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Abstract

Purpose To evaluate and compare the accuracy of

six different formulas (Emmetropia Verifying Optical

version 2.0, Kane, SRK/T, Barrett Universal II, Haigis

and Olsen) in intraocular lens (IOL) power calculation

for extremely long eyes.

Methods Retrospective case-series. Seventy-three

eyes with axial length (AL) C 29.0 mm and under-

went phacoemulsification cataract surgery with Ray-

ner (Hove, UK) 920H IOL implantation from January

2018 to March 2020 were included. Prediction errors

(PE) were calculated and compared between different

formulas to evaluate the accuracy of formulas. Mul-

tiple regression analysis was performed to investigate

factors associated with the PE.

Results The Kane formula had mean prediction error

close to zero (– 0.01 ± 0.51 D, P = 0.841), whereas

the EVO 2.0, SRK/T, Barrett Universal II, Haigis and

Olsen formulas produced hyperopic outcomes (all

P\ 0.001). The median absolute error [inter-quartile

range] produced by the EVO 2.0, Kane, Barrett

Universal II and Olsen formulas showed no significant

difference (0.33 D [0.48], 0.30 D [0.44], 0.34 D [0.39],

0.29 D [0.37], respectively, pairwise comparison

P[ 0.05), but was significantly lower than that of

the SRK/T and Haigis formulas (0.85 D [0.66], 0.80 D

[0.54], respectively, pairwise comparison P\ 0.001).

The AL and the PE produced by the SRK/T formula

were significantly positively correlated in extremely

myopic eyes (b = 0.248, P\ 0.001), whereas the

trend was not demonstrated in other formulas.

Conclusions For cataract patients with axial length

greater than 29.0 mm, the accuracy of the EVO 2.0,

Kane, Barrett Universal II and Olsen formulas is

comparable and significantly better than that of the

SRK/T and Haigis formulas.

Keywords Extremely long eye � Intraocular lens
power calculation � Cataract surgery

Introduction

Myopia has become a common visual disorder which

shows significant increase in its prevalence globally,

and one billion people (approximately 10% of the

global population) have been estimated to develop
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high myopia by 2050 [1]. High myopia, which is

generally associated with an axial length (AL) longer

than 26.0 mm, would lead to vision-threatening com-

plications, including cataract [2]. In Asia, extreme

myopia affects a high proportion of highly myopic

patients. Many of these patients suffer from unsatis-

factory postoperative vision after cataract surgery

because of posterior capsular rupture and unpre-

dictable refractive outcomes [3]. The measurement

of AL and the intraocular lens (IOL) power calculation

formula used might be the main sources of postoper-

ative prediction error for extremely long eyes [4].

Nowadays, modern biometry techniques, such as the

partial coherence interferometry (PCI) biometry and

swept-source optical coherence tomography (SS-

OCT), have reduced AL measurement errors in long

eyes with a staphyloma [5]. In order to obtain

satisfactory postoperative refraction, two high-resolu-

tion optical biometric devices, Zeiss IOL Master 700

and OA 2000, based on the principle of SS-OCT is

commonly used for the obtaining multiple measure-

ments of various ocular biometric parameters and

calculating IOL power [6].

The different AL behavior of formulas to calculate

the IOL power is a crucial problem, since refractive

errors inevitably increase as the AL changes. There are

various validated IOL formulas applied for various

AL, such as the Hoffer Q formula is appropriate for

eyes with AL less than 22.0 mm and the SRK/T or

Haigis formula might be good choice for eyes with AL

of 26.0 mm or more [4, 7]. Therefore, it is important to

select suitable formula to reduce the refractive error.

In a recent study, the Barrett Universal II (Barrett II),

Haigis and Olsen formulas were found to be more

accurate than the Holladay 1, Holladay 2, Hoffer Q

and SRK/T formulas in eyes with AL longer than

26.0 mm [8]. Furthermore, modern IOL formulas such

as the Emmetropia Verifying Optical version 2.0

(EVO 2.0), Kane, Barrett II or Olsen formula have led

to remarkable improvements in highly myopic eyes in

recent years, and published studies reported excellent

outcomes with these formulas [9–11]. However, these

formulas have rarely been evaluated in extremely

myopic eyes with AL of 29.0 mm or more, especially

the EVO 2.0 and Kane formulas. Since the SRK/T

formula is still a valid option and commonly used

clinically, we compared this one with the aforemen-

tioned formulas, too [12]. Thus in this study, we

investigated the accuracy of six IOL power calculation

formulas (EVO 2.0, Kane, SRK/T, Barrett II, Haigis

and Olsen) by reviewing eyes with extremely high

myopia with AL longer than 29.0 mm.

Materials and methods

The protocol of this retrospective study was approved

by the Ethics Committee for HumanMedical Research

at the Joint Shantou International Eye Center of

Shantou University and the Chinese University of

Hong Kong (No. 58, Shanfu Section [2020]). All

procedures were in accordance with the tenets of the

Declaration of Helsinki. In addition, since the study

was done during COVID-19, all the population

coming into the hospital, including doctors and

patients, should wear face mask, measure body

temperature, do nucleic acid testing (NAT) and hand

disinfection. Patients with ALs longer than 29.0 mm

and underwent phacoemulsification cataract surgery

from January 2018 to March 2020 were enrolled. The

inclusion criteria were: (1) eyes with postoperative

corrected distance visual acuity (CDVA) of 6/20 or

more within the 1- to 4-month; (2) IOL implantation

using 920H IOL model (Rayner Intraocular Lenses

Ltd.); and (3) cases with complete medical records.

Patients with amblyopia, squint, complicated cataract

surgery, traumatic cataract, previous ocular surgery,

acquired retinal diseases and pathology affecting the

accuracy of biometry calculations (including severe

corneal or vitreous opacity, corneal degeneration,

keratoconus, pterygium, secondary glaucoma and

retinal detachment) were excluded. We only included

one operated eye of each patient. The eye with better

CDVA was selected if the patient underwent bilateral

cataract surgery.

To investigate whether a correlation exists between

AL and postoperative refraction, the studied eyes were

divided into two subgroups: 29.0 B AL\ 31.0 mm

(Extreme Myopia 1, EM1), AL C 31.0 mm (Extreme

Myopia 2, EM2). Standard phacoemulsification catar-

act operation procedure was performed by different

experienced surgeons. A 2.8 mm clear corneal inci-

sion was created after topical anesthesia, and then

phacoemulsification was performed. Next, 920H IOL

model (Rayner Intraocular Lenses Ltd.) with appro-

priate refraction was implanted in the bag. No sutures

were used for closure the operated eye. The operation

usually lasted 15 min and all subjects were prescribed
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the same postoperative medications. Ocular biometric

parameters including AL, keratometry (K), anterior

chamber depth (ACD), lens thickness (LT), central

corneal thickness (CCT) and white-to-white (WTW)

were measured by OA 2000 (Tomey Corporation,

Japan) and IOL Master 700 (Carl Zeiss Meditec, Jena,

Germany) preoperatively.

For each eye, the IOL power was calculated using

the Emmetropia Verifying Optical version 2.0 (EVO

2.0),A Kane,B Sanders-Retzlaff-Kraff trial (SRK/T),C

Barrett Universal II (Barrett II),D Haigis optimized

(Haigis),E and Olsen formulas,F respectively. The

User Group for Laser Interference Biometry (ULIB,

http://www.ocusoft.de/ulib/cl.html)G lens constants

were used for all formulas. The refractive prediction

error (PE) was calculated by subtracting the formula-

predicted postoperative refraction from the actual

postoperative refraction. Negative PE indicated over-

correction with a tendency of myopic outcomes,

whereas positive PE indicated undercorrection with a

tendency of hyperopic outcomes. The mean absolute

error (MAE), median absolute error (MedAE), and the

percentages of eyes with PE within ± 0.25, ± 0.50

and ± 1.00 D of the targeted refraction were calcu-

lated for each formula.

Statistical analysis

All statistical analyses were conducted using the

commercially available software (IBM SPSS Statistics

21; SPSS Inc., Chicago, IL). Kolmogorov–Smirnov

test was used to check the data distribution for

normality. One-sample T-test was used to assess

whether the ME for each formula was significantly

different from zero. The nonparametric Friedman test

was performed to assess the differences in the absolute

errors among formulas. The post hoc analysis using

the Wilcoxon signed-rank test with Bonferroni cor-

rection was conducted if a significant difference was

detected between formulas. The Fisher’s exact test

was conducted to compare percentage of eyes

within ± 0.25, ± 0.50 and ± 1.00D of the targeted

refraction. Multiple regression analysis was per-

formed to investigate the relationship between the

PE for each formula and associated factors. Mean

(mean ± standard deviation) and median absolute

(median with the inter-quartile range) values were

presented. P\ 0.05 was considered statistically

significant.

Results

Patients’ demographics

A total of 73 eyes from 73 patients with a mean age of

58.86 ± 10.95 years were included in the current

study. There were 24 males and 49 females, as well as

40 right eyes and 33 left eyes. The mean AL was

31.17 ± 1.34 mm. Table 1 shows the demographic

and biometric data of the study population.

Comparison of IOL power calculation formulas

in the whole population

The Kane formula had mean prediction error (-0.01 D)

close to zero, which was not significantly different

from zero (P = 0.841). The EVO 2.0, SRK/T, Barrett

II, Haigis and Olsen formulas produced hyperopic

outcomes (all P\ 0.001, Table 2 and Fig. 1). The

median absolute error [inter-quartile range] predicted

by the EVO 2.0, Kane, Barrett Universal II and Olsen

formulas showed no significant difference (0.33 D

[0.48], 0.30 D [0.44], 0.34 D [0.39], 0.29 D [0.37],

respectively, P[ 0.05), but were significantly lower

than that of the SRK/T and Haigis formulas (0.85 D

[0.66], 0.80 D [0.54], respectively, and all the pairwise

comparisons were P\ 0.001, Fig. 2). Figure 3 shows

the percentages of eyes with PE within ± 0.25

D, ± 0.50 D and ± 1.00 D of the targeted refraction

for all formulas. For the percentage of eyes within ±

1.00 D of the targeted refraction error, the EVO 2.0,

Kane, Barrett II and Olsen formulas had the same

value 94.52% (69/73), and was higher than the 60.27%

(44/73) of SRK/T and 61.64% (45/73) of Haigis

formulas (all P\ 0.001). The same trend could be

seen in the differences between formulas in the

percentage of eyes within ± 0.25 D and ± 0.50 D

of the targeted refraction. The Olsen formulas had the

highest percentage of eyes within ± 0.50 D compared

with the EVO 2.0, Kane and Barrett II formulas but

without significance (78.08%, 57/73 vs 64.38%,

47/73, 67.12%, 49/73 and 71.23%, 52/73, all

P[ 0.05).

Comparison of IOL power calculation formulas

in the subgroups

To investigate whether there is a correlation between

the PE and the AL, eyes were divided into two groups
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(EM1 and EM2) based on AL value. There were 37

eyes in EM1 and 36 eyes in EM2 group, respectively.

No significant between-group differences were shown

in baseline demographic and biometric data except in

LT. All the evaluated formulas produced significant

hyperopic surprise in EM1 group, and the mean

prediction error ranged from 0.18 D (Kane) to 0.91 D

(Haigis). The Olsen formula had mean prediction error

(0.14 D) that showed no significant difference from

zero in EM2 group (P = 0.089). It is worth noting that

the Kane formula produced significant myopic out-

come (– 0.21 D) when eyes with AL greater than

31.0 mm (P = 0.017). In terms of the mean absolute

error, the EVO 2.0, Kane, Barrett II and Olsen

formulas had the equal accuracy (all within ± 0.50

D, P[ 0.05) in both groups. The post hoc analysis

showed that the four mentioned formulas had a much

lower MedAE than the SRK/T and Haigis formulas

(all P\ 0.001, Table 2 and Fig. 2). The proportion of

predictive refraction within ± 1.00 D was 62.16%

(23/37, Haigis) to 97.30% (36/37, Olsen), 50.00% (18/

36, SRK/T) to 97.22% (35/36, Barrett II) in EM1 and

EM2 group, respectively. However, there was no

significant difference in proportion of eyes within ±

0.25 D, ± 0.50 D and ± 1.00 D of intended between

the two subgroups.

Factors influencing prediction errors

of the formulas

Age, gender and the ocular biometric parameters, such

as AL, K, ACD, LT and WTW, were assessed in the

multiple regression analysis to identify the factors that

influenced PE. The results showed that the AL was

significantly associated with the PE produced by the

SRK/T formula (b = 0.248, P\ 0.001, Table 3). The

highest coefficient of determination was demonstrated

in the regression equation for the SRK/T formula

(PESRK/T = – 10.384 ? 0.248*AL, R2 = 0.270,

P\ 0.001). In general, a longer AL was always

associated with a hyperopic surprise and a shorter AL

was always associated with a myopic surprise for the

SRK/T formula. However, there was no significant

associated factor detected in the regression equation

for the EVO 2.0, Barrett II, Haigis and Olsen formulas.

Interestingly, a slightly significant relationship

between the PE and the AL was found in the Kane

formula (b = – 0.099, P = 0.023), but the regression

equation showed no significance (P = 0.059).

Table 1 Characteristics of Eyes in the Study

Parameter Whole Population

(AL C 29.0 mm, n = 73)

Extreme Myopia 1

(29.0 B AL\ 31.0 mm, n = 37)

Extreme Myopia 2

(AL C 31.0 mm, n = 36)

P-value of

subgroup

Age 58.86 ± 10.95 59.22 ± 10.79 58.50 ± 11.25 0.782

Gender, n (%)

Male 24 (32.88%) 11 (29.73%) 13 (36.11%) 0.624

Female 49 (67.12%) 26 (70.27%) 23 (63.89%)

Eye, n (%)

Right 40 (54.79%) 19 (51.35%) 21 (58.33%) 0.640

Left 33 (45.21%) 18 (48.65%) 15 (41.67%)

Average K

(D) 44.28 ± 1.30 44.26 ± 1.34 44.30 ± 1.27 0.897

K1 (D) 43.70 ± 1.42 43.69 ± 1.46 43.71 ± 1.40 0.956

K2 (D) 44.87 ± 1.26 44.84 ± 1.31 44.90 ± 1.23 0.844

AL (mm) 31.17 ± 1.43 30.03 ± 0.54 32.35 ± 1.04 \ 0.001

ACD

(mm)

3.51 ± 0.48 3.54 ± 0.41 3.47 ± 0.55 0.533

LT (mm) 4.51 ± 0.47 4.37 ± 0.41 4.64 ± 0.50 0.015

WTW

(mm)

11.66 ± 0.40 11.67 ± 0.39 11.65 ± 0.42 0.857

K Keratometry, AL Axial length, ACD Anterior chamber depth, LT Lens thickness, WTW White to white
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Table 2 Refractive prediction error, mean absolute error and median absolute error produced by each formula

Formula ME (D) MAE (D) MedAE (D)

Extreme Myopia 1 (29.0 B AL\ 31.0 mm) Kane 0.18 ± 0.45 0.37 ± 0.31 0.30 (0.44)

EVO 2.0 0.40 ± 0.42 0.46 ± 0.34 0.39 (0.44)

Olsen 0.24 ± 0.40 0.36 ± 0.30 0.32 (0.35)

Barrett II 0.29 ± 0.43 0.40 ± 0.33 0.34 (0.41)

SRK/T 0.78 ± 0.48 0.80 ± 0.44 0.78 (0.66)

Haigis 0.91 ± 0.40 0.91 ± 0.40 0.94 (0.54)

P value – \ 0.001 \ 0.001

Extreme Myopia 2 (AL C 31.0 mm) Kane – 0.21 ± 0.49 0.41 ± 0.33 0.32 (0.45)

EVO 2.0 0.26 ± 0.46 0.39 ± 0.36 0.28 (0.51)

Olsen 0.14 ± 0.49 0.37 ± 0.35 0.27 (0.41)

Barrett II 0.28 ± 0.42 0.40 ± 0.31 0.32 (0.39)

SRK/T 1.15 ± 0.73 1.16 ± 0.70 1.00 (1.03)

Haigis 0.89 ± 0.47 0.91 ± 0.42 0.76 (0.54)

P value – \ 0.001 \ 0.001

Whole Population (AL C 29.0 mm) Kane – 0.01 ± 0.51 0.39 ± 0.32 0.30 (0.44)

EVO 2.0 0.33 ± 0.44 0.43 ± 0.35 0.33 (0.48)

Olsen 0.19 ± 0.45 0.36 ± 0.32 0.29 (0.37)

Barrett II 0.28 ± 0.42 0.40 ± 0.31 0.34 (0.39)

SRK/T 0.96 ± 0.64 0.98 ± 0.61 0.85 (0.66)

Haigis 0.90 ± 0.43 0.91 ± 0.41 0.80 (0.54)

P value – \ 0.001 \ 0.001

AL Axial length, ME Mean prediction error, MAE Mean absolute error, MedAE Median absolute error, Barrett II = Barrett Universal

II

Fig. 1 The distribution of prediction errors for four formulas in

each group. The tops of the bars represent the mean prediction

errors, and the whiskers represent the standard deviations.

P values were calculated using the one-sample T-test,

values\ 0.05 were considered statistically significant. *:

P\ 0.05. **: P\ 0.01. ***: P\ 0.001. Note that hyperopic

prediction errors are indicated by positive values, and myopic

prediction errors are indicated by negative values
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Discussion

Hyperopic refractive errors can result from the incor-

rect calculation of the IOL power required, especially

in extremely high myopia [13, 14]. The current study

mainly focused on the accuracy comparison of well

validated IOL calculation formulas in a cohort of eyes

with AL longer than 29.0 mm who underwent cataract

operation implanted with the 920H IOL model. Our

results showed that in the whole sample, the EVO 2.0,

Kane, Barrett II and Olsen formulas exhibited a

significantly higher proportion of eyes within ± 0.25

Fig. 2 Box plots of absolute refractive error produced by each

formula in each group. The boxes represent the upper and lower

quartiles, and the dash inside the box is the median. The

whiskers represent the minimum andmaximum values. P values

were calculated using the Wilcoxon signed-rank test with

Bonferroni correction, values\ 0.05 were considered statisti-

cally significant. *: P\ 0.05. **: P\ 0.01. ***: P\ 0.001

Fig. 3 Percentage of eyes within ± 0.25D, ± 0.50D and ± 1.00D of the target refraction for each formula in each group
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D, ± 0.50 D and ± 1.00 D of the targeted refraction

and lower MedAE and MAE, compared to the earlier

generation formulas: SRK/T and Haigis.

The Olsen formula had the lowest MAE and

MedAE as well as the highest proportion of spherical

equivalent (SE) refraction within ± 0.25 D and ±

0.50 D in both two subgroups, although there was no

significant difference compared to the EVO 2.0, Kane

and Barrett II formulas. Our investigation in extremely

high myopia was in agreement with a previous study

which showed no significant difference between these

four IOL formulas across all AL subgroups [15].

Whereas Connell et al. [16] found that the Kane

formula had a significantly lower MAE (0.329 D) than

the Olsen formula in 846 eyes of the entire AL range.

The newer formulas, EVO 2.0 and Kane, have rarely

been investigated in eyes with AL long than

29.00 mm, meaning that we are unable to compare

our results to other published papers critically regard-

ing this specific topic.

The EVO 2.0 is a new thick-lens formula based on

the theory of emmetropization [17]. Its original

version was not as accurate as the Kane, Olsen and

Barrett II formulas in the short and long AL eyes. In

accordance with the previous results, our study

showed that the EVO 2.0 formula ranked at the fourth

accuracy, suggesting that the emmetropization con-

cept might not suitable at the extreme situation of the

AL [18]. The Kane formula is another newer method

which composes regression and elements of artificial

intelligence based on theoretical optics [19]. As has

been reported in recent studies, the Kane formula

outperformed other existing formulas regardless of the

AL and ACD values [16, 18, 20]. However, this

formula was inferior to the Olsen formula and ranked

as the second accurate one in our study, although

without statistical significance. Since the subjects of

those previous studies mainly were European ances-

try, the authors thought the differences in results could

be due to the different ethnicity of our patients, or the

relatively small sample size of our study [21, 22].

Further evaluations including more Chinese patients

of extremely high myopia are required for confirma-

tion. However, although the structure of the Kane

formula has not been published, it seems that it looks

promising and deserves more attention.

As for the Barrett II formula, it uses LT and WTW

values as determined by paraxial ray tracing method in

its prediction and the lens factor of the formula may

provide precise estimation of the effective lens

position [23]. Therefore, before the introduction of

the Kane formula, it exhibits as the most accurate

formula for eyes with long, medium and short AL

[8, 24]. Again, in another study including 106 eyes

with an AL longer than 26.00 mm, the Barrett II

formula had the lowest prediction error within

0.28 ± 0.19 D (0.26 D) [25]. These findings are

comparable to ours for extremely long eyes in which

excellent performance was reported with this formula.

Interestingly, the poor performance of the SRK/T

and Haigis formulas enabled us to have less than 50%

of eyes within ± 0.50 D of PE refraction in our

extremely highmyopia cohort. The proportion is much

lower than the corresponding values of prior studies

which showed a high accuracy in long eyes [4, 26].

Our multivariate regression analysis with regression

Table 3 Associated factors for intraocular lens power prediction among formulas

EVO 2.0 Kane Olsen Barrett Universal II SRK/T Haigis

b b b b b b

Axial length (mm) 0.010 – 0.099* 0.029 0.015 0.248*** 0.042

Keratometry (D) 0.024 – 0.019 0.058 0.023 0.091 0.053

Anterior chamber depth (mm) – 0.004 0.104 – 0.017 0.071 0.026 0.002

Lens thickness (mm) – 0.221 – 0.113 – 0.175 – 0.086 – 0.244 – 0.113

White to white (mm) – 0.006 0.026 – 0.004 0.010 0.051 0.017

Adjusted R-squared – 0.010 0.080 – 0.005 – 0.042 0.270 – 0.018

P-value 0.517 0.059 0.465 0.832 0.000*** 0.591

Regression equation: PESRK/T = – 10.384 ? 0.248*AL. Significant P– values are denoted by asterix (*), *: P\ 0.05. **: P\ 0.01.

***: P\ 0.001
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equation detected a significant effect of AL on the

refractive errors of the SRK/T formula which relied on

AL and central corneal power to provide prediction of

the postoperative IOL position. But the assumption

that long eyes would have deeper ACD adopted in the

SRK/T formula might explain why it was less accurate

in this study, since importance of preoperative ACD

measurement was always highlighted. Bang et al. [4]

found that the Haigis formula was the best at

predicting postoperative refraction in all eyes longer

than 27.00 mm, even in the subgroups of eyes with AL

longer than 29.07 mm. Contrary to the SRK/T

formula, the Haigis uses actual measurement of the

preoperative ACD in its calculation, and the predictive

error of this formula was not significantly affected by

eye AL [27]. It was surprising that the Haigis formula

ranked near the bottom in our study. Perhaps because

we included more modern formulas and excluded

more confounding factors, such as only one IOL

model was used and eyes with previous retinal

detachment surgery were abandoned, compared to

theirs. Formulas whose accuracy are not affected by

AL should be preferred, especially in extreme

situations.

Our study has strengths and limitations. One of the

strengths is that the current study mainly focused on

the accuracy of well validated IOL calculation

formulas in extremely myopic eyes with AL of

29.0 mm or more, which has rarely been evaluated

previously, especially the accuracy of EVO 2.0 and

Kane formulas. Another strength is that all the

examination and cataract procedures were performed

at one research center using identical protocols, thus

increasing the homogeneity across subjects and the

reasonability of the outcomes. The main limitation of

the current study was the relatively small sample size.

A minimum of 71 eyes might be required to conduct a

multiple comparison among the six evaluated formu-

las for a test power of 0.8 and a significance level of

0.05 based on PASS sample size calculation software

(version 15.0.5; NCSS, LLC). Although the sample

size included in our study meet the threshold, whether

the same results can be found requires more extremely

long eyes to further investigate. Second, multiple

surgeons that were included in the study might result

in bias from their operational style. However, the

aforementioned limitation could be clinically negligi-

ble because of the variations of surgeons might not

significantly affect the postoperative refraction after

cataract surgery in a single eye center [28]. Because all

the surgeons have been trained through the center’s

unified cataract surgery training program. And this

might make the study more approach to real-life

practice. Third, two different measurements, IOL

Master 700 and OA 2000, were used in the study,

although this is unlikely to affect the refractive

outcome, since the IOL Master 700 and OA 2000

have been reported to have good agreement in

biometric measurements [29].

Overall, for cataract patients with axial length

greater than 29.0 mm, the EVO 2.0, Kane, Barrett

Universal II and Olsen formulas provide equally

excellent IOL power prediction and are significantly

better than that of the SRK/T and Haigis formulas.

Any of these four formulas is a reasonable choice in

extremely myopic eyes. Furthermore, the older-gen-

eration formulas, such as the SRK/T and Haigis

formulas, are not recommended in this kind of

patients.
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