
cells

Article

Metabolomic Fingerprint of Mecp2-Deficient Mouse Cortex:
Evidence for a Pronounced Multi-Facetted Metabolic
Component in Rett Syndrome

Gocha Golubiani 1,2 , Vincenzo Lagani 2 , Revaz Solomonia 2 and Michael Müller 1,*

����������
�������

Citation: Golubiani, G.; Lagani, V.;

Solomonia, R.; Müller, M.

Metabolomic Fingerprint of Mecp2-

Deficient Mouse Cortex: Evidence for

a Pronounced Multi-Facetted

Metabolic Component in Rett

Syndrome. Cells 2021, 10, 2494.

https://doi.org/10.3390/cells10092494

Academic Editor: Ritva Tikkanen

Received: 12 August 2021

Accepted: 18 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institut für Neuro- und Sinnesphysiologie, Zentrum Physiologie und Pathophysiologie,
Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, D-37130 Göttingen, Germany;
gocha.golubiani.1@iliauni.edu.ge

2 Institute of Chemical Biology, Ilia State University, 0162 Tbilisi, Georgia; vincenzo.lagani@iliauni.edu.ge (V.L.);
revaz_solomonia@iliauni.edu.ge (R.S.)

* Correspondence: mmuelle7@gwdg.de; Tel.: +49-551-39-22933

Abstract: Using unsupervised metabolomics, we defined the complex metabolic conditions in the
cortex of a mouse model of Rett syndrome (RTT). RTT, which represents a cause of mental and
cognitive disabilities in females, results in profound cognitive impairment with autistic features,
motor disabilities, seizures, gastrointestinal problems, and cardiorespiratory irregularities. Typical
RTT originates from mutations in the X-chromosomal methyl-CpG-binding-protein-2 (Mecp2) gene,
which encodes a transcriptional modulator. It then causes a deregulation of several target genes and
metabolic alterations in the nervous system and peripheral organs. We identified 101 significantly
deregulated metabolites in the Mecp2-deficient cortex of adult male mice; 68 were increased and
33 were decreased compared to wildtypes. Pathway analysis identified 31 mostly upregulated
metabolic pathways, in particular carbohydrate and amino acid metabolism, key metabolic mitochon-
drial/extramitochondrial pathways, and lipid metabolism. In contrast, neurotransmitter-signaling
is dampened. This metabolic fingerprint of the Mecp2-deficient cortex of severely symptomatic
mice provides further mechanistic insights into the complex RTT pathogenesis. The deregulated
pathways that were identified—in particular the markedly affected amino acid and carbohydrate
metabolism—confirm a complex and multifaceted metabolic component in RTT, which in turn signi-
fies putative therapeutic targets. Furthermore, the deregulated key metabolites provide a choice of
potential biomarkers for a more detailed rating of disease severity and disease progression.

Keywords: Rett syndrome; Mecp2; pathogenic mechanism; metabolism; carbohydrates; amino
acids; mitochondria

1. Introduction

Rett syndrome (RTT) is among the leading causes of a severe cognitive impairment in
females. It represents a neurodevelopmental disorder of monogenic cause, while giving
rise to a complex clinical manifestation with a broad spectrum of symptoms, the severity of
which may vary markedly among individuals [1,2]. The majority of patients affected by RTT
carry mutations in their MECP2 (methyl-CpG-binding-protein-2) gene [3], which is located
on the long arm of the X-chromosome and encodes the transcriptional modulator MeCP2. In
addition to this specific type of MECP2 mutation, it is the X-chromosomal location, together
with its resulting random X-mosaicism, that underlies the interindividual heterogeneity of
symptomatic severities [4]. Typical symptoms that manifest in mostly female patients, after
an apparently normal initial development, include: cognitive impairment with features of
autism, susceptibility to seizures, motor dysfunction with improper posture, cardiac and
gastrointestinal problems, and a highly distorted breathing pattern [5–7].

Based on these symptoms, RTT represents a mostly but not exclusively neurological
disorder. More than three decades ago, first indications were obtained that RTT may
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also involve a mitochondrial component [8,9], and it is now becoming more evident that
RTT is associated with a spectrum of metabolic alterations. Blood serum and cerebral
fluid samples revealed elevated levels of lactate and pyruvate [10,11] in some patients.
Both the upregulation of the glucose transporter SLC2A4 observed in the Mecp2-deficient
mouse hippocampus [12] and the lower blood glucose levels in these mice [13] suggest
an altered carbohydrate metabolism in RTT [14]. Furthermore, alterations in cholesterol
homeostasis and distorted sphingolipid metabolism were detected in patient blood sam-
ples [15,16]. Similarly, the brains of Mecp2-deficient mice showed changes in phospholipid
metabolism [17].

Recent multi-omics analyses on patient blood samples identified alterations in mi-
tochondrial DNA [18], and further mutations in genomic DNA that are relevant for mi-
tochondrial and redox-regulatory functions. In the liver and skeletal muscles of male
Mecp2-deficient mice, indications of disturbed utilization of mitochondrial substrate were
obtained, pointing to potential disturbances in the TCA cycle [19]. In the brains of Mecp2-
mutant mice, mitochondrial impairment is indicated by altered mitochondrial activities,
increased O2 consumption, and exaggerated ROS generation [20–24]. Furthermore, the
oxidative stress that is inherent to RTT [25] increases various oxidative stress markers in
patient fibroblasts and in blood samples [26–29].

In terms of cellular signaling, the levels of biogenic amines, substance P, and nerve-
growth factors are modified in spinal fluid [30–33]. Moreover, various neurotransmitters
such as acetylcholine and glutamate are markedly affected in RTT [17,34,35].

In view of the constantly high energy demand, the undisturbed function of neu-
ral tissue is particularly prone to such metabolic disturbances and synaptic alterations.
Metabolomics is the ideal tool to determine the full extent of these changes. Detailed and
quantitative information is provided on hundreds of small molecule substrates, intermedi-
ates, and products involved in cellular metabolism (for review see: [36]). This defines a
unique fingerprint resembling the precise metabolic situation at the exact moment when the
tissue was collected. Without doubt, the metabolic signature obtained is much more closely
related to the precise phenotypic conditions than the proteomic or transcriptional datasets.

Metabolomic studies in RTT are currently in their early stages but bear the potential
to provide global insights into pathogenic mechanisms. Recently, the suitability of this
approach was demonstrated in a first metabolomics study on RTT patient-derived blood
samples [37], and the characterization of the gut microbiome and metabolome in RTT
patients [38]. An earlier pilot metabolic screening in male Mecp2-null (Mecp2−/y) mice
analyzed full brain extracts by means of high-resolution magnetic resonance spectroscopy.
Among the reported changes were a reduced choline phospholipid turnover, increased
glutamine/glutamate ratios, and potential alterations in osmoregulation [17].

To obtain an unprecedented view of brain metabolism in a mouse model of RTT, we
performed an untargeted metabolomics screening by comparing the cortices of adult male
wildtype (WT) and male Mecp2-deficient (Mecp2−/y) mice. To the best of our knowledge,
this represents a first-time detailed metabolomic characterization of the Mecp2-deficient
cortex. We chose this specific brain region because it provides sufficient quantities of
tissue, shows the highest mitochondrial ROS release, is markedly affected in RTT, and is
characterized by a very tight coupling of neural function and metabolic conditions [39,40].

Having successfully detected more than 250 defined metabolites, we defined a steady-
state metabolic signature of the severe disease state on postnatal day p50 in Mecp2−/y

mice. We obtained clear evidence of various aspects of disturbed cellular metabolism
and mitochondrial function, multiple distortions in cortical neurotransmitter levels and
cellular signaling, and a broadly affected amino-acid metabolism. Because the metabolome
is intimately linked to phenotypic conditions, this cortex-specific holistic view will be
helpful in more precisely distinguishing between primary defects and secondary alterations
provoked by the adverse disease-related conditions. In addition, it will initiate further
areas of research, identify potential specific biomarkers for RTT diagnostics, and point to
novel therapeutic concepts.
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2. Materials and Methods
2.1. Mouse Model and Tissue Isolation

The current study was performed on the Mecp2 knockout mouse model [B6.129P2(C)-
Mecp2tm1.1Bird] [41]. We focused on the severe disease stage on postnatal day p50 and
chose hemizygous male (Mecp2−/y) mice to ensure clearly defined genetic conditions with
a total absence of Mecp2. The cortices of male WT and Mecp2−/y mice were processed
individually (n = 6 each), phenotypic parameters were determined for each mouse, and the
blood was analyzed during dissection (Table 1). The mice were decapitated under deep
ether anesthesia, and cortices were isolated, flash-frozen in liquid N2 for rapid quenching,
and cryopreserved at −80◦C. Both the breeding of Mecp2-mutant mice, and all mouse
tissue analyses and procedures, complied with the European and German animal welfare
guidelines and were authorized by the Office of Animal Welfare of the University Medical
Center Göttingen and by the Lower Saxony State Office for Consumer Protection and Food
Safety (file number G16/2177).

Table 1. Phenotypic features of the analyzed WT and Mecp2−/y mice, including the respective
means ± standard deviations. Genotypic comparison was performed in a two-tailed two-sided
unpaired t-test (see p-values).

WT Mice (n = 6)

Identifier Body size [cm] Body weight [g] Blood glucose [mg/dL] Hematocrit
8.23 ± 0.21 21.60 ± 1.06 242.50 ± 30.57 43.58 ± 2.05

#5600 8.2 22.7 211 46.3
#5601 8.6 22.6 247 45.0
#5602 8.1 20.0 243 41.3
#5603 8.4 22.5 235 45.3
#5604 8.0 21.2 215 41.0
#5607 8.1 20.6 304 42.6

Mecp2−/y Mice (n = 6)

7.17 ± 0.69
(p = 0.0078)

13.78 ± 3.70
(p = 0.0011)

200.00 ± 50.65
(p = 0.1393)

46.4 ± 2.46
(p = 0.0777)

#5637 6.9 11.5 177 50.0
#5641 6.5 11.4 147 47.0
#5646 8.3 20.5 306 47.7
#5647 7.9 17.0 208 46.7
#5650 6.9 12.1 185 42.0
#5663 6.5 10.2 177 45.0

2.2. Metabolomic Analyses

The comprehensive metabolomic analyses and the subsequent initial bioinformatics
were conducted by a validated service provider (MetaSysX, Potsdam, Germany). In ac-
cordance with their validated protocols, the frozen tissue (~100 mg/sample) was ground,
extracted in a single-step procedure (modified from [42]), and its volume adjusted to equal
amounts of material. Polar/semi-polar primary and secondary metabolites were identified
by UPLC-MS measurements using a Waters ACQUITY Reversed Phase Ultra Performance
Liquid Chromatography (RP-UPLC), coupled to a Thermo-Fisher Exactive mass spectrome-
ter (Orbitrap mass analyzer, electrospray ionization source). Chromatograms were acquired
in full scan MS mode (100–1500 mass range) using C18 columns. Spectra were recorded
in both positive and negative ionization modes. Primary metabolites were identified by
GC-MS measurements. These were performed using an Agilent Technologies GC coupled
to a mass spectrometer (Leco Pegasus HT), consisting of an electron impact ionization
source and a time-of-flight mass analyzer. The spectra obtained were aligned and filtered.
The extracted peaks were then annotated based on the MetaSysX database (UPLC-MS and
GC-MC data) and the Fiehn Library (GC-MS data). During the annotation and identifica-
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tion of the respective metabolites, the sample data generated on the different platforms
was normalized to their respective group medians to obtain normalized intensities.

2.3. Bioinformatic Analyses

All measurements were log-transformed to stabilize variance. Missing values were set
to the average of their respective measurements. Differentially regulated metabolites were
identified using the moderated t-test analysis implemented in the R package Limma [43],
and upregulated and downregulated KEGG metabolism pathways were identified with the
ROAST rotation-based test [44]. ROAST transforms Limma t-statistics into their equivalent
z-scores from a standard normal distribution. A single deregulation statistic for each
pathway is computed by taking the average of the z-scores from the metabolites belonging
to this pathway. A p-value assessing the deregulation of each pathway is then obtained
through a rotation test, a Monte Carlo technique that is more suitable for small sample sizes
than permutation. Basically, ROAST identifies metabolites with a z-score larger than the
square root of two (in absolute value) as those metabolites that contribute most to the up- or
downregulation of a given pathway. Only uniquely identified metabolites were considered
during pathway analysis, and pathways with less than three identified metabolites were
discarded. All p-values were adjusted for false discovery rate [45], and the differential
expression and ROAST analyses were performed with the BIOMEX software [46].

3. Results

We performed an untargeted metabolome analysis of the isolated cortices of adult WT
and Mecp2−/y mice. These two groups of mice clearly differed in their general phenotypic
appearance, with Mecp2−/y mice being smaller, weighing less, and presenting a tendency of
slightly higher hematocrit and slightly lower blood glucose levels (Table 1). Metabolomics
detected a total of 4143 features (2037 hydrophilic features in positive mode, 2003 hy-
drophilic features in negative mode, and 101 GC mass traces). Of these, 283 unique features
were annotated based on the metaSysX database (Supplementary Materials Table S1), 32 of
which could be matched to more than one reference compound (coeluting compounds).
Principal component analysis shows that the WT and Mecp2−/y samples tend to cluster
within their respective groups, when only the identified metabolites are included in the
analysis (Figure 1A), and when all measurements are considered (Figure 1B).
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Citric acid 0.872 18.512 1.38 × 10-5 0.00036 
Inositol 1-phosphate 0.959 13.174 1.45 × 10-5 0.00036 
(S)-Methyl-3-hydroxybutanoate 0.935 16.364 1.51 × 10-5 0.00036 
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L-Valine 0.787 18.180 3.55E × 10-5 0.00060 
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Figure 1. Principal component analysis (PCA) plots for Mecp2−/y (red dots) and WT (blue dots) cortices. PCA is computed
only on the identified metabolites (A), and over all measurements (B). Percentage of explained variance is reported for both
x (first component) and y (second component) axis.
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Marked metabolic differences were detected among WT and Mecp2−/y cortex, with a
total number of 101 identified metabolites differing significantly among genotypes at an
adjusted p-value < 0.05 (Table 2). In detail, 33 metabolites were significantly decreased in
the Mecp2−/y cortex, whereas the remaining 68 were significantly increased compared to
WT. These differentially regulated metabolites represent compounds of different chemical
nature, including amino acids, peptides, neurotransmitters, lipids, nucleosides/nucleotides,
and carbohydrates. The five most severely downregulated (log2 fold changes) metabo-
lites in Mecp2−/y cortex we identified are cysteinylglycine, L-homocysteine, L-glutamyl-
L-glutamine, gamma-glutamyl-tyrosine, and 3-methoxytyramine. The five most severely
upregulated metabolites are sucrose, D-glucose 6-phosphate, D-fructose 1,6-bisphospate,
glyceraldehyde 3-phosphate, and rutin (see Table 2).

Table 2. List of the identified 101 metabolites that differ significantly between Mecp2−/y and WT cortices (FDR ≤ 0.05).
For each metabolite the common name, log2 fold change, raw p-value, and adjusted p-value are reported. Only those
metabolites are listed that could be identified (annotated) unequivocally in the database.

Metabolite Log Fold Change Average Expression p-Value Adjusted p-Value

L-Proline 0.910 19.269 1.02 × 10−6 0.00014

L-Glutamic acid 1.406 19.899 2.04 × 10−6 0.00018

N-Acetylglutamic acid 1.146 13.495 7.33 × 10−7 0.00014

Adenosine monophosphate 0.925 20.923 3.23 × 10−6 0.00018

Adenosine diphosphate 0.925 20.923 3.23 × 10−6 0.00018

L-Threonine 1.281 18.628 9.24 × 10−6 0.00036

L-Leucine 0.870 17.672 1.18 × 10−5 0.00036

D-Glucose 6-phosphate 2.226 12.018 1.23 × 10−5 0.00036

Citric acid 0.872 18.512 1.38 × 10−5 0.00036

Inositol 1-phosphate 0.959 13.174 1.45 × 10−5 0.00036

(S)-Methyl-3-hydroxybutanoate 0.935 16.364 1.51 × 10−5 0.00036

Putrescine 1.179 14.878 2.05 × 10−5 0.00044

D-Fructose 1,6-bisphosphate 2.035 12.807 2.18 × 10−5 0.00044

D-Fructose 1.167 15.985 2.89 × 10−5 0.00055

L-Valine 0.787 18.180 3.55 × 10−5 0.00060

L-Isoleucine 0.794 16.510 3.63 × 10−5 0.00060

L-Homocysteine −2.332 19.231 3.89 × 10−5 0.00061

Inosine 5prime-monophosphate 1.158 15.513 4.43 × 10−5 0.00066

D-Glucose 1.418 14.891 5.85 × 10−5 0.00080

Urea 1.599 18.093 6.27 × 10−5 0.00080

L-Glutamyl-L-glutamine −1.885 27.116 6.07 × 10−5 0.00080

5prime-Deoxy-5prime-(methylthio)adenosine 0.732 12.146 6.81 × 10−5 0.00080

(5Z,8Z,11Z,14Z)-Icosatetra-5,8,11,14-enoic acid 1.032 12.834 6.63 × 10−5 0.00080

L-Rhamnose 0.805 15.911 7.07 × 10−5 0.00080

S-Adenosyl methionine −0.994 23.740 9.39 × 10−5 0.00102

L-Threonic acid 0.685 16.744 0.00010 0.00106

Xanthine −0.590 24.310 0.00011 0.00112

Glycerol 0.743 19.067 0.00013 0.00123
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Table 2. Cont.

Metabolite Log Fold Change Average Expression p-Value Adjusted p-Value

Uracil −0.903 21.188 0.00013 0.00123

L-Serine 0.580 20.901 0.00014 0.00128

L-Phenylalanine 1.143 16.688 0.00014 0.00128

Riboflavin −1.161 20.071 0.00018 0.00157

Erythritol 0.696 13.022 0.00021 0.00178

Orthophosphate 0.612 20.971 0.00029 0.00232

L-Dehydroascorbic acid 0.691 21.847 0.00032 0.00252

alpha-Ketoglutaric acid 1.783 12.766 0.00033 0.00252

Succinic acid 0.743 17.429 0.00034 0.00252

L-Methionine 0.909 16.361 0.00041 0.00296

1-Methyl-4-Imidazoleacetic acid −0.837 21.803 0.00044 0.00312

Dopamine −1.285 21.788 0.00046 0.00312

Choline −0.431 26.902 0.00051 0.00333

L-Malic acid 0.695 17.421 0.00060 0.00389

alpha-D-Glucose 1-phosphate 0.608 16.334 0.00065 0.00409

Acetylcholine −0.927 23.071 0.00067 0.00415

Guanidineacetic acid 0.821 20.099 0.00080 0.00480

Cholesterol 1.261 19.067 0.00081 0.00480

gamma-Glutamyl-tyrosine −1.785 19.524 0.00084 0.00487

L-Phenylalanyl-L-glutamic acid 0.898 18.323 0.00089 0.00497

L-Tryptophan 1.611 14.883 0.00090 0.00497

Sucrose 6.158 13.392 0.00101 0.00541

3-Methoxytyramine −1.329 19.231 0.00106 0.00555

Hydroxymethylphosphonic acid −0.787 23.679 0.00115 0.00590

Cysteinylglycine −4.028 21.772 0.00118 0.00598

L-Cystine 0.874 11.928 0.00123 0.00601

L-Lysine −0.351 24.204 0.00123 0.00601

Xylitol 0.809 14.890 0.00140 0.00671

L-Valylglycine 0.679 18.356 0.00151 0.00707

myo-Inositol 2-phosphate 0.595 12.668 0.00152 0.00707

Quinic acid 0.856 11.418 0.00157 0.00714

Pantothenic acid 0.685 13.364 0.00159 0.00714

gamma-Glutamyl-leucine −0.625 20.675 0.00168 0.00745

L-Homoserine 0.690 13.175 0.00201 0.00876

L-Tryptophyl-L-glutamic acid 1.067 17.063 0.00243 0.01042

O-Acetyl-L-homoserine −0.758 25.057 0.00256 0.01082

2-Hydroxypyridine 0.676 18.513 0.00267 0.01111

L-Tyrosylglycine 0.669 17.228 0.00276 0.01131

Cytidine −0.498 24.940 0.00283 0.01144

3-Ureidopropanoic acid −0.797 16.984 0.00307 0.01222
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Table 2. Cont.

Metabolite Log Fold Change Average Expression p-Value Adjusted p-Value

L-Tyrosyl-L-glutamine 0.694 16.728 0.00317 0.01246

Pyroglutamic acid 0.419 23.178 0.00351 0.01361

sn-Glycerol 3-phosphate 0.544 19.750 0.00409 0.01542

L-Alanine 0.468 21.447 0.00456 0.01700

Thiaminpyrophosphate 0.972 17.802 0.00465 0.01708

L-Tyrosine 1.005 18.152 0.00495 0.01796

Serotonin −0.856 19.538 0.00630 0.02227

5-Hydroxy-D,L-lysine −0.541 16.762 0.00655 0.02274

L-Argininosuccinic acid 0.489 20.133 0.00659 0.02274

Uric acid −0.872 20.411 0.00739 0.02490

L-Prolyl-L-threonine 0.456 17.391 0.00754 0.02491

Caffeic acid 0.846 11.955 0.00757 0.02491

L-Glutamine 0.415 23.021 0.00793 0.02579

gamma-Glutamyl-tryptophan −1.178 18.306 0.00813 0.02614

S-(2-Carboxyethyl)cysteine −0.912 19.479 0.00890 0.02799

Cytidine monophosphate 0.449 24.217 0.00890 0.02799

Uridine −0.650 23.353 0.00964 0.02996

L-Valyl-L-alanine 1.011 18.636 0.01030 0.03168

Spermidine −0.449 22.564 0.01043 0.03174

Spermine −1.144 20.609 0.01090 0.03252

Pyruvic acid 0.570 16.746 0.01126 0.03319

(3-Carboxypropyl) trimethylammonium −0.226 25.234 0.01211 0.03533

Urocanic acid 1.357 20.985 0.01319 0.03809

Glyceraldehyde 3-phosphate 1.960 19.691 0.01448 0.04138

Rutin 1.789 11.194 0.01504 0.04256

Guanosine −0.551 26.262 0.01548 0.04336

Stearic acid (FA 18:0) 0.412 17.346 0.01606 0.04447

L-Lysyl-L-glutamic acid −0.465 17.413 0.01619 0.04447

Xanthosine −0.864 18.294 0.01649 0.04486

Palmitic acid (FA 16:0) 0.457 17.561 0.01711 0.04611

Cytidine 5prime-diphosphoethanolamine −0.249 23.064 0.01821 0.04817

L-Phenylalanyl-L-threonine 0.550 16.795 0.01842 0.04826

1-Methylnicotinamide −0.390 19.488 0.01907 0.04951

A volcano plot is used to visualize the results of the deregulation analysis and the
complex genotype-related differences, i.e., the number of deregulated identified metabolites
and their extent of alteration (Figure 2A). For unequivocal identification, red indicates
significantly changed metabolites (FDR ≤ 0.05), whereas the non-significantly affected
metabolites are shown in blue. A corresponding plot over all the measurements obtained
is shown in Figure 2B.
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one known metabolite. The x-axis represents the log2 fold changes between Mecp2−/y and WT, and the y-axis the -log10
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The concentration values of all deregulated identified metabolites are illustrated in
a heatmap (Figure 3A); a similar heatmap of all deregulated measurements was also
generated (Figure 3B). These heatmaps reveal a very clear genotype-dependent clustering
of the analyzed tissue samples. Furthermore, a distinct pattern of up- and downregulated
groups of metabolites is evident for WT and the Mecp2−/y cortex. The volcano plots and
heatmaps clearly indicate significant and drastic differences between the metabolomes of
the Mecp2−/y and WT mouse cortex. In particular, this includes several amino acids, most
of which were upregulated in the Mecp2−/y cortex (Figure 4). Lysine was the only amino
acid showing a significantly decreased level compared to WT conditions. Furthermore,
there was a relatively large number of metabolites yet to be identified. Some of these are
highly discriminant between WT and Mepc2−/y mice, and may thus qualify as potential
biomarkers for disease progression or symptom severity.
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Figure 3. Heatmaps representing the concentration values of all deregulated identified/non-
identified metabolites. Dark red indicates higher values and white lower values. Measurements
are arranged in rows and the tissue samples are represented in columns. The Mecp2−/y and WT
samples are labeled at the top of the heatmap by a red and blue banner, respectively. Dendrograms
are included showing the clustering of both measurements and unique sample identifiers (individ-
ual mouse numbers). The heatmaps were computed for the identified metabolites (A) and for all
measurements (B).
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Figure 4. Several amino acids show clearly different levels in the Mecp2−/y and WT cortex. The
majority were detected at higher levels in Mecp2−/y mice. Only lysine was decreased compared to
WT conditions. Plotted are the log2 fold changes of the respective compounds. Asterisks indicate
significant changes compared to WT (* p < 0.05, ** p < 0.01, *** p < 0.001).

The high number of the significantly altered metabolites implies that several cellular
pathways should be affected in the symptomatic Mecp2−/y mice. Therefore, we carried out
a deregulation analysis at the pathway level, taking into consideration all mouse pathways
relating to metabolism and included in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [see: https://pubmed.ncbi.nlm.nih.gov/10592173/; accessed 16 July 2021]. In
total, 41 metabolic pathways contained at least three identified metabolites, and 31 of
these pathways were affected significantly in the Mecp2−/y cortex (FDR ≤ 0.05, Figure 5,
Table 3). These deregulated pathways are associated, in particular, with carbohydrate

https://pubmed.ncbi.nlm.nih.gov/10592173/
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and amino acid metabolism. However, general energy metabolism, lipid metabolism,
and metabolism of cofactors and vitamins were modified to some degree (Table 3). The
majority (30 of 31) of significantly deregulated pathways were upregulated in the Mecp2−/y

cortex, compared to WT. This is obvious from the predominance of red color shades
in the graphical representation of the pathway-enrichment analysis (Figure 5). Only
glycerophospholipid metabolism was downregulated significantly in Mecp2−/y cortex.
The alterations in nucleotide (pyrimidine, purine) metabolism and lysine degradation,
in addition to histidine, tyrosine, tryptophan, beta-alanine metabolism, and glutathione
metabolism did not reach the level of significance (FDR > 0.05). Neither vitamin B6,
pantothenate, nor CoA biosynthesis differed significantly among the Mecp2−/y and WT
cortex (Table 3).
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Figure 5. Graphical representation of the pathway enrichment results. Each dot represents a pathway,
for which the x-axis represents the proportion of deregulated metabolites and the y-axis the adjusted
p-value. The size of each dot is proportional to the number of identified metabolites present in the
respective pathway, and the dot color indicates pathway up (red) or down (blue) regulation.

Table 3. List of the 41 KEGG metabolism pathways for which at least three identified metabolites were measured. For each
pathway, its name, number of up- and downregulated features, raw p-value, and adjusted p-value are reported. Based on
the adjusted p-value, 31 of the listed metabolic pathways were significantly altered in the Mecp2−/y cortex.

Pathway Number of
Features

Number
down

Number
up Direction p-Value Adjusted

p-Value Group

Starch and sucrose metabolism 3 0 3 Up 1.00 × 10−6 1.02 × 10−5 Carbohydrate
metabolism

Glyoxylate and dicarboxylate metabolism 11 0 8 Up 8.00 × 10−6 6.97 × 10−5

Galactose metabolism 4 0 4 Up 1.20 × 10−5 7.86 × 10−5

Fructose and mannose metabolism 3 0 3 Up 1.40 × 10−5 7.91 × 10−5

Glycolysis/Gluconeogenesis 5 0 5 Up 5.40 × 10−5 0.000199

Citrate cycle (TCA cycle) 7 0 7 Up 9.60 × 10−5 0.000301

Pentose phosphate pathway 3 0 3 Up 0.000106 0.000309

Butanoate metabolism 6 0 6 Up 0.000115 0.000313
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Table 3. Cont.

Pathway Number of
Features

Number
down

Number
up Direction p-Value Adjusted

p-Value Group

Ascorbate and aldarate metabolism 3 0 3 Up 0.00013 0.000332

Pentose and glucuronate interconversions 5 0 5 Up 0.000211 0.000508

Pyruvate metabolism 6 0 6 Up 0.000333 0.000717

Propanoate metabolism 4 0 3 Up 0.000623 0.001215

Oxidative phosphorylation 5 0 4 Up 0.000295 0.000671 Energy
metabolism

Sulfur metabolism 6 2 4 Up 0.025918 0.034278

Biosynthesis of unsaturated fatty acids 4 0 3 Up 0.001717 0.002815 Lipid metabolism

Primary bile acid biosynthesis 3 0 2 Up 0.00549 0.008336

Glycerophospholipid metabolism 4 2 1 Down 0.01947 0.027526

Pyrimidine metabolism 16 7 3 Down 0.116182 0.136098 Nucleotide
metabolism

Purine metabolism 20 7 5 Up 0.257673 0.270886

Arginine biosynthesis 10 0 8 Up 1.00 × 10−6 1.02 × 10−5 Amino acid
metabolism

Valine, leucine, and isoleucine degradation 3 0 3 Up 9.00 × 10−6 6.97 × 10−5

Alanine, aspartate, and glutamate
metabolism 12 0 10 Up 1.80 × 10−5 8.97 × 10−5

Valine, leucine, and isoleucine biosynthesis 4 0 4 Up 2.50 × 10−5 0.0001

Phenylalanine metabolism 5 0 5 Up 6.20 × 10−5 0.00021

Arginine and proline metabolism 17 3 9 Up 0.000503 0.00103

Cysteine and methionine metabolism 13 4 9 Up 0.001386 0.00247

Phenylalanine, tyrosine, and tryptophan
biosynthesis 3 0 3 Up 0.00163 0.002784

Glycine, serine, and threonine metabolism 13 4 7 Up 0.00343 0.005408

Lysine degradation 7 5 1 Down 0.07318 0.093761

Histidine metabolism 9 2 3 Up 0.143679 0.163634

Tyrosine metabolism 7 2 4 Up 0.214087 0.230988

Tryptophan metabolism 4 1 2 Up 0.377303 0.386735

D-Glutamine and D-glutamate
metabolism 3 0 3 Up 2.00 × 10−6 2.05 × 10−5 Metabolism of

other amino acids

Taurine and hypotaurine metabolism 7 1 5 Up 0.001137 0.002118

beta-Alanine metabolism 9 4 2 Down 0.113484 0.136098

Glutathione metabolism 9 4 4 Up 0.184715 0.204683

Porphyrin and chlorophyll metabolism 3 0 2 Up 2.30 × 10−5 0.0001
Metabolism of
cofactors and

vitamins

Nicotinate and nicotinamide metabolism 8 1 5 Up 0.00984 0.014408

Thiamine metabolism 8 3 4 Up 0.022741 0.031079

Vitamin B6 metabolism 3 0 1 Up 0.110406 0.136098

Pantothenate and CoA biosynthesis 8 3 3 Up 0.505619 0.505619

Because the significantly deregulated pathways involve various cellular activities, it is
becoming clear that the cortex of Mecp2−/y mice suffers from multiple aspects of abnormal
metabolism. This can be expected to considerably affect brain functioning. A detailed
discussion of these changes is provided in the following section and a graphical summary
of the deranged metabolism is presented in Figure 6.
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Figure 6. Multi-facetted metabolic derangements in the Mecp2-deficient mouse cortex. The central
biochemical pathways that have been identified to be significantly altered by our unsupervised
metabolomics analysis are outlined. Green font indicates upregulation, and red the downregulation
and disturbance (A). It can be assumed that the entity of affected metabolites contributes to the
characteristic features of RTT, which have been characterized in detail in numerous earlier studies.
For example, this may include provoking a cellular redox imbalance with pro-oxidant conditions,
facilitating conditions that limit synaptic function and network plasticity, and promoting an energy
wasting status (B).

4. Discussion

Our data convincingly indicates distinctive and significant differences between the
metabolomes of the Mecp2−/y and WT mouse cortex. These differences were identified in
mice kept under identical conditions and receiving an identical diet. As far as we know,
this is the first study of its kind to specifically focus on whole-metabolome differences
among the brain tissue of a RTT mouse model and WT mice. Previous studies of brain
metabolite alterations in postmortem patient tissue samples or of Mecp2-mutant mice
were ad hoc and targeted to a specific group of molecules, mainly neurotransmitters and
their breakdown products (see below). Only one untargeted metabolome study has been
conducted to date, focusing on the blood plasma of RTT patients and control subjects [37].
It must be considered that we studied the most severe conditions arising in the adult male,
hemizygous Mecp2−/y mouse model. Whether the X-chromosomal mosaicism present in
female heterozygous mice may be associated with less pronounced metabolic derangements
remains to the clarified.

RTT is a neurodevelopmental disorder, caused by mutations of the transcriptional
modulator MeCP2 [3], and available data confirms its association with changes in the
expression of myriad genes (e.g., [47,48]). One of the major challenges not only for RTT, but
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also for other neuropathologies, is to determine which of these changes contribute causally
to the pathological conditions, which are compensatory, and which are non-contributory.
We discuss our findings and other available information within this context.

4.1. Carbohydrate Metabolism

Considering the changes observed in glycolysis, we suggest that glucose metabolism
is intensified in the cortex of Mepc2−/y mice because the first two components of glycolysis,
namely glucose and glucose-6-phosphate, are elevated in this brain region. In addition,
levels of fructose 1,6-bisphosphate, glyceraldehyde 3-phosphate, and pyruvic acid were
significantly increased. In view of an intensified glycolytic rate, an augmented glucose
uptake into the brain can also be assumed. This may explain our earlier findings on the
upregulation of the glucose transporter SLC2A4 [12] and the lowered blood glucose level in
Mecp2−/y mice [13], which is also evident as a trend in the current cohort of mice (Table 1).

Moreover, the pentose phosphate pathway is upregulated in the Mecp2−/y cortex
(Table 3). This pathway is a source of nicotinamide adenine dinucleotide phosphate
(NADPH), which is then fed into reductive biosynthesis reactions and contributes to
cellular redox homeostasis. Therefore, its upregulation may be considered compensatory
in providing the oxidatively stressed cortex with proper amounts of reducing equivalents.

It was recently shown that erythritol, a reduced form of the monosaccharide ery-
throse, and which, in its phosphorylated form, is an intermediate of the reductive pentose-
phosphate pathway, may be formed endogenously from glucose via the pentose phosphate
pathway [49]. The level of erythritol is increased in the Mecp2−/y mouse cortex, which
may be a consequence of the intensified carbohydrate metabolism. Interestingly, increased
erythritol contents have also been detected in the brains of mentally ill patients [50]. Be-
cause severe cognitive impairment is among the characteristics of RTT, the relevance of the
increased erythritol level should be clarified by further research.

Within the tricarboxylic acid (TCA) cycle, seven metabolites are upregulated in
Mecp2−/y cortex. Five of these, namely, succinic acid, L-malic acid, alpha-ketoglutaric
acid, citric acid, and thiamine pyrophosphate, a cofactor in the pyruvate decarboxylation
reaction by the pyruvate dehydrogenase complex, are substantially increased (Table 3).
This clearly confirms the dysregulation of this pathway in the Mecp2−/y mouse cortex.

To the best of our knowledge, our metabolomics data is the first direct evidence for
changes in the TCA cycle in the Mecp2−/y brain. The TCA cycle is clearly among the most
severely affected central pathways with seven identified and upregulated metabolites.
In patients with RTT, the cerebrospinal fluid (CSF) was analyzed for lactate, pyruvate,
and citric acid cycle intermediates [10]. Of the citric acid cycle metabolites, only alpha-
ketoglutarate and malate were significantly elevated in these patients compared to controls.
Because the CSF metabolome is a reflection of the brain metabolome, this report also
indicates indirectly increased brain tissue levels of citric acid cycle metabolites.

The TCA cycle is of central importance for various downstream biochemical pathways.
One of its main functions is to release energy through the oxidation of acetyl-CoA derived
from carbohydrates, fats, and proteins, and to provide NADH / FADH2 for mitochondrial
respiration. Accordingly, the TCA cycle is tightly regulated, and ATP acts as an allosteric
inhibitor of pyruvate dehydrogenase and isocitrate dehydrogenase. It is well known that
high demands for ATP increase the ADP/ATP ratio and AMP levels, thereby stimulating
the regulatory enzymes of the TCA cycle (reviewed in [51]). Therefore, we cannot exclude
the possibility that the observed increase in the TCA cycle metabolites is the result of an
abnormal regulation of the cycle itself, and a compensatory attempt of the Mecp2-deficient
organism. Increased activity of the TCA-enhanced glycolytic activity would increase the
total amount of energy provided, while at the same time increasing the availability of
reduced NADH to be fed into, e.g., the mitochondrial respiratory chain.

Recent research indicates an additional, new role of TCA cycle intermediates in signal-
ing molecules controlling chromatin modifications, DNA methylation, hypoxic responses,
and immunity (reviewed in [51]). Succinate stabilizes the transcription factor hypoxia-
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inducible factor (HIF)-1α in specific tumors and activated macrophages, stimulates den-
dritic cells via its receptor succinate receptor 1, and modifies proteins post-translationally
(reviewed in [52]). Whether such extended succinate-mediated signaling also applies to
Mecp2-deficient brains remains to be clarified, but it may shed light on our previous reports
about modified hypoxic responses and brain-wide increased HIF-1α expression levels in
Mecp2−/y mice [53,54].

4.2. General Energy Metabolism

The levels of ADP, AMP, and orthophosphate were dramatically increased in the
cortex of Mecp2−/y mice. Neurons account for most (∼80–90%) of the energy demand
of the brain [55]. Therefore, these differences can be expected to reflect changes mostly
in neuronal energy metabolism. Neuronal activity requires highly intense expenditure
and resupply of metabolic energy. ADP is a well-known effector of oxidative phospho-
rylation and is considered to be a proximal signal that coordinates metabolic responses
to high energy demand [56]. AMP is considered an activator of glycolysis (see above).
It facilitates the activation of 5′-AMP-dependent protein kinase (AMPK), which rapidly
triggers the activation of 6-phosphofructo-1-kinase—the master regulator of the glycolytic
pathway [57]. Thus, the detected increases in ADP and AMP may partially explain the
intensified glycolysis and TCA cycle in the Mecp2−/y cortex.

Mitochondrial electron transport chain (ETC) activity cannot be rated in detail by
metabolomics. This requires high resolution respirometric approaches [58]. Nevertheless,
in view of the increased substrate levels, our pathway analyses identified the oxidative
phosphorylation as upregulated (Table 3). The intensified TCA cycle and glycolysis translo-
cate more substrates into the mitochondrial ETC (Figure 6A). This could be a means of
compensating for the mitochondrial impairments and the inefficient mitochondrial respi-
ration detected in RTT [21–24]. Moreover, the increased substrate levels themselves may
provoke a dysregulation of the mitochondrial ETC. In support of these assumptions, in-
creased energy expenditure and intensified ATP turnover were brought to light in neonatal
hippocampal Mecp2−/y neurons [59], and a mitochondrial energy-wasting status has been
proposed for RTT [60]. This may explain why decreased ATP levels were found in full
brain-analyses on male and female Mecp2-mutant mice [21,61]. However, focusing on adult
Mecp2−/y hippocampus, we did not observe decreased ATP levels in that specific brain
region [53]. This emphasizes the need for more thorough region-specific studies of brain
energetics in Mecp2-mutant mice. Only then can the full picture be obtained.

4.3. Amino Acid Metabolism

Amino acid metabolism is one of the most severely affected features in the Mecp2−/y

mouse cortex, the majority of amino acids showing clearly increased levels compared to
WT (Figure 4). To date, information on altered amino acid levels in RTT is scarce. In a
single case report on postmortem brain tissue, a tendency of lowered levels of several
amino acids was found in pallidum, putamen, caudatum, white matter, and thalamus [62].
However, these concomitant changes could not be observed in CSF [62]. A more recent
study revealed in RTT patient-derived blood samples clear changes in amino acid levels,
with an increase or trending increase in aspartate, glutamate, cysteine, glycine, and serine,
and a decrease or trending decrease in arginine, histidine, and phenylalanine [37]. In
contrast, an RTT mouse study on full brain extracts yielded only slight changes in amino
acid levels (glutamine increased, GABA trend to decrease). This is perhaps due to the fact
that this magnetic resonance spectroscopy analysis has only quantified a few metabolites,
and the use of full brain extracts may have masked brain-region specific details [17].

In our study on the mouse cortex, the vast majority of amino acids were detected at in-
creased levels. Hence, the often-stated condition of chronic undernutrition in RTT, which is
also evident from the notably reduced body weights of the Mecp2−/y mice (Table 1), cannot
account for these changes. Thirteen of the 20 proteinogenic amino acids (L-alanine, L-
glutamic acid, L-leucine, L-isoleucine, L-lysine, L-methionine, L-phenylalanine, L-proline,
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L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine) showed significantly ele-
vated concentrations in the Mecp2−/y cortex (see also Table 1, Figure 4). A metabolomics
study of RTT patient’s plasma revealed significant changes in four proteinogenic amino
acids: aspartate and glutamate were upregulated, whereas arginine and histidine were
downregulated [37]. In our study, only one of the four, L-glutamic acid, was detected as be-
ing significantly upregulated. The remaining three did not differ, which may be due to the
different species (human vs. mouse) and specimen sources (cortex vs. blood plasma) of the
studied metabolomes. The observed differences emphasize once more the importance of
localized, tissue specific analyses of neuropathological conditions. The distinctive increase
in more than half of proteinogenic amino acids does not only indicate an abnormal protein
synthesis, but also changes in cellular pathways linked to individual or specific groups of
amino acids. Indeed, earlier data indicates an impaired protein synthesis in various parts
of the brain, including the cortex, at early pre-symptomatic stages of RTT [63].

The group of branched amino acids (BAAs) consists of L-leucine, L-isoleucine, and
L-valine, and all three showed significant increases in concentration in the Mecp2−/y cortex.
BAAs, in addition to protein synthesis, are involved in several important brain functions
including nitrogen homeostasis and neurotransmitter cycling, and they can be utilized as
energy substrates in the TCA cycle (reviewed in [64]). Changes in BAA concentrations are
linked to neuropathological conditions. Incubation of cerebral cortex homogenates with
L-leucine elicits oxidative stress by increasing thiobarbituric acid-reactive substances [65].
Exposure of cultured cortical astrocytes to BAAs alters cell morphology and cytoskeletal
organization [66]. Accordingly, elevated BAA levels may contribute to the oxidative stress
in RTT and to the intensified TCA cycle indicated by our data.

The list of deregulated amino acids also contains the non-proteinogenic amino acid
L-homocysteine, which is considerably decreased in the Mecp2−/y cortex. L-homocysteine is
a sulfur-containing amino acid. It derives from S-adenosylmethionine, an important source
of methyl groups in methylation reactions, such as DNA methylation or catecholamine
synthesis (reviewed in [67]). L-homocysteine is formed in the metabolism of methionine,
which is upregulated in the Mecp2−/y cortex (see above). Accordingly, L-homocysteine
should then also be upregulated. Yet, the opposite is true, which suggests other regulation
pathways dampen its levels. Accordingly, this may result in a less pronounced methylation
of target molecules. A potential cause may be the oxidative burden in RTT, which would
force the oxidation of L-homocysteine. In keeping with the suspected sulfhydryl oxidation,
L-cystin was increased in the Mecp2−/y cortex (Table 2).

The mechanistic cause of RTT is the functional disruption of MeCP2, which also
acts as a transcriptional repressor (reviewed in [68]) by binding to methylated CA sites
within long genes. Accordingly, in neurons lacking MeCP2, a decreased expression of long
genes attenuates the RTT-associated cellular deficits [69]. These long genes represent a
population of genes that are crucial for neuronal function and are expressed selectively in
the brain [69]. It is intriguing to suggest that a decreased potency of DNA methylation, due
to downregulated L-homocysteine, may be an attempt of Mecp2-deficient cells to balance
to some extent unoccupied methylated DNA binding sites.

4.4. Dipeptides

The levels of 13 dipeptides differed significantly among the Mecp2−/y and WT cor-
tex. These include L-glutamyl-L-glutamine, gamma-glutamyl-tyrosine, phenylalanyl-L-
glutamic acid, cysteinyl-glycine, L-valyl-glycine, gamma-glutamyl-leucine, L-tryptophyl-
L-glutamic acid, L-tyrosyl-glycine, L-tyrosyl-L-glutamine, L-prolyl-L-threonine, gamma-
glutamyl-tryptophan, L-valyl-L-alanine, and phenylalanyl-L-threonine. The levels of five
dipeptides (L-glutamyl-L-glutamine, gamma-glutamyl-tyrosine, cysteinyl-glycine, gamma-
glutamyl-leucine, and gamma-glutamyl-tryptophan) were decreased and four of these are
glutamate-containing peptides. The physiological functions of most of these differentially
regulated dipeptides are characterized.
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Gamma-glutamyl leucine levels are significantly decreased in the plasma of
patients with major depressive disorder [70]. It was suggested that the low levels of
gamma-glutamyl leucine reflect low glutathione turnover, which is the main protective
cellular antioxidant and plays a pivotal role in oxidant/antioxidant balance [71,72].
Indeed, the cellular redox balance is seriously disrupted in the brain of RTT mice and
patients [12,22,24,26,73,74].

Cysteinyl-glycine is supplied by astrocytes for the neuronal synthesis of glutathione [75].
Thus, the decreased level of this dipeptide may contribute to decreased glutathione syn-
thesis and disrupt antioxidant capacity in the Mecp2−/y mouse cortex. Interestingly, of all
the compounds identified in the Mecp2−/y cortex, cysteinyl-glycine is the most severely
downregulated metabolite (log2 fold change of −4.03).

Histidine-containing dipeptides mediate cellular protection by detoxifying reactive
carbonyls, which arise from oxidant-mediated tissue damage, in particular, the oxidation of
sugars and polyunsaturated fatty acids (see [76]). In our study, histidine-dipeptides were
not among the uniquely identified metabolites. However, one of the markedly decreased
features in the Mecp2−/y cortex was annotated to three different reference compounds (L-
carnosine, L-histidylalanine, and L-alanyl-L-histidine; see Supplemental Matrials Table S1),
all of which are histidine-containing peptides capable of detoxifying carbonyls. Hence, the
oxidative burden in RTT is likely to diminish each of these peptides.

4.5. Urea

This metabolite is clearly increased in the cortex of Mecp2−/y mice, and urea cycle
disorders are associated with cognitive and motor deficits [77]. Urea is formed in the
urea cycle by arginase mediated cleavage of arginine. The urea cycle activity is primarily
localized in the liver, but also occurs in other cell types. In the brain, a partial urea cycle
appears to function mainly to degrade the two amino acids citrulline and arginine [78].
Of the various urea cycle components, we identified the metabolites ornithine, citrulline,
arginosuccinate, fumarate, and arginine, but only arginosuccinate was significantly up-
regulated (Table 2). The synthesis of carbamoyl phosphate is the rate-limiting step in the
urea cycle. This specific metabolite was not detected/annotated in our analysis. From the
mechanistic perspective, liver failure should be considered as a cause of the increased urea
levels in the Mecp2−/y cortex, because Mecp2 deletion in mice also results in a fatty liver [79].
It should be mentioned, however, that urea levels did not differ in the plasma of RTT
patients and control subjects (see [37], Supplementary Materials Table S3 of this reference).

Urea levels are increased in the brains of patients with both Alzheimer´s [80] and
Huntington´s disease (HD), including those with low-level HD neuropathology [81,82],
and in the brain of a transgenic sheep model of HD [81]. RNA-Seq analysis also identified
significantly increased levels of the urea transporter SLC14A1 in the striatum of these
HD sheep [81]. The cerebral urea transporter is expressed mainly in astrocytes [83] and
mediates the facilitated diffusion of urea [84]. Therefore, the increased SLC14A1 expression
was considered a direct response to the elevated brain urea levels in HD [81].

4.6. Neurotransmitters

The neurotransmitters acetylcholine, dopamine, and serotonin are significantly down-
regulated in the cortex of Mecp2−/y mice. Furthermore, choline, which is both a precursor
and a breakdown product of acetylcholine, and methoxytyramine, a dopamine metabolite,
are decreased in the Mecp2−/y cortex. Initial studies of postmortem brains of RTT patients
indicated decreased levels of dopamine in different regions, including the cortex [85–87].
This, however, was contradicted by another study [88], which claimed normal levels of
dopamine and its metabolites in all brain regions. More recent analyses have targeted
dopamine receptors and dopamine transporters both in humans and Mecp2-deficient
mice [89]. Only marginal differences were found in the case of dopamine transporters.
D2 dopamine receptors (D2R) were reduced in the striatum of RTT patients and hem-
izygous/heterozygous Mecp2-deficient mice compared to controls. Because the cortex
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was not included in this study [89], it remains debatable whether the reduced dopamine
and methoxytyramine levels observed during our research may be linked to an altered
dopamine receptor expression.

Early studies of postmortem brains of RTT patients also indicated a downregulation
of the serotonergic system. In parallel with low levels of serotonin, a decreased amount of
the rate-limiting enzyme of its biosynthesis tryptophan hydroxylase-2 was reported [62]. A
cell-autonomous decrease in brain serotonin levels was caused by specifically eliminating
the Mecp2 gene in serotonergic neurons. This suggests that the decreased serotonin content
is not due to a Mecp2 dysfunction in other cell populations [30], and thus may contribute
directly to the onset or the progression of the disease. A more recent study showed that
fluoxetine rescues motor coordination in Mecp2 heterozygous mice through its ability
to enhance the brain serotonergic system, which suggests that drugs stabilizing 5-HT
neurotransmission may ameliorate the motor symptoms in RTT [90,91].

To the best of our knowledge, our study is the first to demonstrate a decreased level
of acetylcholine in the brain of Mecp2-mutant mice. Numerous studies have focused on the
levels of choline, expression of enzymes involved in acetylcholine metabolism, vesicular
acetylcholine transporters, and acetylcholine receptors in postmortem RTT patient tissue
or mouse models of RTT [34,92–95]. All of these indicate a downregulation of cholinergic
system functioning. Recently, Mecp2 was selectively deleted from cholinergic neurons in
mice [96], causing a selective impairment of recognition memory and profound alterations
in baseline firing of L5/6 neurons. These behavioral and electrophysiological deficits were
rescued by inhibiting ACh breakdown [96]. Together with our results, this indicates that
decreased ACh levels are not a side effect of Mecp2 disruption but actually contribute to
disease development.

Our data also indicates increased amounts of glutamate and glutamine in the Mecp2−/y

cortex. Glutamate serves various cellular functions. It is a canonical amino acid used for
protein synthesis, acts as a neurotransmitter, and is a precursor of the neurotransmitter
gamma-aminobutyric acid (GABA). Because GABA was not identified unequivocally in
our analysis, we cannot judge its differences in the Mecp2−/y cortex. Glutamate exists as free
amino acid inside cells, packed as a neurotransmitter in synaptic vesicles, or as a released
neurotransmitter in the synaptic cleft and extracellular space. In our experiments, we
detected global glutamate amounts and it is impossible to assess which particular fraction
was increased. In astrocytes, released glutamate is converted to glutamine and supplied to
neurons where it is re-converted to glutamate. Thus glutamine, together with its canonical
amino acid function, is both a precursor of glutamate and a product of its metabolism.

To date, two studies have addressed glutamate levels in Mecp2-mutant and WT
mice [17,97]. Whereas whole brain analysis did not reveal genotype-related differences
in glutamate content [17], the brain region specific analyses, which also included the
motor cortex, were more successful and detected lowered glutamate levels only in the
hippocampus of Mecp2−/y mice [97]. Because the balance between synaptic excitation and
inhibition is impaired in Mecp2-deficient mice [98,99], the increased levels of glutamate
and glutamine detected could contribute to these changes. Yet, in mouse models of RTT, the
cortical circuits are rendered hypoactive, showing a decreased excitation and an increased
inhibition [98]. Therefore, it remains to be clarified how exactly the increased glutamate
and glutamine contents contribute to these conditions.

The specific deletion of Mecp2 in a subset of GABAergic forebrain interneurons repli-
cates several typical features of RTT: Mecp2-deficient GABAergic neurons present lowered
levels of glutamic acid decarboxylase 1 and 2, and a diminished GABA immunoreactiv-
ity [100]. Based on this report, we propose that the increased cortical levels of glutamate
are not sufficient to rescue the lower GABA levels in Mepc2−/y mice.

In our metabolomic analyses, significantly decreased cAMP levels were not found
in Mecp2−/y cortex, but 5′ AMP levels were significantly increased. Hence, a partly dis-
turbed cAMP-homeostasis may be assumed, which may contribute further to the disturbed
synaptic signaling in Mecp2-deficient brains.
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4.7. Lipid Metabolism

The quaternary ammonium compound (3-carboxypropyl) trimethylammonium (bu-
tyrobetaine) is significantly decreased in the Mecp2−/y cortex. In mammals, the precursor
butyrobetaine is converted to carnitine in a reaction catalyzed by gamma-butyrobetaine
dioxygenase (reviewed in [101]). The amount of carnitine also tends to be less in the
Mecp2−/y cortex, but the difference is not statistically significant. Carnitine is essential for
the translocation of long-chain fatty acids into mitochondria for β-oxidation [101]. It was
recently proved that up to 20% of the total brain’s energy is provided by the mitochondrial
oxidation of fatty acids, which almost exclusively occurs in astrocytes (reviewed in [102]).
We therefore speculate that the decreased levels of butyrobetaine may contribute to the
energy deficiency in the Mecp2−/y cortex. Alterations of the carnitine cycle were also uncov-
ered in cardiac tissue of female Mecp2+/− mice, and were linked to an upregulated carnitine
palmitoyltransferase 1 A/B and carnitine acylcarnitine translocase [103].

The level of arachidonic acid [(5Z,8Z,11Z,14Z)-Icosatetra-5,8,11,14-enoic acid] is also
significantly increased in the Mecp2−/y mouse cortex. Arachidonic acid is a target of
free-radical catalyzed reactions, which generate isoprostanes. Therefore, isoprostanes are
considered lipid peroxidation products, and their amounts are increased in the brains of
Mecp2-null mice and in patient blood samples [26,27]. Isoprostanes are not among our
identified metabolites. Nevertheless, based on the oxidative stress in RTT, arachidonic
acid could become increasingly oxidized and more lipid peroxidation products should
also accumulate in the Mecp2−/y cortex, as was demonstrated for full brain extracts of
Mecp2-deficient mice [26]. Furthermore, as arachidonic acid is pro-inflammatory, it may
contribute to the pro-inflammatory conditions (OxInflammation) in RTT [104].

Altered cholesterol metabolism was also reported in the brain and liver of Mecp2−/y

mice and plasma cholesterol levels were increased [105]. Consistent with these findings,
our study confirms significantly increased cholesterol levels in the Mecp2−/y cortex.

4.8. Markers of Oxidative Stress

Our analyses indicate various deregulated metabolites, which reveal the impact of the
RTT-associated oxidative stress on the cortical tissue. This includes the above-mentioned
lowered levels of L-homocystein and cysteinly-glycine, and the increased contents of
L-cystin, branched amino acids, and rutin. Rutin, a flavonoid glycoside (found in e.g.,
buckwheat and apples), has a strong antioxidant property. It is metabolized by the gut
microbiome [106]. In RTT, the gut microbiome, depending on clinical severity score, has
been reported to shift towards a less diverse and pro-inflammatory composition [38,107].
This may result in an altered bioavailability of non-metabolized rutin in Mecp2−/y mice.
Another response to the oxidative stress may be the increased supply of reduced reduction
equivalents by the intensified glycolysis, pentose phosphate pathway, and TCA cycle, as
summarized graphically in Figure 6A. Moreover, L-dihydroascorbic acid, an oxidized form
of ascorbic acid, was increased in the Mecp2−/y cortex. The content of ascorbic acid itself
was not affected. Nevertheless, the accumulation of its oxidized form in the Mecp2−/y

cortex appears to be another consequence of the oxidative burden. In accordance with this
concept, earlier analyses of postmortem brain tissue of an RTT patient detected a reduced
ascorbic acid content in various parts of the brain, including the cortex [108].

4.9. Concluding Remarks

Our unsupervised metabolomic analyses identified a multitude of affected metabolites
in the cortex of Mecp2−/y mice. This clearly confirms that RTT involves a highly complex
and critical metabolic component that markedly affects several of the most central metabolic
pathways. Accordingly, these central pathways—in particular carbohydrate and amino
acid metabolism—should be considered when evaluating therapeutic approaches in RTT
and/or when developing further treatment concepts. The complex metabolic distortions
are clearly not restricted to the cortex but bear a systemic relevance. Thus, the intriguing
question arises regarding the extent to which the remaining brain regions and peripheral
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organs may be affected. Due to the low quantities of tissue required, metabolomics can
be extended to other brain regions or organs of individual mice. However, an integrated
response of the particular tissue is obtained, which contains the metabolic signatures of
all cell types present. This also applies to the cortex studied here, which is a complex
and highly specialized brain region. Accordingly, cell-type or even neuronal-subtype-
specific metabolic alterations cannot be identified, even though this information would be
of tremendous interest for a more comprehensive understanding of RTT pathogenesis.

Nevertheless, metabolomics does provide a multitude of valuable details on the pheno-
typic conditions at the specific time point at which a tissue is collected. Here, we present a
pilot study on the Mecp2−/y mouse cortex during which a total of 283 metabolites were suc-
cessfully identified. In addition, as indicated by the volcano plots and heatmaps, there are
a large number of highly discriminant features present in the WT and Mecp2−/y cortex that
remain to be identified. Accordingly, with the further development of metabolomics and
the constantly growing capacity of reference databases, even more detailed metabolomic
fingerprints can be expected in future studies. The remaining challenge will then be to iden-
tify those few metabolites that uniquely characterize RTT from the multiple deregulated
metabolites, several of which are involved in a spectrum of pathological conditions. In a
clinical application, this may specify the detailed conditions of individual patients, which is
of ultimate relevance regarding the design and evaluation of personalized therapy options.
The field of metabolomics will also become indispensable for the further deciphering of
pathogenic details and the characterization of the different severities, disease stages, and
variants of RTT.
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