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Abstract: As tumor mutational burden (TMB) has been approved as a predictive biomarker for
immune checkpoint inhibitors (ICIs), next-generation sequencing (NGS) TMB panels are being
increasingly used clinically. However, only a few of them have been validated in clinical trials
or authorized by administration. The harmonization and standardization of TMB panels are thus
essential for clinical implementation. In this review, preanalytic, sequencing, bioinformatics and
interpretative factors are summarized to provide a comprehensive picture of how the different factors
affect the estimation of panel-based TMB. Among the factors, poor DNA quality, improper formalin
fixation and residual germline variants after filtration may overestimate TMB, while low tumor purity
may decrease the sensitivity of the TMB panel. In addition, a small panel size leads to more variability
when comparing with true TMB values detected by whole-exome sequencing (WES). A panel covering
a genomic region of more than 1Mb is more stable for harmonization and standardization. Because
the TMB estimate reflects the sum of effects from multiple factors, deliberation based on laboratory
and specimen quality, as well as clinical information, is essential for decision making.

Keywords: tumor mutational burden (TMB); next-generation sequencing (NGS); harmonization

1. Introduction

Along with the investigation of immune checkpoint inhibitors (ICIs), tumor mutational
burden (TMB) has been developed to be a predictive biomarker in recent years. By definition,
TMB refers to the total load of somatic mutations in tumor cells. As somatic mutations
may cause specific tumor neoantigens, patients with a high TMB are likely to be responsive
to immunotherapy [1–4]. A high TMB was first noted to be associated with the treatment
response of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors in melanoma [5,6].
In the following years, TMB was employed in many clinical trials of anti-programmed cell
death protein 1 (PD-1)/programmed cell death protein-ligand 1 (PD-L1) agents to treat various
cancer types. Patients with a higher TMB tended to exhibit a better treatment response, but
the testing methods and cutoffs of TMB varied across trials [3,7–14].

Several sequencing methods and multi-gene panels have been established to test
TMB in academic, medical and diagnostic laboratories. Originally, the gold standard to
calculate TMB was whole-exome sequencing (WES), where the total number of somatic
mutations was calculated and reported. However, this is less feasible in most clinical
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settings because of its labor intensiveness and high cost, the lengthy turnaround time and
the lack of computational or bioinformatics specialists. Panel-based TMB assays were
thus developed by many laboratories and diagnostic companies. Generally, a TMB panel
includes several hundreds of genes, and the somatic mutation load in tumors is estimated
using specified bioinformatics algorithms. However, as the design varies across panels
from gene selection to bioinformatics algorithms, no universal cutoff defines a high TMB
status. The variation between TMB estimates can confuse clinicians and may hinder clinical
decision making. Further harmonization and standardization are mandatory for the clinical
implementation of panel-based TMB assays.

The standard is still unclear and sometimes confusing, although several TMB panels
have been approved or cleared by the U.S. Food and Drug Administration (FDA). In the
KEYNOTE-158 study, TMB was defined as a predictive biomarker, and a cutoff of 10 muta-
tions per megabase (muts/Mb) to define a high TMB was proposed and further approved
by the FDA as a tumor agnostic indication for the prescription of pembrolizumab [9,15]. A
commercial laboratory-based panel, FoundationOne (F1) CDx (Foundation Medicine Inc.),
was simultaneously approved as the companion diagnostic test for this indication. In addi-
tion, the Memorial Sloan Kettering Cancer Center (MSKCC) also developed an in-house
cancer genomic profiling assay, MSK-IMPACT (Integrated Mutation Profiling of Actionable
Cancer Targets), which was cleared through the FDA 510(k) review in 2017 [16,17]. In
the following years, several other next-generation sequencing (NGS) panels also obtained
approval from the FDA. However, it is difficult to harmonize the inter-panel variation between
NGS panels, regardless of whether they have regulatory authorization or clinical validation
data from trials. The present review aims to provide a comprehensive picture regarding
the factors that affect the standardization and harmonization between panel-based TMB so
that clinicians, pathologists and laboratory scientists can have a better understanding when
interpreting TMB results and manage inter-panel variations when making treatment decisions.

2. Harmonization and Standardization of Panel-Based TMB

As the harmonization and standardization of TMB are considered to be critical and
essential for clinical implementation, international collaboration was initiated in 2018. Two
nonprofit organizations—Friends of Cancer Research (FoCR), based in Washington, DC,
and Quality Assurance Initiative Pathology (QuIP), based in Berlin, Germany—formed
research consortia to involve laboratories and stakeholders from different domains, such
as diagnostic companies, academic or medical institutions, pharmaceutical companies
and regulatory administrations or government-funded institutions [18]. They planned
to execute a series of research projects (FoCR harmonization study) so that a strategy for
the harmonization and standardization of panel-based TMB could be proposed. Various
factors at different steps of the testing process were investigated in different phases of
the FoCR harmonization study (Table 1). The factors involved at different steps that may
affect TMB estimates are summarized in Table 2. According to the results, the FoCR
harmonization study indicated that panel-based tissue TMB estimates are comparable with
WES TMB [19,20].

Table 1. Design and purposes of FoCR harmonization study.

FoCR Study Design Purpose

Phase I [19] In silico analysis using TCGA data
Validate bioinformatics algorithms.
Standardize panel-based TMB estimates by
comparing reference WES TMB value.

Phase II [20] Analysis using clinical samples (FFPE tissue) Evaluate variation between TMB panels.

Phase III * Retrospective analysis of clinical samples with ICI
treatment response Validate cutoffs of TMB for clinical application.

* No data are published.
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Table 2. Factors affecting TMB estimates.

Testing Process Factors Affecting TMB Results Effects on TMB Estimation

Sample collection and DNA
extraction

• Specimen type

� Blood
� Plasma
� Tissue

• Tumor fraction
• Specimen quality and quantity

� Fixation and storage
� DNA library concentration

• No available harmonization scheme
between specimen types

• Low tumor fraction may lead to
underestimation of TMB [21]

• Formalin fixation-induced deamination
may cause overestimation of TMB [22]

• Low DNA library concentration may
overestimate TMB [23]

Sequencing

• Sequencing gene list
• Panel size
• Sequencing depth

• Small panel size (<1 Mb) leads to greater
variability in TMB estimates [24]

• Reduced sequencing depth may lower the
sensitivity of the TMB panel [25]

Bioinformatics algorithm

• Variant calling and filtering

� Somatic variants
� Germline variants

• Correlation with WES TMB

• No filtration of cancer hotspot mutations
causes overestimation of TMB [20]

• Residual germline variants after filtration
cause overestimation of TMB [20,26]

Interpretation and reporting

• Cutoff setting

� Universal cutoffs?
� Cancer type specific?
� Adjustment by race?

• Clinical information

• A universal cutoff for high TMB does not
predict similar treatment response [27]

• Specific cutoffs for given cancer types may
better predict treatment response [28]

• Overestimation of TMB noted in Asian and
African American individuals when using
certain panels or algorithms [20,26]

• Some anti-cancer drugs, such as
temozolomide, or radiation, cause
hypermutation of tumor cells and thus
increase TMB [29]

2.1. Preanalytic Factors (Sample and DNA Issues)

Several preanalytic factors may influence the TMB estimation, primarily associated
with DNA quality. Poor DNA quality, whether resulting from specimen handling, process-
ing or archiving, is known to cause more false-positive calls of somatic mutations, which
often feature a low allele frequency [30]. These false-positive mutations inappropriately
increase the TMB estimates. Quy et al. noted that patients with high TMB estimates from
specimens with a low DNA library concentration show no to less treatment benefits from
anti-PD-L1 antibodies compared to the high concentration group [23]. While a low library
concentration reflects poor DNA quality, the high TMB status determined by testing such spec-
imens was more likely to be misclassified. In this study, significant increases in false-positive
variant calls were also observed in formalin-fixed paraffin-embedded (FFPE) tissue specimens
compared to frozen-fixed fresh tissue, a phenomenon that suggests that formalin potentially
damages DNA tissue, especially with improper fixation [22]. Formalin-fixation-induced
deamination is one of the preanalytic factors that leads to the overestimation of TMB.
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Tumor fraction and input DNA quantity both affect the sensitivity of TMB testing,
though their impacts vary in degrees between cancer types and panels. Some cancer
types are known to have a higher TMB, such as NSCLC and melanoma, while others
mostly express a low TMB. Generally, a low tumor fraction may cause missed calls of
tumor somatic mutation and, thus, underestimation of TMB. However, panel-specific
bioinformatics algorithms may partially compensate for these effects, and an acceptance
criterion of tumor fraction has been verified in some TMB panels. The effects of a low
tumor fraction and DNA input can be minimized through routine measures of laboratory
quality assurance/quality control (QA/QC).

Although the clinical utility of blood TMB (bTMB) has been increasingly recognized
and emphasized, it remains debatable whether bTMB can be harmonized with tissue-based
TMB (tTMB) either in its value or clinical interpretation [31–33]. On a biological basis, bTMB
is dynamic, and its value can be significantly influenced by the amount of circulating tumor
DNA (ctDNA) shed from the primary or metastatic tumor to the blood [34,35]. The amount
of ctDNA and even the mutation variants can change continuously with the different clinical
conditions of a patient, such as the early stage, post-surgical intervention, treatment-naïve
advanced disease or under chemotherapy, while the variability in tTMB mostly results
from intra- or inter-tumoral heterogeneity [32]. In addition, considering the differences
between variants and their profiles detected in tissue and blood samples, the algorithm for
variant calling and TMB calculation is designed differently [32,33]. For example, mutations
detected from clonal hematopoiesis rather than cdDNA should be further filtered out from
bTMB estimation [36]. Therefore, although bTMB may dynamically reflect the response
to ICI treatment and prognosis [37–39], it is still difficult to harmonize bTMB with tTMB
detected by either WES or panels, especially when lacking paired tumor tissue and blood
samples obtained simultaneously. Blood TMB is also outside of the scope of the FoCR
harmonization study. Further investigation is needed for a better understanding of the
potential of bTMB as a predictive biomarker and its correlation with tTMB.

2.2. Sequencing Factors

Gene coverage and panel size are key factors affecting the performance of a TMB panel.
Genes selected in TMB panels, together with their bioinformatics algorithm, primarily
determine the accuracy and variability in TMB estimates [40]. As the genes selected in
a panel are mostly cancer-related, their distribution and coverage in the genome are not
randomly or evenly distributed. In addition, the prevalence of cancer gene mutations is also
different across cancer types. Therefore, gene selection may cause internal bias for panel-
based TMB estimates, which requires further calibration by the bioinformatics algorithm.
Generally, the combination of gene selection and bioinformatics has been optimized in most
laboratories and assays, and it has demonstrated comparability with WES TMB. However,
the phase II FoCR harmonization study observed a tendency toward the overestimation of
TMB when known pathogenic cancer genes were not excluded from the estimation [20].
Panel size was also critical to determine the variability in a TMB assay. Several studies
indicate that smaller panels (<1 Mb) exhibit significant variability when correlating with
WES TMB calculation [24,41–43].

Special considerations regarding the sequencing quality or performance of given genes
have been applied when designing and constructing a panel-based TMB. Certain genes
or coding regions are excluded from TMB calculation because the sequencing results of
such genes are frequently unreliable due to some technical gaps. For example, the sequence
of central exons was found to be highly repetitive and variable in some mucin genes,
e.g., MUC2 and MUC6 [44]. As the sequence has not been completely resolved, mutation
variants are not defined or counted for TMB estimation.

Sequencing depth is a major difference between panel-based TMB and WES TMB. In
comparison with WES, a TMB panel can have increased sequencing depth. More variants
with a low allele frequency can be detected than in WES, which should also be taken into
consideration when developing a bioinformatics algorithm; otherwise, this could lead to a
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potential overestimation. In contrast, TMB can be underestimated when using sequencing
methods with a low depth, such as whole-genome sequencing, as some somatic mutations
may fail to be detected. Special considerations are necessary to construct bioinformatics
algorithms so that the TMB estimates can be calibrated if possible. Therefore, sequencing
depth is considered an important QC metric. The sensitivity may be reduced if the depth
does not meet the QC requirement with proper bioinformatics pipelines deployed [25].

2.3. Bioinformatics Factors

The initial clinical investigation of TMB was to calculate the sum of somatic mutations
detected by WES. Several calculation strategies based on the inclusion types of mutations
have been developed in different studies. Although attempts to include all somatic muta-
tion types (e.g., synonymous, non-synonymous single-nucleotide variations (SNVs) and
small insertions and deletions (indel)) for TMB calculations have been reported in several
studies [14,45–48], the calculation that includes missense (non-synonymous) mutations
only has been the mainstay approach for WES TMB [26]. Chang et al. investigated the
impacts of the two calculation strategies above on the TMB value using CheckMate 026
data and found a perfect correlation between “all mutation types” and “missense mutation
only” (Spearman’s rho = 0.99), but the former calculation exhibited 3.1-fold higher TMB
values compared to the latter (median TMB: 540 muts for all mutation types while 170 muts
for missense mutation only) [26]. As TMB panels only detect hundreds of genes (approxi-
mately accounting for 0.5–2 megabase of the genome across panels), various computational
approaches have been optimized across laboratories or commercialized panels for a better
correlation between panel-based TMB and WES TMB [43].

The core steps of the panel-based TMB calculation are shown in Figure 1. First, the
step of variant calling and annotation defines true variants based on quality metrics and
annotates variant types included for TMB estimation, as well as the genetic information
needed for further analysis. In the second step, germline mutations and single-nucleotide
polymorphisms (SNPs) are filtered and excluded from TMB calculation. Then, algorithmic
adjustment is deployed to correct the bias caused by cancer hotspot mutations, as their high
frequency and cancer-type specificity can cause significant deviations in the TMB estimates
and lead to a poor correlation with WES TMB. Finally, a regression model is developed
and trained by a set of cases with known WES TMB values, and then it is validated using
another set.

Figure 1. The bioinformatics algorithm of panel-based TMB calculation.
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To achieve a better correlation with WES TMB, many TMB panels have been developed
that use bioinformatics approaches that are different from those in WES in terms of variant
calling and filtering. For example, in many WES TMB calculations, only non-synonymous
mutations are counted. However, both synonymous and non-synonymous mutations are
included for bioinformatics computation in some panels, as this approach is believed to
increase the sampling of variants in the limited gene list of panels and, thus, is probably
better able to represent the overall mutational load across the genome. Although this
approach only showed a minimal effect on the correlation between WES TMB based on
the FoCR harmonization studies, the data also exhibited reduced inter-panel variability
when calculating both synonymous and non-synonymous mutations. The FoCR harmo-
nization study also evaluated the effects of the approach when excluding known somatic
pathogenic variants and found that TMB would be overestimated without the filtration of
known pathogenic mutation variants [19,20]. The inclusion strategies of mutation types
among participating laboratories and panels in the phase II FoCR harmonization study are
summarized in Table 2.

In addition to somatic mutations, germline variant filtering is critical to estimate
TMB. Ideally, all germline variants, including both single-nucleotide pleomorphisms (SNPs,
≥1% of population allele frequency) and mutations (<1% population allele frequency),
should be excluded from TMB calculation; otherwise, the TMB value will be overestimated.
The perfect filtering-out procedure requires a matching normal specimen from the same
patient [49]. However, the acquisition of matching normal tissue is not very feasible in clinical
scenarios because of the increased cost and potential ethical concerns regarding germline
genetic information. Many diagnostic laboratories have developed their TMB panels in the
form of tumor tissue specimens only (Table 3). Therefore, optimization of the bioinformatics
algorithm is essential to improve the performance of panel-based TMB estimation.

Table 3. Bioinformatics strategies in TMB panels.

Laboratories/Panels Mutation Type Included Known Pathogenic
Variant Removal

Germline Variant Removal
Approach

ACTOnco+ Non-synonymous + synonymous Yes Algorithm-based
AZ650 Non-synonymous + synonymous No Matching normal tissue

OncoPanel v3.1 Non-synonymous only No Algorithm-based
SureSelectXT Non-synonymous only No Algorithm-based

FoundationOne CDx Non-synonymous + synonymous Yes Algorithm-based
TruSight Oncology (TSO500) Non-synonymous + synonymous Yes Algorithm-based

JHOP2 Non-synonymous + synonymous Yes Algorithm-based
MSK-IMPACT Non-synonymous only No Matching normal tissue

NeoTYPE Discovery Profile
for Solid Tumors Non-synonymous + synonymous No Algorithm-based

Ion AmpliSeq Comprehensive
Cancer Panel Non-synonymous only No Algorithm-based

PGDx elio tissue complete Non-synonymous + synonymous Yes Algorithm-based
QIAseq TMB panel Non-synonymous only No Algorithm-based

Oncomine Comprehensive
Assay Plus (OCA Plus) Non-synonymous only No Algorithm-based

Oncomine Tumor Mutation
Load Assay (OTMLA) Non-synonymous only No Algorithm-based
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The population database approach is a standard protocol to filter out germline vari-
ants. The most commonly used population databases include GnomAD (the Genome
Aggregation Database), TCGA (the Cancer Genome Atlas), ExAc (Exome Aggregation Con-
sortium), 1000 Genomes and ddSNP (the Single-Nucleotide Polymorphism Database) [50].
Some laboratories have also established customized databases to optimize germline variant
filtration, as some variant annotations with minor ancestry are not obtained by the public
database. Considering the risk of TMB overestimation due to “residual” germline variants,
some laboratories have developed in-house filtering algorithms to further identify possible
germline variants that are not listed in databases. However, their performance or details are
not publicly accessible. Despite these efforts, TMB panels are prone to overestimate TMB in
comparison with WES, especially in African American and Asian populations [20,26,49].

2.4. Interpretation and Reporting

Cutoff definition is complicated in the clinical application of a TMB panel. In trials
using WES TMB, there are various cutoffs ranging from 100 to 248 mutations [3,5,8,51–53].
To date, 10 mut/Mb estimated by the F1 CDx assay has been approved by the U.S. FDA
as the tumor agnostic high-TMB cutoff, and it is widely used in clinical trials (Table 4).
However, different cutoff values provided by F1 CDx or other panels were also investigated
in clinical trials and showed statistical significance [4,12,54]. Based on the CheckMate 568
and 026 study, the cutoff of 10 mut/Mb in F1CDx can be bridged to 199 mutations in WES
TMB [7,50,55,56]. Although the FoCR harmonization study indicated that the panel-based
TMB estimates are comparable with those of WES TMB, the equivalence of 10 mut/Mb in
F1 CDx cannot be easily determined in other TMB panels. For example, the cutoff of high
TMB for the MSK-IMPACT assay was defined at 13.8 mut/Mb based on their cohort [40].
Further alignment in the numerical cutoff of TMB across panels requires calibration tools
and reference datasets or materials [20].

In addition, as the TMB level varies in distribution across cancer types [43], whether
a universal TMB cutoff works best for every cancer patient is still debatable. Studies
have indicated that different cancer types with a similar TMB estimate showed various
treatment responses, while the top 20% of TMB values in a given histology of tumors
predicted a better treatment response than those with a low TMB [27,28]. However, in some
cancer types, microsatellite instability (MSI-H) might be a confounding factor when the
clinical utility of TMB is analyzed [57,58]. The expression of other genes or biomarkers may
sometimes need to be taken into consideration when interpreting the clinical significance of
TMB [43,59]. Other patient factors, including race and treatment history, may also increase
the TMB estimate in an individual patient. Therefore, multiple factors complicate the
harmonization and standardization of TMB clinical reporting. Special consideration should
be emphasized in the report so that clinicians can make decisions on an individual level
rather than relying on a universal cutoff. This will be a more “precise” practice in the era of
precision medicine.
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Table 4. Results of important clinical trials that explored high tissue TMB as potential biomarker.

Cancer Trials/Types Treatment Method TMB Cutoff RR PFS OS

Various cancer types,
previously treated

KEYNOTE-158 [9]
Single-arm phase II Pembrolizumab F1 CDx assay =10 mut/Mb 29% 2.1 months 11.7 months

NSCLC CheckMate227 [7,55,60]
Phase III

Nivolumab plus
ipilimumab vs.
platinum-doublet
chemotherapy

F1 CDx assay =10 mut/Mb 45.3% vs. 26.9% 7.2 vs. 5.5 months (p <
0.001) NA

NSCLC Checkmate9LA [61,62]
Phase III

Nivolumab plus
ipilimumab plus
platinum-doublet
chemotherapy x 2 cycles vs.
platinum-doublet
chemotherapy

F1 CDx assay =10 mut/Mb 46 vs. 28% 8.9 vs. 4.7 months mOS:15.0 vs. 10.8 months

NSCLC Checkmate026 [8]
Phase III

Nivolumab vs.
platinum-doublet
chemotherapy

CGP by research lab
≥243 somatic
missense mutations
per sample

47 vs. 28% 9.7 vs. 5.8 months OS: no difference

NSCLC Checkmate568 [56]
Phase II

Nivolumab plus low-dose
ipilimumab F1 CDx assay =10 mut/Mb 43.8% 7.1 months NA

NSCLC BIRCH [63]
Phase II Atezolizumab F1 CDx assay =10 mut/Mb 25% versus 14% NA NA

NSCLC POPLAR [63]
Randomized phase II

atezolizumab versus
docetaxel F1 CDx assay =10 mut/Mb 20% versus 4% 7.3 versus 2.8 months 16.2 versus 8.3 months

NSCLC MYSTIC [64]

Durvalumab versus
Durvalumab plus
tremelimumab
vs. chemotherapy

F1 CDx assay =10 mut/Mb NA NA
18.6 versus
16.6 versus
11.9 months

UC IMvigor211 [65]
Atezolizumab
versus
chemotherapy

F1 CDx assay >9.65 mut/Mb NA NA
11.3 versus
8.3 months
HR:0.68 (0.51–0.90)

Melanoma IMspire170 [66]
Cobimetinib plus
atezolizumab
versuspembrolizumab

F1 CDx assay >10 mut/Mb NA

NR versus 3.7 months in
cobimetinib plus
atezolizumab arm
(p = 0.0004)
NR versus 3.6 months in
pembrolizumab arm (p =
0.002)

NA

Melanoma Checkmate-067 [67]

Nivolumab versus
nivolumab plus
ipilimumab
versus
ipilimumab

WES >median

Nivolumab 62.1% versus
31.5%

Nivolumab plus
ipilimumab
64.8% versus 51.0%

Ipilimumab 25.5% versus
14.3%

HR 0.45 in nivolumab arm;
HR 0.55 in nivolumab plus
ipilimumab arm; HR 0.60
in ipilimumab arm

HR 0.46 in nivolumab arm;
HR 0.53 in nivolumab plus
ipilimumab arm; HR 0.52 in
ipilimumab arm
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3. Conclusions

As the clinical utility of TMB as a predictive biomarker for ICIs has been demonstrated
in multiple cancer types, the clinical demand for TMB testing has increased in recent years.
The standardization and harmonization of various TMB panels are essential for laboratory
implementation and clinical interpretation. This article reviewed the technical aspects
that have been key to panel harmonization so that we can better understand the complex
nature and computation of TMB embedded within the powerful NGS pipeline. Although
the FoCR harmonization study has provided experience and principles to establish the
possibility of an interchangeable TMB estimate across panels, laboratory measures that
assure their testing quality are the real-world foundation to ensure that TMB is successful
for clinicians and patients universally.
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