#2 AB Se, se385 Positive

Abbreviations: FUT2, fucosyltransferase 2; IEC, intestinal epithelial cell; iPSC, induced 
pluripotent stem cell; Se, means normal gene; se, means mutated gene.
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Cross-Reactivity of Anti-GII.2 HuNoV VLP Antibodies That Can Neutralize 
GII.4 HuNoV Infection

The GII.4 genotype has often been the most prevalent HuNoV 
genotype, making it a suitable candidate for vaccine antigens. 
Previous studies have reported that antibodies induced by in
jectable immunization with GII.4 or GII.17 VLPs neutralize 
GII.4 and GII.17 viruses, respectively [23]. Immunization 
with GII.4 VLPs showed no cross-neutralization against other 
genotypes, whereas immunization with GII.17 VLPs showed 
similar cross-reactivity against the GII.4 virus as GII.4 VLPs. 
Consequently, we explored the potential of GII.2 VLPs as vac
cine antigens along with GII.4 and GII.17 VLPs [23]. Polyclonal 
antibodies from rabbits immunized with GII.2 or GII.3 VLPs, 

produced via a baculovirus expression system, bound to each 
VLP in a dose-dependent manner in enzyme-linked immuno
sorbent assays (Figure 4A and Supplementary Figure 6). 
Although HuNoV VLPs bind to porcine gastric mucin contain
ing HBGA, this binding was inhibited by preincubation with 
anti-GII.2 antibodies dose dependently (Figure 4B).

We investigated the virus-neutralizing effect of anti-GII.2 
antibody using an in vitro GII.2 HuNoV replication system. 
Preincubation with non-immunized rabbit IgG did not affect 
GII.2 HuNoV replication, but the anti-GII.2 antibody 
completely blocked it (Figure 5A). Anti-GII.3, anti-GII.4, and 
anti-GII.17 antibodies did not inhibit GII.2 HuNoV replication 
(Figure 5B). The anti-GII.2 antibody did not affect the replica
tion of GII.3, GII.6, and GII.17 HuNoVs but exhibited cross- 
reactivity against GII.4_2012[P31], which was concurrent 
with GII.2, similar to the cross-reactivity of anti-GII.17 anti
bodies (Figure 5C). Both anti-GII.2 and anti-GII.17 antibodies 
also completely inhibited the in vitro growth of the older GII.4 
epidemic strain (GII.4_Den Haag; GII.4_2006b[P4]) 
(Figure 5D). These findings, along with our previous report 
[23], suggest that GII.2 HuNoV VLPs are similar to GII.17 
VLPs and have the potential as multivalent vaccine antigens 
for HuNoVs.

DISCUSSION

In vitro replication is essential to understand HuNoV biology and 
antibody development. The current study aimed to understand 
why the GII.2 HuNoV genotype, although increasingly prevalent, 
replicated in tissue-derived IECs but not in our human iPSC– 
derived IECs. We confirmed that GI.7, GII.3, GII.4_2006b[P4], 
GII.4_2012[P31], GII.6, and GII.17 [23, 32, 33], but not GII.2, 
could replicate in our system using IEC#17. As in vitro HuNoV 
replication currently requires virus-positive stool as the virus 
source, it is difficult to determine whether the system is inade
quate or whether the stool specimens lack infectious particles 
when replication fails. We checked whether GII.2 HuNoVs could 
replicate using IECs from human jejunal tissue as per Costantini 
et al [21], using the jejunal strain (J2) developed by Ettayebi et al 
[20]. Viral replication was confirmed in ≥3 specimens. These re
sults suggest that the failure of GII.2 HuNoV to replicate in hu
man iPSC–derived IECs may be due to an issue with the cells 
(IEC#17). In contrast, other HuNoV genotypes replicated in 
IEC#17, indicating that GII.2 invades host cells via a mechanism 
different from that of other HuNoV genotypes.

Studies on VLPs of various HuNoV genotypes and synthetic 
oligosaccharides have shown that GII.2 VLPs (rBUDS) strongly 
bind to type A or B antigens [40, 41]. Although binding to syn
thetic oligosaccharides has not been confirmed, Ao et al [42] 
discovered that a segment of GII.2 VP1 (P domain) binds to 
the B phenotype saliva (HBGA). They also found that mutating 
the 256th valine of GII.2 VP1 to isoleucine allows a portion of 

A

B

Figure 4. Inhibitory experiment of binding between GII.2 genotype human noro
virus (HuNoV) virus-like particles (VLPs) and histo-blood group antigens (HBGAs) 
with anti-VLP polyclonal antibody (pAb). A, Titers of rabbit anti-GII.2 pAb were 
quantified using enzyme-linked immunosorbent assays. Data are expressed as 
the mean (SD) from 1 experiment representative of 2 independent experiments. 
B, Blocking activity of 100 ng of normal rabbit immunoglobulin G (IgG) or 
anti-GII.2 pAb against HBGA binding of the indicated amounts of GII.2 VLPs was 
measured by means of enzyme-linked immunosorbent assay using plates coated 
with 1 μg of porcine gastric mucin. Data are shown as the mean (SD) from 1 rep
resentative of 2 independent experiments. Comparison between normal antibody 
and anti-GII.2 pAb at each VLP amount was performed using Student t test. 
*P < 0.05. Abbreviation: OD450, optical density at 450 nm.
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VP1 to bind to both A and B phenotype saliva [42]. Our find
ings indicated that group B antigen expression is essential for in 
vitro GII.2 HuNoV replication in the fecal samples we tested, 
whereas group A antigen had no effect. In addition, the 256th 
amino acid of VP1 in all GII.2 strains used in this study was va
line, matching the P-domain sequence reported to bind A phe
notype saliva. These findings suggest that while the P domain of 
VP1 is highly antigenic and crucial for HBGA binding, the ac
tual binding of complete viral particles to HBGA on IECs 

requires comprehensive verification. Experiments using partial 
proteins or synthetic oligosaccharides may offer limited in
sights into the interaction between HuNoV VP1 and HBGA.

We demonstrated that active FUT2 expression (secretors) 
was crucial for GII.2 HuNoV propagation in vitro. However, 
Lindesmith et al [43] found that non-secretors also exhibit 
vomiting and diarrhea with GII.2 HuNoV infection. They con
firmed that GII.2 VLPs bind to saliva from secretors and noted 
that adding 1% bile enables binding to the saliva of 

A C

B

D

Figure 5. Neutralization activity of anti-GII.2 pAb against replication of GII.2 and GII.4 human noroviruses (HuNoVs). Before inoculation of monolayered intestinal epithelial 
cells, 2 × 106 genome equivalents of each HuNoV genotype (shown in the upper part of each graph) were incubated with 100 ng of the indicated anti-HuNoV virus-like 
particle (VLP) antibody (Ab) or with normal rabbit immunoglobulin G (IgG), for 1.5 hour. Inoculation, sampling, and quantification of genome equivalents were performed 
as described in Materials and Methods. Each value is representative of ≥3 independent experiments and is shown as the mean (SD) of 4–6 wells of supernatants from 
each culture group. *P < .05.
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nonsecretors. Given the presence of various host factors and in
testinal bacteria with sugar-metabolizing enzymes, host FUT2 
activity may be substituted by environmental factors for GII.2 
HuNoV infection and propagation in vivo. In addition, a hu
man challenge study showed that non-secretors developed 
symptoms that were dependent on the viral dose [44].

Recent reports have shown that GII.2 HuNoV can replicate 
in vitro using J4FUT2 cells created by introducing the FUT2 
gene into J4 cells (se428, se428; OO blood genotype) [26, 45]. 
This indicates that the B antigen may not be essential for all 
GII.2 genotypes, necessitating further investigation.

Type A and B glycosyltransferases use H-antigens as sub
strates. Thus, the presence of type B antigens on the cell surface 
of IEC#25, which has an inactive FUT2 mutation (A385T) and 
should not express H antigens, was surprising. The B antigen 
expression level did not change after the introduction of active 
FUT2 into IEC#25 and IEC#34. However, both the H antigen 
produced by the active FUT2 gene and the B antigen produced 
by B-type glycosyltransferase were necessary for the in vitro 
replication of GII.2 HuNoV in IEC#25 and IEC#34.

These findings, along with those of a previous study [46] sug
gesting the weak activity of the A385T FUT2 mutation, led us to 
conclude that sufficient levels of both H and B antigens on the 
cell surface are required for GII.2 HuNoV in vitro replication. 
Regardless of FUT2 activity levels, B-type glycan expression 
was confirmed by immunostaining using an anti–B-type 
antigen monoclonal antibody (BG-3). This implies that 
α-1,3-galactosyltransferase may use the H antigen without 
α1,2-fucose (Bombay phenotype) as an acceptor substrate. To 
explore this, FUT2 knockouts in IEC#33 and IEC#25 are re
quired to determine whether these cells can also react with 
the BG-3 antibody. Future analyses using in vitro and in vivo 
systems will provide detailed insights into the GII.2 HuNoV 
life cycle and explain the mechanisms bridging in vitro findings 
and in vivo behavior, including the roles of the B antigen.

Historically, HuNoV epidemics were mainly caused by the 
GII.4 genotype, but the GII.2 genotype has recently become 
more prevalent in Europe and Asia [14–17, 47]. Vaccines devel
oped against HuNoV have primarily targeted GII.4; however, it 
remains unclear whether the immune response to GII.4, especially 
neutralizing antibodies, extends to other HuNoV genotypes. We 
observed that rabbit polyclonal antibodies from GII.4 VLP immu
nization failed to inhibit GII.3, GII.6, and GII.17 replication in vi
tro, whereas antibodies from GII.17 VLP immunization exhibited 
cross-neutralizing activity, effectively suppressing both GII.4, and 
GII.17 HuNoV propagation [23]. Immunization with GII.2 VLPs 
in mice produces antigen-specific antibodies, although their neu
tralizing activity has not been confirmed [48].

In the current study, newly generated GII.2 VLPs were used, 
and immunization of rabbits produced antibodies with neutral
izing activity against both GII.2 and GII.4. Although antibodies 
from GII.2 and GII.17 VLP immunizations did not cross-react 

with genotypes other than GII.4, they showed neutralizing ac
tivity against the GII.4_2006b[P4] genotype, which is now rare. 
These findings suggest that GII.2 and GII.17 VLPs may be more 
effective than GII.4 VLPs as vaccine antigens against HuNoV, 
particularly in infants not exposed to HuNoVs.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 

online. Consisting of data provided by the authors to benefit the reader, the 
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authors, so questions or comments should be addressed to the correspond
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