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Abstract

Background: The Usher syndrome (USH) is the most frequent deaf-blindness hereditary disease in humans. Deafness is
attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations
in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and
protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional
complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair
cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and
protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in
auditory perception and microvilli morphogenesis, respectively.

Principal Findings: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is
expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle
cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that
Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein
localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes
associated with the syntaxin Avalanche.

Conclusions: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it
provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and
disease.
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Introduction

The analysis of orthologs of human disease genes in model

organisms has revealed important insights into developmental

mechanisms. One outstanding example is the contribution that the

analysis of Usher syndrome-related genes has made to our

understanding of hair cell development and auditory perception

[1]. Usher syndrome is the most common hereditary disease

associated with deafness and blindness in humans [2,3,4]. Three

clinical subtypes, USH1, USH2, and USH3, have been defined

according to the severity of the hearing impairment, the absence

or presence of vestibular dysfunctions, and the age of onset of

retinitis pigmentosa, which leads to blindness. USH1 is the most

severe subtype and USH1 patients suffer from severe hearing

impairment, balance defects, and prepubertal-onset of retinitis

pigmentosa. Five USH1 genes have been identified: USH1B

encodes an unconventional motor protein, myosin VIIa [5];

USH1C encodes a PDZ-domain-containing scaffolding protein,

harmonin [5]; USH1D and USH1F encode two members of the

cadherin family of Ca2+-dependent cell adhesion molecules,

cadherin 23 and protocadherin 15, respectively [6,7,8,9]; USH1G

encodes a putative scaffolding protein, sans, containing three

ankyrin repeats and a sterile alpha motif (SAM) domain [10].

Hair cells of the mammalian inner ear display bundles of actin-

filled, microvilli-derived projections of the apical membrane,

known as stereocilia, that act as mechanosensitive devices

important for the detection of sound [1]. Stereocilia develop from

microvilli through the lateral addition of actin filaments to the

microvillar actin bundle and the subsequent elongation of the

filaments within the actin bundle [11]. The differential elongation

of stereocilia leads to their characteristic staircase-like arrange-

ment. Within each bundle, the stereocilia are connected by various

links, including tip links connecting the tip of one stereocilium to

the side of an adjacent stereocilium. Mutations in the five known

USH1 genes lead to alterations in stereocilia length and

orientation. Biochemical analysis further shows that the five

USH1 proteins can interact with each other in vitro. Harmonin

binds, through its PDZ domain, to any of the other four USH1

proteins [10,12,13,14,15] and myosin VIIa can interact with

protocadherin 15 and sans [12,16]. Localization studies have
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revealed that four of the five USH1 proteins are present on

stereocilia tips: myosin VIIa, cadherin 23, protocadherin 15, and

harmonin [13,17,18]. The in vitro binding and in situ co-

localization of these four USH1 proteins suggest that they form

functional complexes. Cadherin 23 and protocadherin 15,

furthermore, have been recently shown to be part of the tip links

that connect stereocilia, thereby providing cohesion between

adjacent stereocilia [19,20]. Sans, in contrast to the other

identified USH1 proteins, localizes to vesicular structures beneath

the apical plasma membrane of hair cells [12] and has not been

reported to reside on stereocilia. Based on its localization and

physical interaction with myosin VIIa and harmonin, it has been

proposed that sans may control the trafficking of USH1 proteins to

stereocilia [12].

Animal models have been important in further understanding

the etiology of Usher syndrome. Mice mutant for myosin VIIa

(shaker-1), harmonin (deaf circler), cadherin 23 (waltzer), protocadherin

15 (Ames waltzer), or sans (Jackson shaker) display severe hearing

impairment, vestibular dysfunction, and disorganized stereocilia in

the inner ear [7,18,21,22,23,24,25]. Localization studies in mutant

mice have shown that both myosin VIIa and sans are required to

direct harmonin to the stereocilia tips [18]. Mutations in myosin

VIIa, cadherin 23, and protocadherin 15a are also associated with

disorganized hair bundles in zebrafish [26,27,28]. In Drosophila

melanogaster, orthologs of USH1 genes have been identified.

Mutations in crinkled, the fly ortholog of myosin VIIa [29], result

in disorganization of Johnston’s organ, the flies’ auditory system,

and in deafness [30,31]. Moreover, Cad99C, the ortholog of

protocadherin 15, localizes to microvilli of the fly follicular

epithelium, and mutations in this cadherin result in the

misorientation of microvilli [32,33]. These findings indicate an

evolutionary conserved function for this class of cadherins in

organizing actin-containing cellular protrusions.

Here, in order to further understand the role of sans during

development and disease, we identified and characterized a

Drosophila melanogaster ortholog of this gene. We show that Drosophila

Sans is expressed in tubular organs in the embryo, lens-secreting

cone cells in the adult eye, and microvilli-displaying follicle cells

during oogenesis. Similar to its vertebrate ortholog, Sans protein

localizes to punctate structures we identified as early endosomes

associated with the syntaxin Avalanche.

Results

The Drosophila genome encodes an ortholog of the
human Usher syndrome type 1G protein sans

To identify the Drosophila ortholog of the human sans protein,

we used the human sans protein sequence in a BLASTp search

against the Drosophila melanogaster genome. The product encoded by

gene CG13320 was most similar to human sans. Back-Blast using

CG13320 protein as a query sequence retrieved sans as the most

related protein in vertebrates. Overall, human sans and Drosophila

CG13320 are 32% identical (168/524 identical amino acid

residues). A higher sequence identity was detected in the N-

terminus (53%; 15/28), the ankyrin repeats (60%, 53/88), and the

SAM domain (39% (26/66). Human sans and Drosophila CG13320

share a conserved C-terminal PDZ-domain binding site (data not

shown) and display a similar domain organization including three

ankyrin repeats and one SAM domain (Fig. 1). Moreover, in a

phylogenetic tree, CG13320 clustered in the same clade as

vertebrate sans and harp (Fig. 1). Harp is an ankyrin and SAM-

domain containing protein related to sans. We conclude that

CG13320 is the Drosophila ortholog of human sans and refer to it as

Sans (see also FlyBase at www.flybase.org).

Sans is expressed in tubular organs of the embryo and in
ovarian follicle cells

To further characterize Drosophila Sans, we analyzed its

expression pattern in embryonic, larval, and adult tissues by

RNA in situ hybridization using a Sans-specific RNA probe. In the

embryo, Sans mRNA was first detectable at stage 11 in the hindgut

(Fig. 2A). In later stages, Sans mRNA was detected in the foregut,

the hindgut, the tracheal placodes, the tracheal primary branches,

and the six mechanosensory Keilin’s organs (Fig. 2B–E9). During

larval stages, Sans was expressed ubiquitously in eye-antennal,

wing, leg, and haltere imaginal discs (data not shown). The adult

Figure 1. Identification of a Drosophila melanogaster ortholog of human Usher syndrome type 1G protein sans. Phylogenetic tree.
Drosophila melanogaster Sans is closely related to vertebrate sans/Harp proteins. Harp/sans proteins contain three ankyrin repeats (blue rectangles)
and one SAM domain (green triangle). Hs: Homo sapiens; Ag: Anopheles gambiae; Dm Drosophila melanogaster; Dr: Danio rerio; Mm: Mus musculus.
doi:10.1371/journal.pone.0004753.g001
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Figure 2. Sans is expressed in tubular organs of the embryo and in ovarian follicle cells. A–E9: Wild-type embryos of the indicated stages
hybridized with a Sans-specific antisense RNA probe. A,B,C,D,E: Dorsal views. A9,B9,C9,D9: Lateral views. E9 is a magnification of E showing the Keilin’s
organs (arrowheads). F–G: Wild-type ovaries of the indicated stages hybridized with (F,H) a Sans-specific antisense RNA probe or (G) a sense RNA
probe. Sans is expressed in follicle cells surrounding the oocyte in stage 10 egg chambers. Anterior is to the left.
doi:10.1371/journal.pone.0004753.g002
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Drosophila ovary is composed of chains of egg chambers proceeding

through 14 stages from the germarium to the oviduct [34]. Each

egg chamber consists of 16 germline cells, one oocyte and 15 nurse

cells, encapsulated by a monolayer of somatic, epithelial follicle

cells. Sans expression was confined to follicle cells contacting the

oocyte in stage 9–10A egg chambers (Fig. 2F,H), a time when

follicle cell microvilli are remodeled and elongate. Sans RNA

localized to the apical side of follicle cells (Fig. 2F). No staining was

detected using a sense RNA probe to Sans (Fig. 2G), indicating that

the staining was specific.

Sans is dispensable for fly development and fertility
To functionally analyze Sans, we generated four different

mutant alleles of Sans by imprecise excision of EP-element

GE10371 inserted in the first intron of the Sans gene (Fig. 3A,B).

All four mutations deleted parts of the predicted coding sequence

for Sans, but did not obviously alter neighboring genes. These

mutations, however, affect the putative gene CG30487, whose

predicted coding sequence lies on the complementary DNA strand

within an intron of Sans. Analysis by in situ hybridization with a

Sans specific RNA probe showed that Sans transcript could no

longer be detected in Sans245/Sans245 mutant egg chambers

(Fig. 3C,D), suggesting that expression of Sans was impaired from

this mutant allele. To test this further, we performed Western-blot

analysis of control and Sans mutant ovaries using a polyclonal anti-

Sans antiserum raised against the full-length protein (see Materials

and Methods). A protein of approximately 75 kDa was detected in

wild-type or control heterozygous mutant ovaries (Fig. 3E).

Proteins of approximately 50 kDa, possibly corresponding to

truncate forms of Sans, were detected in Sans38/Sans38 mutant flies,

suggesting that this allele is hypomorphic (Fig. 3E). However, no

Sans protein was detected in Sans63/Sans63, Sans245/Sans245, and

Sans254/Sans254 homozygous mutant flies (Fig. 3E), suggesting that

these alleles are amorphic. Flies homozygous mutant for any of the

four Sans alleles were adult viable, male and female fertile, and had

no gross morphological defects (data not shown), indicating that

Sans is not essential for fly development and fertility.

Sans, Cad99C, and Crinkled/Myosin VIIa localize to cone
cells in the adult eye

In the vertebrate eye, a number of USH1 proteins have been

localized to the ciliary and periciliary regions of photoreceptor

cells (reviewed in [35]). In addition, myosin VIIa is expressed in

the retina pigmented epithelium [36], a multifunctional epithelium

placed between the photoreceptors and the vascular meshwork of

the choroid layer. To determine the localization of the three

USH1 orthologs Sans, Cad99C, and Crinkled/Myosin VIIa in the

Drosophila eye, we stained adult eyes with antisera specific to these

proteins. The adult compound eye is a regular hexagonal array of

approximately 750 ommatidia. Each ommatidium consists of 8

photoreceptors, 4 cone cells, and pigment cells (Fig. 4A). The cone

cells overlie the photoreceptors and secrete lens material from

their apical side. Photoreceptors display rod-like stacks of

photosensitive microvilli at their apical surfaces, called rhabdo-

meres. The overall morphology of rhabdomeres, as visualized by

staining for F-actin, was indistinguishable between control and

Sans63/Sans63 mutant flies (Fig. 4B,C). Sans immunoreactivity was

strongly detected in cone cells (Fig. 4D). No immunoreactivity was

Figure 3. Genomic organization of Sans and characterization of
Sans mutant alleles. A: Genomic organization in the region of Sans
and extent of the deletions in Sans mutant alleles. The position of the
EP-element GE10371 which was used to generate the Sans mutants is
indicated. B: Exon-intron structure of Sans. The scale and genomic
position is the same as for the extent of the deletions shown in (A). The
two Sans transcripts differ by an addition of seven nucleotides to the 59
end of transcript A. C,D: Stage 10 (C) wild-type and (D) Sans245/Sans245

mutant egg chambers hybridized with a Sans-specific RNA probe. The
hybridization signal is undetectable in the mutant. E: Western blot
analysis of ovaries with an anti-Sans antiserum. Genotypes of the flies
are indicated. The anti-Sans antiserum detects a protein of ,75 kDa
(arrow), the expected molecular weight for Sans, in extracts of wild-type
(lane 1) and heterozygous (lanes 3,5,7), but not homozygous (lanes

2,4,6,8) Sans mutant ovaries. Subsequent blotting with an anti a-
Tubulin antibody (lower panel) shows the loading of similar amounts of
protein in each lane. Molecular weights are indicated to the left (in kDa).
doi:10.1371/journal.pone.0004753.g003

Sans in Fly Development

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e4753



detected in the adult eyes of Sans63/Sans63 mutant flies (Fig. 4E),

indicating that the observed staining was specific to Sans. In

addition, we detected Cad99C immunoreactivity at what ap-

peared to be the apical side of cone cells in control, but not in

Cad99C57A/Cad99C57A mutant flies (Fig. 4F,G). Finally, Crinkled/

Myosin VIIa immunoreactivity was detected in cone cells in

control, but not in ck13/ck13 mutant flies (Fig. 4H and data not

shown). We conclude that Sans, Cad99C, and Crinkled/Myosin

VIIa localize to cone cells in adult eyes.

Sans, Cad99C, and Crinkled/Myosin VIIa localize to follicle
cells

Cad99C has previously been shown to localize to microvilli of

follicle cells in stage 10 egg chambers [32,33]. We next determined

the expression and localization of Crinkled/Myosin VIIa and Sans

in ovaries. crinkled RNA was detected in nurse cells and follicle cells

of stage 9–10 egg chambers (Fig. 5A). In stage 11, crinkled RNA was

confined to the nurse cells (Fig. 5B). No staining was detected using

a sense RNA probe to crinkled (Fig. 5C), indicating that the staining

was specific. Crinkled/Myosin VIIa immunoreactivity was first

detected during oogenesis at the apical side of follicle cells in stage

7 egg chambers (Fig. 5D,E). In stage 10 egg chambers,

immunoreactivity was detected in the follicle cells surrounding

the oocyte and in the germline (Fig. 5F), consistent with the

expression of crinkled RNA. Similar to crinkled RNA, Crinkled/

Myosin VIIa immunoreactivity was no longer detected in follicle

cells of stage 11 egg chambers (data not shown). Higher

magnification views of stage 10 egg chambers showed that

Crinkled/Myosin VIIa immunoreactivity was present in punctate

structures at the apical side of follicle cells and, in part, co-localized

with Cad99C (Fig. 5H). Crinkled/Myosin VIIa immunoreactivity

was not obviously altered in ovaries of Sans245/Sans245 mutant flies

(Fig. 5G,I). Sans immunoreactivity was detected in the most

anterior part of the germarium in what appeared to be the

germline stem cells (Fig. 6A,B). Moreover, Sans immunoreactivity

was observed in the follicular epithelium surrounding the oocyte of

control stage 9–10A egg chambers (Fig. 6D,D9), consistent with

the pattern of Sans mRNA expression. No immunoreactivity was

detected in ovarioles of Sans245/Sans245 mutant flies (Fig. 6C, E,E9),

indicating that the observed stainings were specific for Sans. We

conclude that Sans, Cad99C, and Crinkled/Myosin VIIa localize

to follicle cells.

Sans co-localizes with the syntaxin Avalanche to early
endocytic vesicles in follicle cells

Next we analyzed in more detail the subcellular localization of

Sans in follicle cells. Higher magnification views revealed that Sans

localized to punctate structures within the follicle cell cytoplasm

(Fig. 7A). Similarly, a YFP-Sans fusion protein, expressed using the

GAL4-UAS-system, localized to intracellular punctate structures

Figure 4. Localization of Sans, Cad99C, and Crinkled proteins in adult retinae. A: A scheme of a longitudinal section of a Drosophila adult
ommatidium. B–C: Longitudinal optical sections of adult retinae from (B) wild-type and (C) Sans63/Sans63 mutant animals stained for Rhodamine-
Phalloidin (red) to detect Filamentous (F-) actin. D–E: Longitudinal optical sections of adult retinae from (D) wild-type and (E) Sans63/Sans63 mutant
animals stained for Sans (green) and F-actin (red). F–G: Longitudinal optical sections of adult retinae from (F) wild-type and (G) Cad99C57A/Cad99C57A

mutant animals stained for Cad99C (green) and E-cadherin (red). E-cadherin labels the adherens junctions between photoreceptor cells. H:
Longitudinal optical sections of wild-type adult retinae stained for Crinkled (green) and Cad99C (red). Sans, Cad99C, and Crinkled localize to cone
cells. Scale bars: 10 mm.
doi:10.1371/journal.pone.0004753.g004
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(Fig. 7B). Sans, as well as the YFP-Sans fusion protein, were

enriched beneath the apical membrane of follicle cells (Fig. 7C–E).

The syntaxin Avalanche (Avl) has been previously shown to

localize in follicle cells to punctate structures within the cytoplasm

below the apical plasma membrane [37], similar to Sans. Avl is

present in an early compartment of the endocytic pathway and is

required for endocytosis of the Notch and Crumbs transmembrane

proteins [37]. To test whether Sans and Avl localize to the same

punctate structures, we stained follicle cells for Sans and Avl. Sans-

labelled punctate structures frequently co-localized with Avl

(Fig. 7E,F). Image analysis revealed that 78% (n = 319) of the

Sans-labelled punctate structures were also co-labeled by the Avl

antibody. We conclude that Sans, at least in part, localizes to

Avl-associated early-endocytic vesicles.

Sans is apparently not required for the normal
morphogenesis of follicle cell microvilli

Mutations in Cad99C, the ortholog of the human Usher

syndrome type 1F protein protocadherin 15, result in an abnormal

morphology of follicle cell microvilli [32,33]. Similar to Cad99C,

Sans is expressed in stage 9–10A follicle cells, prompting us to test

whether Sans is also required for normal microvilli morphogenesis.

To this end, we immunostained stage 10 egg chambers of control

and Sans245/Sans245 mutant flies for F-actin, which identifies

microvilli. As shown in Fig. 8 (A and C), the morphology of follicle

cell microvilli, as revealed by this analysis, was indistinguishable

between control and Sans245/Sans245 mutant flies. Moreover, follicle

cell microvilli also appeared to be normal in mutants for crinkled

(ck13)/myosin VIIA (Fig. 8B). Cad99C, a marker for microvilli [32,33],

appeared to localize normally on microvilli of ck13/ck13 mutant

follicle cells, as analyzed by immunofluorescence (Fig. 8A,B).

Cad99C also localized to microvilli in Sans245/Sans245 mutant follicle

cells, even though Cad99C staining on microvilli appeared, in some

instances, to be less pronounced compared to controls (Fig. 8C,D).

The total amount of Cad99C in ovaries, as analyzed by Western

blotting, was similar in control and Sans mutant flies (Fig. 8E). Thus,

unlike Cad99C, Sans does not appear to play an essential role during

microvilli morphogenesis in the follicle epithelium.

Figure 5. Expression and localization of Crinkled/Myosin VIIa in ovaries. A–C: Wild-type ovaries of the indicated stages hybridized with (A,B)
a crinkled-specific antisense RNA probe or (C) a sense RNA probe. crinkled is expressed in follicle cells surrounding the oocyte in stage 10 egg
chambers. D–G: Ovaries of (D–F) wild-type and (G) Sans245/Sans245 mutant flies stained for Crinkled/Myosin VIIa (green) and F-actin (red). In (F,G) stage
10 egg chambers are shown. H,I: High magnification views of follicle cells of stage 10 egg chambers of (H) wild-type and (I) Sans245/Sans245 mutant
flies stained for Crinkled/Myosin VIIa (green), F-actin (red) and Cad99C (white). Crinkled/Myosin VIIa localizes to punctate structures at the apical side
of follicle cells and, in part, to Cad99C-stained microvilli in wild-type and Sans245/Sans245 mutant flies. Scale bars: D–G: 100 mm; H,I: 20 mm.
doi:10.1371/journal.pone.0004753.g005
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Discussion

In this study, we have identified and characterized a Drosophila

ortholog of the Usher syndrome protein sans. Drosophila Sans is

expressed in tubular organs of the embryo and in cone cells in the

adult eye. In the ovary, Sans is expressed in germline stem cells

and in follicle cells during stages 9–10A. In follicle cells, Sans

colocalizes with Avalanche, a syntaxin associated with early

endosomes.

Orthologs of USH1 genes in Drosophila
The Drosophila melanogaster genome encodes genes orthologous to

the five known USH1 genes: crinkled/myosin VIIa (USH1B) [29],

CG5921 (USH1C) (data not shown), Cad88C (USH1D) [38],

Cad99C (USH1F) [32,33], and Sans (USH1G) (this study), providing

an opportunity to study the cellular and developmental roles of

these genes in this genetically tractable model organism. The

analysis of crinkled has revealed a striking parallel in the role of this

gene and USH1B for auditory perception. crinkled mutants fail to

properly develop the flies auditory organs and they are deaf

[30,31]. Measurements of auditory mechanics and nerve responses

indicate that Sans mutants do not have auditory defects (Martin

Göpfert, personal communication). A further cell type in which

orthologs of USH1 genes have been analyzed in Drosophila is the

follicle epithelium [32,33]. Like other epithelia, the follicle cells

display microvilli at their apical surface. Follicle cell microvilli are

dynamic in that they extend in length during stages 9–10A of

oogenesis and that they disappear during the later stages.

Interestingly, all five Usher syndrome type 1 orthologs, Cad99C,

Cad88C, CG5921, crinkled, and Sans, are expressed in follicle cells

when they display long microvilli [32,33,39] (this study). At least

three Usher syndrome type 1 proteins share similar subcellular

localizations in Drosophila follicle cells and vertebrate hair cells.

Cad99C/protocadherin 15 and Crinkled/myosin VIIa localize to

microvilli/stereocilia. Sans localizes to vesicles beneath the apical

surface of cells. Moreover, in the adult Drosophila eye, Sans,

Cad99C, and Crinkled/Myosin VIIa localize to a single cell type,

the lens-secreting cone cell. Based on their localization, we

speculate that Sans, Cad99C, and Crinkled/Myosin VIIa might

be part of a protein network, similar to what has been proposed for

their vertebrate orthologs [12,16].

Sans and microvilli morphogenesis
Mutations in Cad99C result in misorientation of follicle cell

microvilli [32,33]. Normal microvilli orientation appears physio-

logically important, since misorientation of microvilli in Cad99C

mutants correlates with an impairment of eggshell deposition

necessary to protect the egg and developing embryo from its

environment [32,33]. In contrast to Cad99C mutants, follicle cell

microvilli appear to be normal in both Sans and crinkled mutants,

although we cannot exclude subtle defects. Sans mutant flies also

deposit eggs surrounded by an apparently integer eggshell, as

Figure 6. Localization of Sans protein in ovaries. A–E: Ovaries of (A,B,D) wild-type and (C,E) Sans245/Sans245 mutant flies stained for Sans
(green), a-Tubulin (blue), and F-actin (red). (A–C) show the germarium and (D,E) stage 10 egg chambers. In (D9,E9) only the Sans staining is shown.
Sans is expressed in what appears to be the germline stem cells of the germarium (A,B) and in follicle cells contacting the oocyte (D). Sans staining is
also detected at the cortex of the oocyte. Anterior is to the left. Scale bars: A: 50 mm; B,C: 10 mm; D,E: 100 mm.
doi:10.1371/journal.pone.0004753.g006
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Figure 7. Sans co-localizes with the syntaxin Avalanche to early endocytic vesicles. A: Clones of Sans245/Sans245 mutant follicle cells
marked by the absence of nuclear GFP (green) of stage 10-egg chambers stained for F-actin (red) and Sans (blue). Sans localizes to intracellular
punctate structures of follicle cells. B–D: Clones of follicle cells expressing YFP-Sans (Act5C.Gal4, UAS-YFP-Sans) labeled by YFP-Sans (green) and
stained for F-actin (red). The white line in (D) delineates the clone border. YFP-Sans localizes to punctate structures enriched beneath the apical
plasma membrane. Note that the YFP-Sans punctate structures are enlarged in comparison to the endogeneous Sans punctate structures. E,F: Wild-
type stage 10-egg chambers stained for Avalanche (Avl, red) and Sans (green). Sans partially co-localizes with Avl in punctate structures. (A,F) show
top views and (B–E) show cross-sectional views of the follicle epithelium (apical is to the top). Scale bars: A,C–F: 10 mm; B: 20 mm.
doi:10.1371/journal.pone.0004753.g007
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revealed by the exclusion of the dye neutral red (data not shown).

In contrast to the vertebrate hair cells, microvilli morphogenesis in

the follicle epithelium appears to be more robust towards single

gene perturbations. We find that, although single mutants for Sans

or crinkled are adult viable [29] (this study), animals double mutant

for these genes do not develop to adulthood (data not shown),

underscoring the developmental role of Usher syndrome orthologs

in Drosophila. Future work will be needed to analyze microvillar

morphogenesis in cells double mutant for Sans and crinkled and to

determine the roles of the two thus far uncharacterized Usher type

1 orthologs Cad88C and CG5921 during Drosophila development.

A role for Sans in vesicle trafficking?
Based on the vesicle-like localization of sans in mammalian hair

cells, it has been speculated that sans might be involved in vesicle

trafficking and, in particular, the trafficking of cadherin 23 or

protocadherin 15 to stereocilia [12]. However, the identity of the

vesicle to which sans associated had not been revealed. We now

show that, in Drosophila follicle cells, Sans to a large extent co-

localizes with the syntaxin Avalanche to endocytic vesicles beneath

the apical plasma membrane. These results are consistent with an

evolutionary conserved role of Sans in vesicle trafficking. The

decreased amount of Cad99C on microvilli, which we detected

with low penetrance in Sans245/Sans245 mutant follicle cells is,

furthermore, suggestive of a function of Sans in the trafficking of

Cad99C. Our work provides a basis for the further analysis of

Usher syndrome-related genes in Drosophila.

Materials and Methods

Bioinformatic analysis
BLAST searches [40] were performed against the non-

redundant protein National Center for Biotechnology Information

(NCBI) database. The Simple Modular Architecture Research

Tool (SMART) [41] was used to predict the domain organization

of sans-related molecules across evolution. Phylogenetic analysis

was performed as previously described [42]. Accession numbers of

the sequences used in this study are: Hs BAC85629, Hs

CAH18298, Hs SANS (NP_775748), Mm SANS (NP_789817),

Hs Harp (NP_665872), Mm Harp (NP_082361) [43], Dm

AAQ21582 (DSANS), Ag XP_308746, Dr NP_001002188, Dr

XP_696799.

Molecular cloning
To clone the CG13320/Sans coding sequence together with its

59 and 39 untranslated regions, we first isolated total RNA from

third instar y w larvae using the RNeasy mini kit (Qiagen). cDNA

was synthesized with the SMART RACE cDNA Amplification kit

(Clontech) and used as template in a PCR reaction using the

primers 59-CCGGAATTCGCTTCCGGGTAACGGCTTTCG-

GAACG-39 and 59-CGGGGTACCGGAGTGATAATTGT-

TAGGCTTTAATTTAG-39 (the underlined sequences are EcoRI

and KpnI restriction sites used for cloning), corresponding to

nucleotides 1–27 and 1833–1861 of the EST sequence LD20463.

The sequencing of distinct PCR products revealed the presence of

two different isoforms of CG13320 transcripts, one corresponding

to the LD20463 sequence (+7nn isoform) and the other lacking 7

nucleotides in the 59 untranslated region (nucleotides 163–169 of

LD20463, 27nn isoform). The translation initiation site was

identified at position 249 in the sequence NM_176160 (position

216 in the sequence LD20463) on the basis of the presence of a

Kozak consensus sequence (cgaatATG), partially corresponding to

the consensus sequence previously reported [44]. The translation

initiation site was preceded by Stop codons in all three reading

frames. The CG13320 gene encodes a protein of 516 amino acids

that differs at positions 405 (T405S) from the sequence deposited

for CG13320 (AAQ21582), probably due to polymorphisms

between the Drosophila strains used for genome sequencing and

the y w strain used in this study.

To generate the UAS-YFP-Sans transgene, the CG13320 coding

sequence, together with the 39 untranslated region, was amplified

by PCR using the primers 59-CCGGAATTCATGTCATCG-

GATCGG TTTCACAAAGC-39 and 59-CGGGGTACCGGAGT-

GATAATTGTTAGGCTTT AATTTAG-39 (the underlined

sequences are EcoRI and KpnI restriction sites used for cloning),

corresponding to nucleotides 216–241 and 1833–1861 of LD20463.

The resulting PCR product was cloned in the pUAST vector [45].

Enhanced yellow fluorescent protein (EYFP) was PCR amplified

from pEYFP-N1 (Clontech), using the primers 59-

CCGGAATTCGTCGCCACCATGGTGAGCAA GG-39 and

59-CCGGAATTCCTTGTACAGCTCGTCCATGCC-39 (the un-

derlined sequences are EcoRI restriction sites used for cloning). The

resulting PCR product was cloned 59 to and in frame with the Sans

coding sequence in the pUAST vector. The correct nucleotide

sequence of the cloned PCR products were confirmed by sequencing

prior to injection into y w embryos to obtain transgenic flies.

Fly stocks
Mutant alleles for CG13320 were generated by imprecise

excision of EP-elements [46] using standard procedures. The

starting EP-element line was GE10371 (GenExel, Inc.), in which

the EP-element is oriented with the UAS sites facing away from

the CG13320 coding sequence. The deficiency line used was

Df(2R)CX1, wg12 b1 pr1/SM1 (Bloomington Drosophila stock

center at Indiana University). The allele Sans38 contains a genomic

deletion of 2135 bp, spanning from nucleotide 121224 to 123357

of the genomic sequence AE003820. The allele Sans63 contains a

genomic deletion of 965 bp from nucleotide 122363 to nucleotide

123328. The allele Sans245 contains a genomic deletion of 1331 bp,

spanning from nucleotide 122367 to nucleotide 123696. The allele

Sans254 contains a genomic deletion of 1593 bp, spanning from

nucleotide 121561 to nucleotide 123152. The four Sans alleles

described here are homozygous viable, indicating that CG13320

(Sans) is not essential for viability. This conclusion is consistent with

previous independently conducted genetic studies which did not

uncover any vital gene between CG3845 (l(2)01424) and CG3886

(Psc) [47,48], an interval including Sans. Additional fly stocks used

were FRT42D Sans245 (this study), UAS-YFP-Sans (this study),

Figure 8. Follicle cell microvilli display an apparently normal morphology in Sans and ck mutant flies. A–C: Cross-sectional views of (A)
wild-type, (B) ck13/ck13 mutant, and (C) Sans245/Sans245 mutant follicle cells of stage 10-egg chambers stained for F-actin (red), Cad99C (green), and a-
Tubulin (blue). At this level of resolution, microvilli appear to be normal in the mutants. D: Clones of Sans245/Sans245 mutant follicle cells marked by
the absence of GFP (blue) of stage 10-egg chambers stained for F-actin (red) and Cad99C (green). A cross-sectional view is shown (apical is to the
top). D9 displays a heat-map of the staining shown in D. Cad99C is reduced on microvilli of Sans245/Sans245 mutant follicle cells. E: Western blot
analysis of ovaries with an anti-Cad99C antiserum. Genotypes of the flies are indicated. Similar amounts of Cad99C (arrow) are detected in extracts of
wild-type (lane 1), heterozygous (lanes 3,5,7), and homozygous (lanes 2,4,6,8) Sans mutant ovaries. Subsequent blotting with an anti a-Tubulin
antibody (lower panel) shows the loading of similar amounts of proteins in each lane. Molecular weights are indicated to the left (in kDa). Scale bars:
A–C: 10 mm; D: 20 mm.
doi:10.1371/journal.pone.0004753.g008
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Act5C.CD2.Gal4 [49], and ck13 [29]. Marked clones of mutant

cells were generated by Flp-mediated mitotic recombination

subjecting flies once to a 35uC heat-shock for 30 minutes

(Act5C,CD2.Gal4) or three times to a 38uC heat shock for

30 minutes (FRT42D Sans245).

RNA in situ hybridization
RNA in situ hybridization was performed as described

previously [33]. The EST LD20463 was used as a template for

RNA probe preparation.

Western blotting
Western blotting was performed as described previously [33].

Primary antibodies used were rabbit anti-Sans (1:1000; this study),

rabbit anti-Cad99C, 1:1000 [42] and mouse anti-a-Tubulin,

1:1000 (Sigma T9026). Secondary antibodies used were HRP-

conjugated goat anti-rabbit, 1:5000 (Santa Cruz sc-2054) and

HRP-conjugated goat anti-mouse, 1:5000 (Pierce Biotechnology

31430).

Immunohistochemistry
Immunostaining of adult retinae was performed as described

previously [50]. Ovaries were dissected and prepared for

immunostaining using standard protocols. The anti-Sans antibody

(AE5E) was generated by immunizing rabbits using a GST-Sans

(full-length) fusion protein. The antiserum was immunopurified

using a resin coupled to MBP-Sans. The anti-Sans antiserum was

used at a 1:100 dilution. Additional primary antibodies were

monoclonal mouse anti-a-Tubulin, 1:100 (Sigma T9026), mono-

clonal mouse anti-GFP, 1:2000 (Clontech 8362-1), chicken anti-

Avl, 1:1000 [37], rat anti E-cadherin (DCAD2), 1:20 [51], guinea

pig anti-Crinkled, 1:100 (Fig. 4) [29], mouse anti-MYO7A 138-1,

1:100 (Fig. 5, Developmental Studies Hybridoma Bank), and

rabbit anti-Cad99C, 1:10.000 [42]. Secondary antibodies used

were Alexa 488, Alexa 594 (Molecular Probes) or CY5 (Jackson

ImmunoResearch) conjugated anti-mouse, anti-guinea pig, anti-

rat, or anti-rabbit IgG, all diluted 1:200. Rhodamine-Phalloidin,

used at a 1:200 dilution, was from Molecular Probes. Confocal

images were recorded on a Zeiss LSM510 microscope.
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