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Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in
bone mass and increased risk of bone fracture due to the microstructural degradation.
Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of
osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM,
have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis,
and concomitant inflammation. Terpenoids can be classified in four categories by
structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this
review, we comprehensively summarize all the currently known TCM-derived terpenoids
in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all
four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
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INTRODUCTION

As a systemic skeletal disease, Osteoporosis (OP) is characterized by increased risk of bone fragility,
chronic pain, and even disability, leading to decreased life quality. Especially, OP strongly affects
postmenopausal women and elderly population. About 30-50% of women and those who are more
than 70 years old suffer from OP-induced fractures throughout their lives (1–3). In health condition,
osteoblasts (OBs, bone-forming cells) and osteoclasts (OCs, bone-resorbing cells) form a balance for
bone homeostasis. The lack of OB function or over-activated OC status will disturb the balance and
induce OP.

In recent years, there has been a growing interest in traditional Chinese medicine (TCM) for the
treatment of OP, such as Liu-Wei-Di-Huang Wan (formula), Morindae Officinalis Radix (herb),
Longspur epimedium glycoside (natural product) (4). TCM has accumulated extensive experience
for thousands of years and owns fewer adverse effects during a long-term usage comparing to some
chemically synthesized medicines (5). Chinese herbal medicines usually play their therapeutic roles
through a “multi-components, multi-targets, multi-pathway” mode, which is compatible with the
multifactorial nature of OP. Plenty of evidence suggest that targeting OCs with TCM is an efficient
strategy for the treatment of OP (6–8).
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According to the theory of TCM on the pathogenesis and
symptoms of OP, the kidney stores essence, turns it into bone
marrow, nourishes bones to strengthen the skeleton, and
promotes bone growth and repair. Therefore, ‘kidney
deficiency’ is regarded as the underlying cause of all skeletal
pathologies (9, 10). Many classic and empirical formulas of TCM
used to tonify the kidney are clinically applied in OP treatment,
TCMs like Liu Wei Di Huang Wan, Qing E Wan, Jiawei Yanghe
Decoction, Er Zhi Wan, Qiangji Jianli Yin, Zuo Gui Wan,
Rongjin Tablets, and You Gui Wan showed excellent anti-OP
efficacy through reinforcing the kidney (8). Modern
pharmacological studies have shown that these classic formulas
significantly inhibited OC formation and bone resorption, and
promoted bone formation to increase bone mineral density
(BMD) (8, 9). Moreover, many individual herbs that make up
the formulas of TCM are beneficial for bone formation since they
are bone-specific drugs for the treatment of bone fractures and
bone loss diseases (11). Rehmanniae Radix has been clinically
used for more than 3,000 years in Chinese medicine, which has
an anti-OP effect through modulating the kidney and liver
functions and improving blood circulation (12). Over 140
individual compounds have been isolated from Rehmanniae
Radix, and iridoid glycosides (a kind of monoterpenoids) are
vital for the anti-OP activity of Rehmanniae Radix (6).

Terpenoids are structurally diverse and may represent
the most diverse source of essential chemotherapeutic drugs.
They are isoprene units (C5H8)n-based nature products and are
classified into monoterpenes, sesquiterpenes, diterpenes,
triterpenes, and tetraterpenes. To date, more than 40,000
different terpenoids have been obtained in nature (13, 14).
Terpenoids are also reported to have anti-inflammatory, anti-
cancer, and neuroprotective effects, with beneficial effects on
human health. Although the treatment of OP using TCM has a
long history and natural terpenoids have been extensively studied
for their therapeutic activities against bone resorption (15), less
attention has been given to the whole series of terpenoids in the
treatment of OP. Therefore, we here summarize anti-OP
advances and molecular mechanisms of terpenoids isolated
from TCM.
NATURAL TERPENOIDS AGAINST OP

Terpenoids are classified as monoter-, sesquiter-, diter-, triter-,
and tetra-penoids according to different structures (Figures 1
and 2). Although few natural terpenoids exhibit genotoxicity or
carcinogenicity based on epigenetic mechanism, most are
beneficial to humans (15). Natural terpenoids from TCM have
been reported to regulate OBs and OCs via different signaling
pathways (concluded in Figure 3 and Table 1), such as nuclear
factor-kB (NF-kB), Wnt/b-catenin, mitogen-activated protein
kinases (MAPK), and receptor activator of nuclear factor-kB
ligand (RANKL)/receptor activator of nuclear factor-kB
(RANK). We will provide a comprehensive review of natural
terpenoids from TCM and their potential in OP therapy.
Frontiers in Endocrinology | www.frontiersin.org 2
Monoterpenoids
Sweroside, an iridoid glycoside obtained from Cornus officinalis
Sieb. et Zucc. (Shan Zhu Yu in Chinese), is commonly used in
TCM for treating OP in postmenopausal women or elderly men
(93). Emerging evidences demonstrated that sweroside increased
the proliferation and suppressed the apoptosis of human MG-63
cells and rat OBs (17). Yan et al. observed that sweroside
effectively promoted OB differentiation in bone marrow
mesenchymal stem cells (BMSCs) through hyperactivating the
mechanistic target of rapamycin complex 1 (mTORC1)/pS6
signaling pathway (19). Additionally, sweroside treatment
induced the mineralization of bone matrix via modulating the
expression of bone morphogenetic protein (BMP)-2/core
binding factor alpha 1 (CBFA1)-mediated molecules in
postmenopausal OP. Meanwhile, sweroside promoted the
mineralization of MC3T3-E1 cells by activating p38 signaling
pathway (16, 18). Swertiamarin, a structural analog of sweroside,
is a secoiridoid glycoside extracted from Enicostemma axillere
subsp. axillere (Gentianaceae) (94). It was evidenced that
swertiamarin could promote OB differentiation and exhibit
anti-inflammatory activity by regulating NF-kB/inhibitor of kB
(IkB) and Janus kinase 2 (JAK2)/signal transducer and activator
of transcription 3 (STAT3) signaling pathways. In addition,
swertiamarin treatment markedly reduced RANKL/RANK
expression and elevated osteoprotegerin (OPG) level, showing
an excellent anti-osteoclastogenic activity (20–22).

Morinda officinalis HOW (Ba Ji Tian in Chinese) has been
continuously used for more than 2,000 years in China as a tonic
to nourish the kidney, strengthen bones, and enhance immune
function in the treatment of OP (95, 96). It has been reported
that the root extracts of Morinda officinalis showed therapeutic
effect by suppressing bone resorption and enhancing bone
formation on OP rat model induced by sciatic neurectomy and
ovariectomy (97). He et al. observed that monotropein, a natural
iridoid glycoside in the root extracts of Morinda officinalis,
effectively attenuated lipopolysaccharide (LPS)- and
ovariectomy-induced bone loss, and reduced inflammatory
responses in MC3T3-E1 cells via inhibiting the activation of
NF-kB (23). Furthermore, monotropein showed anti-
osteoporotic effect by increasing bone mineral content (BMC),
BMD, bone volume fraction (BVF), and decreasing the levels of
interleukin (IL)-1, IL-6 and soluble RANKL in the serum of
ovariectomized (OVX) mice (25). Meanwhile, monotropein
treatment attenuated oxidative stress and increased the
proliferation of OBs (24, 25).

Catalpol, the major bioactive iridoid glycoside isolated from
Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. et C. A. Mey.
Root (Dihuang in Chinese), is clinically used for OP treatment in
China (6). Meng et al. showed that catapol suppressed RANKL-
induced bone resorption in bone marrow-derived macrophages
(BMMs) and RAW264.7 cells by reducing the ubiquitination of
phosphatase and tensin homolog (PTEN), which subsequently
inhibited the activations of NF-kB and protein kinase B (Akt)
(26). Other reports also proved that catalpol treatment promoted
the osteogenic ability of BMSCs and BMSC-dependent
angiogenesis, partly via activation of JAK2/STAT3 axis and
May 2022 | Volume 13 | Article 901545
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FIGURE 1 | Chemical structures of natural monoterpenoids, sesquiterpenoids and diterpenoids from TCM.
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FIGURE 2 | Chemical structures of natural triterpenes from TCM.
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Wnt/b-catenin pathway (27, 28). Furthermore, Zhao et al.
observed that catalpol could protect diabetic OP induced by
high glucose treatment in MC3T3-E1 cells through regulating
the migration and differentiation of OBs (29).

As a water-soluble monoterpene glucoside, paeoniflorin is the
major bioactive components extracted from the root of Paeonia
lactifloral Pall (98).. In antimycin A treated osteoblastic MC3T3-
E1 cells, paeoniflorin attenuated cytotoxicity via improving the
mitochondrial function. In addition, paeoniflorin also increased
the differentiation of MC3T3-E1 cells and inhibited oxidative
stress induced by methylglyoxal in the same cell model (30, 33,
98). In rats fed on high-carbohydrate/high-fat (HCHF) diet,
paeoniflorin exhibited multiple pharmacological activities to
prevent hyperlipidemia-induced OP. Intriguingly, paeoniflorin
increased the trabecular and cortical parameters, as well as width
and length of femur. Simultaneously, paeoniflorin rescued OB
Frontiers in Endocrinology | www.frontiersin.org 5
differentiation and the proliferation activities of bone turnover
markers (99). Xu et al. reported that paeoniflorin suppressed
bone destruction in collagen-induced arthritis (CIA) and
decreased OC differentiation in vitro by down-regulating the
activation of NF-kB (31). Wang et al. demonstrated that
paeoniflorin suppressed OC generation and promoted OB
formation via regulating NF-kB signaling pathway in BMMs
and OVX mice (32).

Albiflorin, a monoterpene glycoside isolated from the roots of
Paeonia lactifloral Pall., owns the ability to increase the
differentiation of osteoblastic MC3T3-E1 cells (98). Kwang et
al. found that albiflorin maintained mitochondrial function by
reducing cytochrome c loss and cardiolipin peroxidation in
MC3T3-E1 cells, which contributed to the inhibition of
antimycin A-induced oxidative stress and toxicity (34).
Another study showed that albiflorin treatment promoted the
FIGURE 3 | Schematic of anti-osteoporosis mechanisms of terpenoid on osteoblasts and osteoclasts. The activation of MAPK, PI3K/Akt, Wnt/b-catenin signaling
pathways and so on, or inhibition of NF-kB and RANKL/RANK signaling pathways, can promote cell proliferation or differentiation in osteoblasts, which benefits
osteoporosis treatment. Meanwhile, the inhibition of MAPK, NF-kB, RANKL/RANK, and NFATc1 signaling pathways, or activation of PI3K/Akt and Nrf2 signaling
pathways, also exerts potential therapeutic efficacy via regulating osteoclasts. Some terpenoids, such as andrographolide and tanshinone IIA, show anti-osteoporosis
effect by modifying multi-targets. Arrows (↓) indicate activation of a factor or positive effect on indicated cell type, while inverted T marks (⊥) indicate inhibition or
negative effect. Subclass of terpenoids is distinguished with different colors: monoterpenoids (red), sesquiterpenoids (yellow), diterpenoids (blue), and triterpenoids (green).
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TABLE 1 | Summary of studies for the antiosteoporotic effects of natural terpenoids from natural Chinese medicine.

Category Compound TCM Cells/in vivo model Mechanism Reference

Monoterpenoids Sweroside Cornus
officinalis

Human osteosarcoma cell line
(SaOS-2); OVX mice

Induced the mineralization of bone matrix via promoting BMP2/
CBFA1

(16)

Human MG-63 cells; Rat OBs Promoted differentiation and inhibited apoptosis (17)
MC3T3-E1 cells Activated p38 signaling pathway (18)
BMSCs; OVX mouse Hyperactivated the mTORC1/PS6 signaling pathway (19)

Swertiamarin Enicostema
axillare

Rat fibroblast-like synoviocytes
(FLS)

Inhibited caspase 3, TNFa, IL-6, PGE2, COX-2, iNOS, MMPs, p38
MAPKa and modulated RANKL

(20)

RAW 264.7 macrophage cells Inhibited NF-kB/IkB and JAK2/STAT3 signaling (21)
C57/BL6J BMCs; Sprague
Dawley rat neonates OBs;
Freund’s Complete Adjuvant
induced rat arthritis

Inhibited RANKL/RANK; promoted OPG signaling (22)

Monotropein Morinda
officinalis

MC3T3-E1 cell line; Female
osteoporotic C57/BL6 mice

Blocked NF-kB pathway; Enhanced bone formation and blocked
increased secretion of inflammatory cytokines

(23)

Primary OBs Prevented Akt/mTOR signaling pathway (24)
MC3T3-E1 cells; OVX C57/
BL6 mice

Inhibited sRANKL signaling (25)

Catalpol Rehmannia
glutinosa

BMMs; RAW264.7 cells;
C57BL/6 mice

Suppressed NF-kB and AKT signaling pathways (26)

BMSCs; Male Sprague-Dawley
rats

Activated Wnt/b-catenin pathway. (27)

BMSCs; SD female rats Activated JAK2/STAT3 axis (28)
MC3T3-E1 cells; Male ICR
mice

Inhibited bone resorption via the OPG/RANKL pathway; enhanced
bone formation by regulating IGF-1/PI3K/mTOR pathways

(29)

Paeoniflorin Paeonia
lactifloral

MC3T3-E1 cells Enhanced glyoxalase system and inhibited the glycation (30)
Mice BM cells; Mice OC; RAW
264.7 cells; Male DBA/1 mice;
Male C57/BL6 mice

Suppressed NF-kB signaling pathway (31)

Mouse BMMs; OVX C57BL/6
mice

Inhibited NF-kB signaling pathway (32)

Murine osteoblastic MC3T3-E1
cells

Activated PI3K signaling pathway (33)

Albiflorin MC3T3-E1 cells Suppressed oxidative damage through protecting cytochrome c
and cardiolipin

(34)

MC3T3-E1 cells; Sprague
Dawley rats femoral fractures

Activated BMP-2/Smad and Wnt/b-catenin pathway (35)

Bakuchiol Psoralea
corylifolia

Primary human OBs; OVX rats
Sprague-Dawley rats

Up-regulated the Wnt signalling pathway (36)

MCF-7 cells; OVX Sprague–
Dawley rats

Increased alkaline phosphatase, Ca concentrations, serum E2
concentration and bone mineral density, and decreased the
inorganic P level

(37)

Primary mouse OC precursor
cells; Bone marrow cells

Inhibited AKT and AP-1 pathways (38)

Sesquiterpenoid Costunolide Saussurea
lappa

Murine OB MC3T3-E1 cells Activated PI3K signaling pathway (39)
Mice BMCs Suppressed RANKL-mediated c-Fos transcriptional activity (40)

Dehydrocostus
lactone

Mice BMMs, BMSCs,
RAW264.7 cells; OVX C57BL/
6J mice

Suppressed NF-kB and NFAT signaling pathways (41)

Mice BMMs; Male C57BL/6
mice

Modulated NF‐kB signalling pathway (42)

RAW264.7 cells, Mice BMMs
(C57BL/6 male mice)

Inhibiting NF-kB and AP-1 pathways (43)

Mice BMMs; OVX C57BL/6
female mice

Down-regulated the integrin b3, PKC-b, and Atg5 expression (44)

Diterpenoids Euphorbia
factor L1

Euphorbia
lathyris

Mouse BMMs; C57BL/6 male
mice

Attenuated c-Fos expression and NF-kB activation; activated Nrf2
signaling pathway

(45)

Abietic acid Pimenta
racemosa

RAW 264.7 cell line; Mice
BMMs; C57/BL6 male mice

Inhibited NF-KB and MAPK signaling (46)

Andrographolide Andrographis
paniculata

BMSC; SD rat Activated wnt/b-catenin signaling pathway (47)
Mouse BMMs; RAW 264.7
cells; OVX C57BL/6 mice

Suppressed RANKL signaling pathways (48)

MC3T3-E1 cell; OVX Sprague
Dawley rats

Up-regulated the OPG/RANKL signaling pathway (49)

(Continued)
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TABLE 1 | Continued

Category Compound TCM Cells/in vivo model Mechanism Reference

Mouse BMSCs; OVX Sprague
Dawley rats

Inhibited the NF-kB signaling pathway (50)

Mouse BMM Cells; C57/BL6
mice

Attenuated NF-kB and ERK/MAPK signalling pathways (51)

Carnosic acid Salvia officinalis RAW 264.7 cells; Mouse
BMMs; C57BL/6 male mice

Activated the Nrf2 and suppressed the NF-kB pathways (52)

RAW 264.7 cells; Mouse
BMMs; Female C57BJ/6L
mice

Dual-targeting of sterol regulatory element-binding protein 2 and
ERRa

(53)

Crocin Crocus sativus RAW264.7 cells Regulated glyoxalase, oxidative stress, and mitochondrial function (54)
Mice BMMs; Murine
macrophage cell line;
RAW264.7 cells

Suppressed NF- B signaling pathway (55)

Kirenol Siegesbeckia
orientalis

Mouse BMMs; OVX C57BL/6
mice

Inhibited Cav-1, NFATc1 and the related NF-kB/MAPKs/c-Fos
signaling pathways

(56)

MC3T3-E1 cells Activated the BMP and Wnt/b-catenin signaling pathways (57)
Tanshinone IIA Salvia

miltiorrhiza
Human embryonic kidney
(HEK) 293 cells; C57BL/6 mice

Inhibited renin activity (58)

Mice osteoblasts; Female
Wnt1sw/sw mice

Up-regulated the NF-kB signaling pathway (55)

Tanshinone VI Mice BMMCs; RAW-264.7
cells; C57BL/6 mice

Suppresed the NF-kB, PI3-kinase/Akt, and MAPK pathways, as
well as the transcription factor NFATc1

(59)

Mice bone marrow cells; Male
ICR mice.

Inhibited the expression of c-Fos and NFATc1 (60)

OCs Inhibited RANKL expression and NFkB induction (61)
Triptolide Tripterygium

wilfordii
Male Sprague-Dawley rats Down-regulated RANKL and up-regulated OPG (62)
RAW 264.7 (mouse
macrophage)

Inhibited NF-kB activation, inhibited IkBa kinase activation, IkBa
phosphorylation, and IkBa degradation

(63)

RAW 264.7 cells; Mice
BMMCs; Female C57BL/6
mice

Inhibited PI3K-AKT-NFATc1 pathway (64)

Oridonin Rabdosia
rubescens

Mouse BMMs; MC3T3-E1
cells; Female C57BL/J6 mice
(OVX mice)

Inhibited IkB phosphorylation and Ifrd1 degradation (65)

Mouse BMSCs; Mouse BMMs;
SD rats

Activated Wnt/b-catenin signaling pathway, down-regulated
RANKL and up-regulated OPG expression in vitro

(66)

Triterpenoids Lupeol Bombax ciba UMR-106 cell; Female Wistar
albino rats

Inhibited MAPK, NF- kB, NFATc1, and c-Fos (67)

Alisol B 24-
acetate

Alismatis
rhizoma

Mast cells; Balb/c mice, ICR
mice

Released Syk-mediated down-stream signals including PLC, ERK,
and p38 MAPK, NF-kB, cPLA2, COX-2, and Ca2+,

(68)

Alisol B OBs; Bone marrow cells; ddY
mice; C57BL/6J (B6) (wild-
type) mice

Inhibit NFATc1 and c-Fos signaling pathway (69)

Alisol C 23-
acetate

Calvaria osteoblastic cell; OCs;
OVX rat

Inhibited RANKL-induced osteoclast differentiation and function (70)

Alisol A 24-
acetate

Mouse BMCs; BMMs Downregulated NFATc1 (71)

Oleanolic acid Ligustri lucidi Cell Counting Kit-8 (CCK-8);
Mouse BMMs; OVX C57BL/6
mice

Inhibited the expression of NFATc1 and suppressed the expression
of MMP9, Ctsk, TRAP and Car2

(72)

RAW264.7 cells Inhibited RANKL-induced osteoclastogenesis via ERa/miR-503/
RANK signaling pathway

(73)

Ursolic acid Ligustri lucidi Mouse osteoblastic MC3T3-E1
subclone 4 cells

Activated MAP kinases and NF-kB signaling pathway (74)

Glycyrrhizic acid Glycyrrhiza
glabra

Male Sprague–Dawley rats Inhibited the 11b-hydroxysteroid dehydrogenase type 1 enzyme
(11b-HSD1)

(7)

RAW264.7 cell; Mouse BMMs;
C57BL/6/Bkl mice (OVX
mouse)

Suppressed NF-kB, ERK, and JNK pathway (75)

RAW264.7 cells; Mouse
BMMs;OVX C57BL/6J mice

Inactivated NF-kB signaling. (76)

Male CSF1r-eGFP-KI mice and
their wild type strain C57BL/6

Diminished the size of inflammatory osteolysis via the number of
CXCR4+OCPs and TRAP+osteoclasts, decreased the senescence-

(77)

(Continued)
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generation of OBs and expression of runt-related transcription
factor 2 (RUNX2) through activating BMP-2/Smad and Wnt/b-
catenin signaling pathways (35). Meanwhile, albiflorin up-
regulated the levels of various osteogenic genes, such as
osteocalcin (OCN), osteopontin (OPN), osteonectin (OSN),
bone sialoprotein (BSP), and AP. In femur fracture rat model,
albiflorin stimulated the expression of osteogenic genes in
femoral tissue and promoted callus formation at the early stage
during fracture recovery. Additionally, albiflorin could increase
the expression of bone-related genes (35). This finding suggested
that albiflorin motivated bone calcification, osteogenesis and
bone formation, resulting in improving the fracture healing.

Bakuchiol is a prenylated phenolic monoterpene in the fruit
of Psoralea corylifolia (L.) Medik (37, 100). And Psoralea
corylifolia was used in TCM formulas to treat osteoporosis for
a long history time (101). Recent researches indicated that
Psoralea corylifolia and its major active ingredient bakuchiol
possessed anti-OP activity (100, 102). Bakuchiol treatment
significantly inhibited bone resorption and OC differentiation
via the inhibition of Akt phosphorylation and c-jun nuclear
translocation induced by macrophage colony stimulating factor
(M-CSF) plus RANKL (38). In OVX Sprague-Dawley (SD) rats,
bakuchiol treatment reduced bone loss through increasing Ca2+

and serum E2 concentrations, AP activity, and BMD, along with
reduced inorganic P level (37). Li et al. found that bakuchiol
Frontiers in Endocrinology | www.frontiersin.org 8
significantly stimulated OB proliferation and differentiation
(103). In addition, bakuchiol treatment prevented bone loss in
OVX rats induced by estrogen deficiency and induced OB
differentiation by up-regulating the Wnt signaling pathway (36).

Collectively, monoterpenoids can protect bone from erosion
via targeting different signaling pathways. In OBs, catapol,
albiflorin, and bakuchiol can activate Wnt/b-catenin signaling
pathway; paeoniflorin and sweroside stimulate PI3K/Akt and
MAPK signaling pathways respectively; swertiamarin inhibits
RANKL/RANK signaling pathway; monotropein and
swertiamarin suppress NF-kB signaling pathway. In OCs,
catapol and paeoniflorin depress NF-kB signaling pathway;
bakuchiol enhances PI3K/Akt signaling pathway.

Sesquiterpenoids
Costunolide is sesquiterpene lactones derived from Saussurea
lappa C.B. Clarke roots. A recent research showed that
costunolide markedly induced bone mineralization and
differentiation and increased cell growth, AP activity, and
collagen synthesis in osteoblastic MC3T3-E1 cells via targeting
diverse key proteins, such as estrogen receptor (ER),
phosphoinositide 3-kinase (PI3K), extracellular signal-regulated
kinase (ERK), protein kinase C (PKC), mitochondrial ATP-
sensitive K+ channel, p38, and c-Jun N-terminal kinase (JNK)
(39). Moreover, Cheon et al. observed that costunolide
TABLE 1 | Continued

Category Compound TCM Cells/in vivo model Mechanism Reference

associated secretory phenotype markers, and elevated the
senescence-protective markers

Glycyrrhetinic
Acid

Mouse BMMs; RAW264.7
cells; OVX C57BL/6 female
mice

Inhibited NF-kB and MAPK signaling pathways. (78)

Ginsenoside
Rg1

Panax ginseng Human dental pulp stem cells
(hDPSCs); BMSCs; OCs

Promoted the proliferation and differentiation of DPSCs into
odontoblast-like cells by promoted the expression of anti-
osteoporosis related genes

(79)

Betulinic Acid Betula
pubescens

Mouse BMMs; Female C57BL/
6 mice; OVX mice

Inhibited MAPK and NFATc1 signaling pathways (80)

MC3T3-E1 OBs Activated BMP/Smad/Runx2 and b-catenin signal pathways (81)
Limonin Evodia

rutaecarpa
OC-like cell model Inhibited bone resorption and reduced the number of

multinucleated cells
(82)

MC3T3-E1 cell line Promoted the p38-MAPK signaling (83)
Nomilin Citrus junos Mouse BMMs; Mouse RAW

264.7
Suppressed NFATc1 and MAPK signaling pathways (84)

Diosgenin Dioscorea
nipponica

OVX rats Decreased the RANKL/OPG ratio (85)
Dioscin Mouse BMMs cells;

RAW264.7 cells; LPS- induced
bone loss mouse

inhibiting the Akt signaling pathway (86)

MC3T3-E1 cells and MG-63
cells

Promoted osteoblasts proliferation and differentiation via Lrp5 and
ER pathway

(87)

Ophiopogonin D Ophiopogon
japonicus

OBs MC3T3-E1 cell;
RAW264.7 cells; OVX mouse

Reducted oxidative stress via the FoxO3a-b-catenin signaling
pathway

(88)

Endothelium-specific Klf3
knockout mice

Inhibited Krüppel-like factor 3 (KLF3) (89)

Cycloastragenol Astragalus
membranaceus

MC3T3-E1 cells Activated telomerase (90)

Hederagenin Hedera helix Mice BMMs; OVX mice Inhibited RANKL-induced bone resorption and OC generation,
activated MAPK signaling pathway (ERK and p38)

(91)

Tubeimoside I Bolbostemma
paniculatum

Mice BMMs; RAW 264.7 cells;
Male SD rats

Down-regulated NF-kB signaling pathway (92)
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suppressed RANKL-induced OC differentiation via suppressing
c-Fos transcriptional activity without affecting c-Fos
expression (40).

Saussurea lappa C.B. Clarke has been used in clinic for decades
as a TCM (104). Sesquiterpenes and sesquiterpene lactones are
main bioactive constituent of this herb. As a member of
sesquiterpene lactones, dehydrocostus lactone is extracted from
the roots of Saussurea lappa and has been reported to exert various
pharmacological activities including anti‐ulcer, anti‐tumor, anti‐
inflammatory, and immunomodulation (42, 105). In mouse
BMMs, dehydrocostus lactone attenuated the RANKL-dependent
OC differentiation through modulating IkB kinase (IKK), JNK,
nuclear factor of activated T cell cytoplasmic 1 (NFATc1), and
nuclear factor-erythroid 2-related factor 2 (Nrf2). Moreover, it
suppressed the activation of OCs through down-regulating the
expression of integrin b3, PKC-b, and autophagy related 5 (43, 44).
Besides, dehydrocostus lactone reduced RANKL‐induced OC
formation and differentiation via modulating NF‐kB signaling
pathway both in vitro and in vivo (41, 42).

Therefore, costunolide owns the ability to increase bone
formation by modulating KATP channel and activating PI3K/
Akt signaling pathway in OBs, and dehydrocostus lactone
can decrease OC differentiation via inhibiting NF-kB
signaling pathway.

Diterpenoids
Euphorbia factor L1 (EFL1) is an active diterpenoid composition
extracted from the seed oil of Chinese herb Euphorbia lathyrism
L. (Qian Jin Zi in Chinese) (106). EFL1 inhibited RANKL-
induced osteoclastogenesis by inhibiting c-Fos expression and
NF-kB activation. Meanwhile, apoptosis induced by EFL1 in
differentiated OCs resulted from caspase activation and
enhanced Fas ligand expression. In mice, EFL1 ameliorated
bone destruction induced by inflammation and ovariectomy.
These findings demonstrated that EFL1 can block OC
differentiation through modulating inflammatory responses
and trigger Fas-regulated apoptosis, which offers the potential
to treat OP caused by excessive Ocs (45).

Abietic acid is a bioactive diterpene isolated from Pimenta
racemosa var. grissea which exhibits anti-obesity and anti-
inflammatory activities (107). In RAW264.7 cells and mouse
BMMs, abietic acid inhibited RANKL-induced OC formation via
suppressing NF-kB and MAPK signaling pathways. It also
decreased the expression of osteoclastic genes, such as
NFATc1, tartrate-resistant acid phosphatase (TRAP), dendritic
cell specific transmembrane protein (DC-STAMP), and c-Fos. In
C57/BL6 male mice of osteolysis model induced by LPS, abietic
acid significantly reduced the number of Ocs and the levels of
inflammatory cytokines, including tumor necrosis factor (TNF)-
a and IL-6 (46).

As a bicyclic diterpenoid lactone, andrographolide can be
isolated from the leaves of traditional herb Andrographis
aniculate (Burm. F.) Wall. Ex Nees in Wallich (Chuan Xin Lian).
According to previous study, andrographolide has extensive
pharmacological activities, such as anti-inflammation, anti-
oxidation, anti-platelet aggregation, immunomodulation, and
potential antineoplastic properties partly by targeting NF-kB
Frontiers in Endocrinology | www.frontiersin.org 9
(108–111). Andrographolide showed the capacity to protect
breast cancer-induced bone loss (112) and inflammatory
osteolysis (51, 113). Furthermore, andrographolide depressed
osteoclastogenesis in BMMs by decreasing the expression of OC-
related genes induced by RANKL and inhibiting bone loss and
inflammation in OVX mice (48, 51). In addition, andrographolide
promoted osteogenesis of mouse and rat BMSCs and blocked the
inhibitory effect of TNF-a on OB formation and mineralization
(47, 50). Other study indicated that andrographolide increased
OPG expression and suppressed OC differentiation in MC3T3-E1
cells. It also stimulated the differentiation and survival of OBs,
which increased bone deposition. Meanwhile, the study confirmed
that andrographolide prevented bone loss and improved bone
turnover rate in OVX rat model (49).

Carnosic acid, an abietane diterpenoid extracted from
Rosmarinus officinalis (rosemary) and Salvia officinalis
(common sage), displayed anti-angiogenic, anti-neoplastic,
anti-oxidant and anti-HIV activities (114). Recent study had
suggested the protective effect of rosemary against OP through
effectively mitigated bone loss induced by calcium deficiency
(115). Both in RAW 264.7 cells and mouse BMMs, carnosic acid
decreased the osteoclastogenesis and reactive oxygen species
(ROS) generation via activating Nrf2 and suppressing NF-kB
and MAPK signaling pathways. The same results were also
detected in C57BL/6 male mice of LPS-induced OP (52).
Furthermore, Zheng et al. found that carnosic acid played a
dual role via targeting sterol regulatory element-binding protein
2 (SREBP2) and estrogen-related receptor alpha (ERRa) to
suppress RANKL-mediated osteoclastogenesis and restrained
bone loss induced by ovariectomy (53).

Crocin, a diterpenoid glycoside carotenoid component of
Crocus sativus L., shows various pharmacological activities
(116, 117). It was observed that crocin treatment mitigated
bone loss in metabolic syndrome-induced OP rat model (118).
Meanwhile, this research showed anti-inflammatory and anti-
oxidative activities of crocin which significantly decreased the
production of IL-6, TNF-a, reduced glutathione (GSH), and
superoxide dismutase (SOD). In RAW264.7 cells, crocin
attenuated the dysfunction of OCs induced by methylglyoxal
via modulating glyoxalase I, oxidative stress, and mitochondrial
function (54). Moreover, Fatemeh et al. observed that crocin
could effectively improve the differentiation of BMSCs, by
inhibiting NF-kB signaling pathway activation, crocin
treatment suppressed RANKL-induced bone resorption and
OC formation (55, 119).

Kirenol is a bioactive diterpenoid compound derived from
Siegesbeckia orientalis L. that was used as an anti-rheumatic
TCM (120, 121). Kim et al. demonstrated that kirenol stimulated
OB differentiation via activation of BMP and Wnt/b-catenin
signaling pathways in MC3T3-E1 cells, which increased the
levels of AP, OPN, type I collagen, and OB differentiation
markers, as well as the OPG/RANKL ratio (57). Furthermore,
kirenol treatment suppressed RANKL-induced OC formation
and the NFATc1/Cav-1 signaling pathway in BMMs and OVX
rats, consequently preventing ovariectomy-induced OP (56).

Tanshinone IIA is an abietane diterpenoid isolated from
Salvia miltiorrhiza Bunge (Danshen) that is used for the
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treatment of trauma and fractures in clinical according to the
dispelling stasis theory of TCM (122). 36 clinical trials used
Salvia miltiorrhiza to treat different kinds of osteoporosis
displayed high efficacy and low toxicity (123). Modern
pharmacological studies showed that the ethanol extract of
Salvia miltiorrhiza could inhibit trabecular bone loss by
restraining bone resorption both in OVX and naturally
menopaused mice (124) . Tanshinone IIA blocked
dexamethasone induced OB apoptosis through the suppression
on NADPH oxidase (Nox) 4-derived ROS production. In
addition, it blocked RANKL-mediated OC differentiation by
decreasing the expression of c-Fos and NFATc1 (60).
Tanshinone IIA could attenuate the formation of OCs by
depressing the NF-kB, PI3K/Akt, and MAPK signaling
pathways in OVX mice model (59). Zhu et al. found that
tanshinone IIA administration prevented the harmfulness of
oxidative stress and promoted the activity and functions of
OBs in genetic OP model, Wnt1sw/sw mice, through regulating
the NF−kB signaling pathway (125). Recently, in streptozotocin
(STZ)-induced C57BL/6 diabetic mice, tanshinone IIA treatment
restrained the activity of renin that resulted in protecting OP
(58). As another abietane diterpenoid constituent obtained from
Salvia miltiorrhiza, tanshinone VI significantly suppressed the
differentiation of OCs and bone resorption via down-regulating
the expression of RANKL and activation of NF−kB (61).

Triptolide, the major active diterpenoid component isolated
from Tripterygium wilfordii Hook F, has been used in TCM for
hundreds of years to treat cancer and bone loss (126, 127). A
recent study suggested that triptolide effectively suppressed the
activation of NF-kB induced by RANKL, as well as tumor cell-
and RANKL-induced OC formation (63). Triptolide showed the
protective effects on bone loss both in old male rats and OVX
C57BL/6 mice (62, 64). Triptolide could suppress RANKL-
induced OC formation and prevented the bone resorption of
OCs in BMSCs and RAW264.7 cells, resulting from inhibiting
PI3K/Akt/NFATc1 signaling pathway.

Oridonin is an ent-kaurane diterpenoid extracted from the
TCM herb Rabdosia rubescens (Hemsl.) Hara (128). As a plant
metabolite, oridonin acts as an anti-tumor agent, angiogenesis
inhibitor, apoptosis inducer, anti-asthmatic agent, and anti-
bacterial agent (129, 130). Recent studies demonstrated that
oridonin could maintain bone homeostasis (65, 66). In
ovariectomy-induced OP mouse model, oridonin could protect
bone loss via inhibiting osteoclastogenesis and enhancing
osteogenesis by inhibiting interferon-related development
regulator 1 (Ifrd1) and IkBa-mediated p65 nuclear
translocation. Simultaneously, in vitro study revealed that
oridonin motivated osteogenesis by Wnt/b-catenin signaling
pathway and suppressed RANKL-induced OC formation
in BMSCs.

In conclusion, diterpenoids are mostly investigated
terpenoids that exert superior anti-OP efficacy by affecting
various signaling pathways. In OBs, andrographolide, kirenol,
and oridonim activate Wnt/b-catenin signaling pathway;
andrographolide inhibits RANKL/RANK and NF-kB signaling
pathways; tanshinone IIA blocks NF-kB signaling pathway. In
OCs, euphorbia factor L1, abietic acid, carnosic acid, crocin,
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tanshinone IIA, and triptolide depress NF-kB signaling pathway;
crocin, tanshinone IIA, and triptolide activate PI3K/Akt
signaling pathway; andrographolide inhibits RANKL/RANK
signaling pathway; abietic acid, carnosic acid, and tanshinone
IIA inhibit MAPK signaling pathway; kirenol, tanshinone IIA,
and triptolide depress NFATc1 signaling pathway; euphorbia
factor L1 and carnosic acid promote Nrf2 signaling pathway.

Triterpenoids
Lupeol is a major active lupine-type pentacyclic triterpenoid of
Sorbus commixta Hedlund and Celastrus orbiculatus Thunb
(131). Recently, lupeol has attracted the attention of
researchers for its osteogenic activity. On one hand, lupeol
significantly suppressed OC differentiation and bone resorption
mediated by 1a, 25-(OH)2D3 and prostaglandin E2 (PGE2) via
inhibiting the activities of MAPK and transcription factors (NF-
kB, NFATc1, and c-Fos). On another hand, lupeol decreased
hypercalcemic mediated bone loss in C57BL/6 mice (67). In
addition, lupeol in bombax ceiba contributed to relieve bone
fragility and fracture (132).

Alismatis Rhizoma is a famous traditional Chinese herb,
which has been used for hepatoprotective, diuretic,
hypolipidemic, anti-tumor, anti-inflammatory and anti-diabetic
treatments for more than ten centuries (133, 134). More and
more researches reported that the terpenoids constituents of this
herb, such as the protostane triterpenes compounds Alisol B
(69), Alisol A 24-acetate (71, 135), Alisol B 23-acetate (68), and
Alisol C 23-acetate (70), own the protective activity against bone
loss. Alisol A 24-acetate suppressed OC differentiation mediated
by RANKL through downregulating NFATc1 and restraining the
DC-STAMP and cathepsin K expression in mouse BMMs (71).
Moreover, in OVX mice, alisol A 24-acetate and alisol C 23-
acetate could effectively protect bone loss (70, 135). Alisol B
suppressed the RANKL-induced osteoclastogenesis in mouse
BMMs and stopped bone loss in 2-methylene-19-nor-(20S)-
1a,25(OH)2D3 (2MD)-induced hypercalcemia mouse
model (69).

As a member of the pentacyclic triterpenoids, oleanolic acid is
a free acid or triterpenoid saponins in many Chinese herbs, such
as Nvzhenzi (Ligustri lucidi W. T. Aiton), Baihuasheshecao
(Hedyotis diffusa), Renshen (Panax ginseng C. A. Meyer), and
Sanqi (Panax Notoginseng (Burk.) F.H.Chen). Nvzhenzi has been
clinically applied in the treatment of OP for over 1,000 years
(136). Chen et al. summarized more than 150 articles and reviews
on the anti-osteoporosis activity of Ligustri lucidi. In TCM,
Ligustri lucidi is believed to have anti-osteoporosis effects,
improve liver and kidney deficiency and reduce lower back
pain. Pharmacological experiments showed Ligustri lucidi
improved bone metabolism and bone quality in OVX, growing,
aged and diabetic rats via regulating PTH/FGF-23/1,25-(OH)
2D3/CaSR, Nox4/ROS/NF-kB, and OPG/RANKL/cathepsin K
signaling pathways (137) Oleanolic acid could suppress RANKL-
mediated osteoclastogenesis in BMMs, and attenuate bone loss
through decreasing the quantity of OC in C57BL/6 OVX mouse
model (72). Furthermore, it has been proved that oleanolic
acid modulated the ER alpha/miR-503/RANK signaling
pathway to inhibit RANKL-induced osteoclastogenesis in
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RAW264.7 cells (138). In aged female rats and mature OVX
mice, oleanolic acid regulated vitamin D metabolism to exhibit
osteoprotective effect (73). The investigation with high-
throughput metabolomics showed that oleanolic acid
ameliorated the disordered metabolism state in glucocorticoid-
induced OP rats (139). In addition, five oleanolic acid glycosides
of Achyranthes bidentata also exerted inhibitory effect on the
formation of OC-like multinucleated cells (OCLs) induced by
1a, 25-(OH)2D3 (140).

Ursolic acid, as the isomer of oleanolic acid, is a ubiquitous
active triterpenoids constituent in traditional Chinese medicinal
herbs, such as Salvia miltiorrhiza (141, 142), Fructus ligustri
lucidi (143), and Eriobotrya japonica (144, 145). Ursolic acid
exhibited multiple pharmacological activities, including anti-
cancer, anti-inflammation, anti-anaphylaxis, and anti-aging
(146–148). In recent years, ursolic acid has attracted the
attention of researchers for its osteogenic activity. Lee et al.
proved that ursolic acid induced the expression of OB-specific
genes by activating NF-kB, MAPK, and activator protein-1.
Moreover, they demonstrated the osteogenic activity of ursolic
acid in a mouse calvarial bone model (74). As the two most
abundant ingredients in Fructus ligustri lucidi, both ursolic acid
and oleanolic acid regulated the expression of bone turnover
markers and calcium balance in mature OVX rats. In addition,
the combination of these two compounds significantly improved
bone properties and vitamin D metabolism in aged female rats
(143, 149). Tan et al. observed that ursolic acid prevents OC
differentiation induced by RANKL in RAW 264.7 cells through
targeting XPO5 (150).

Glycyrrhizic acid, as well as glycyrrhetinic acid, are extracted
from the root of Glycyrrhiza glabra L., and glycyrrhizic acid is
formed by the combination of pentacyclic triterpenoid glycoside
and glycyrrhetinic acid (151). Both of them showed protective
effects on glucocorticoid-induced OP (152). Glycyrrhizic acid
and glycyrrhetinic acid could act as the ligands for glucocorticoid
receptor (GR), which further modulated glucocorticoid
resistance and ameliorated inflammatory responses by
disrupting the GR-heat shock protein 90 (HSP90) (76, 153).
Glycyrrhizic acid prevented glucocorticoid-induced OP in male
SD rats through inhibit ing the 11b-hydroxysteroid
dehydrogenase type 1 enzyme (11b-HSD1) (75). Furthermore,
Yamada et al. found that in an aging mouse model of
periprosthetic osteolysis, glycyrrhizic acid alleviated
inflammatory bone loss and increased senescence-protective
sirtuins expression (77). In OVX mice model, glycyrrhizic
acid treatment improved bone metabolism and suppressed
OC differentiation via modulating NF-kB, ERK, and JNK
signaling pathways (7, 154). Glycyrrhetinic acid inhibited
osteoclastogenesis via decreasing RANKL-mediated association
of RANK and TNF receptor associated factor 6 (TRAF6), and
consequently inactivating the NF-kB and MAPK signaling
pathways in vitro (BMMs and RAW264.7 cells) and in vivo
(OVX C57BL/6 mice) (78).

Betulinic acid is a pentacyclic lupane-type triterpene
derivative of Betula pubescens Ehrh., exhibiting multiple
biological effects including osteogenic activity. Betulinic acid
Frontiers in Endocrinology | www.frontiersin.org 11
could enhance the proliferation, differentiation, and
mineralization of osteoblastic MC3T3-E1 through regulating
the BMP/Smad/Runx2 and b-catenin signal pathways (81).
Furthermore, betulinic acid reduced RANKL-associated
osteoclastogenesis via suppressing the MAPK and NFATc1
signaling pathways in BMMs isolated from C57BL/6 mice. In
the osteoporotic C57/BL6 mice, betulinic acid prevented
ovariectomy-induced bone loss (80).

Ginsenoside Rg1, a tetracyclic triterpenoid, is an active
compound in Panax ginseng C. A. Meyer and Panax japonicus
(T. Nees) C. A. Meyer, which acts as a neuroprotective agent and
pro-angiogenic agent. Ginsenoside Rg1 promoted the proliferation
and odontogenic/osteogenic differentiation of human dental pulp
stem cells (hDPSCs), stimulated the proliferation of BMSCs, and
suppressed the maturation and differentiation of OCs (79). Zishen
Jiangtang Pill (ZJP) is a formula of Chinese medicine, which
regulated bone metabolism in diabetic OP (DOP) and
consequently exhibited a protective effect. As the primary active
ingredient of ZJP, Ginsenoside Rg1 improved the ultrastructure
and histomorphology of bone and islets in DOP rats (155).

Limonin is a tetracyclic triterpenoid of various TCM and
fruits, such as Evodia rutaecarpa, Coptidis rhizoma, Cortex
chinensis phellodendri, bergamot, Aurantii fructus immaturus,
Citri reticulatae pericarpium, and citrus fruits (156). Early study
showed that limonin significantly inhibited bone resorption and
reduced the number of multinucleated cells with TRAP-positive
nature in OC-like cell model (82). Otherwise, limonin treatment
modulated the ERK and p38-MAPK signaling in osteoblastic
MC3T3-E1 cell line to induce osteogenic differentiation (83).

Nomilin, a furan-containing triterpenoid isolated from
medicinal citrus, showed inhibitory effects on RANKL-
stimulated OC differentiation and bone resorption in RAW
246.7 cells and mouse BMMs cells, resulting from the
inhibition of-NFATc1 and MAPK signaling pathways (84).

Diosgenin and dioscin are steroid sapogenin triterpenoids,
which are extracted from Dioscorea nipponica Makino (157).. It
was reported that diosgenin could suppress osteoclastogenesis
and bone resorption. Meanwhile, it enhanced the osteogenic
activity of OBs that contributed to increased bone formation in
vitro, and anti-osteoporotic effect in vivo (85, 158–162).
Diosgenin ameliorated bone loss by decreasing the RANKL/
OPG ratio in OVX rats (85, 163) and retinoic acid-induced OP
rats (164). Similarly, dioscin enhanced osteoblastogenesis and
inhibited osteoclastogenesis to prevent ovariectomy-induced
bone loss (165). In addition, dioscin blocked OC differentiation
and bone resorption via inhibiting the activation of Akt signaling
pathway (86). In human and mouse OB-like cell lines, dioscin
promoted the proliferation and differentiation of OBs via Lrp5
and ER pathway (87).

Ophiopogonin D is a saposins triterpenoid extracted from the
TCM Ophiopogon japonicus (L. f.) Ker-Gawl. and has been
applied in clinical use for a long time. Ophiopogonin D
suppressed ROS generation to exert anti-OP effects via the
FoxO3a/b-catenin signaling pathway in both RAW264.7 and
MC3T3-E1 cells. In RAW264.7 cells, ophiopogonin D decreased
the expression of Osteoclastic genes and the activity of CTX1 and
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TRAP, which are bone degradation markers in serum. In
MC3T3-E1 cells, ophiopogonin D significantly promoted cell
proliferation and increased the gene levels of some osteogenic
markers (88). Furthermore, Yang et al. highlighted that
ophiopogonin D owned the ability to inhibit Krüppel-like
factor 3 (KLF3), resulting in increased abundance of vessels in
the bone tissue for bone formation (89).

As a pentacyclic triterpenoid compound, cycloastragenol is
the aglycone derivative of astragaloside IV isolated from the
root of Astragalus membranaceus (Fisch.) Bunge, which is
a TCM used for thousands of years (166). Recent study
reported that cycloastragenol might be a candidate drug
to treat glucocorticoid-induced OP (GIOP) through
alleviating the inhibition of osteogenic differentiation induced
by dexamethasone (90). Yu et al. also observed that
cycloastragenol treatment could improve bone formation,
protect bone microstructure from degradation, reduce OC
number, and augment bone biomechanical properties in both
bone loss models induced by aging and D-galactose.
Furthermore, cycloastragenol promoted the differentiation,
viability, and mineralization of osteoblastic MC3T3-E1 cells.
Cycloastragenol could also alleviate bone loss through
increasing osteoactivin expression (167).

Hederagenin is a pentacyclic triterpenoid sapogenin
extracted from Hedera helix (common ivy). In BMM cell
model, hederagenin depressed the formation and bone
(hydroxyapatite) resorption of OC induced by RANKL.
Mechanism study revealed that hederagenin reduced the
production of intracellular reactive oxygen species (ROS) and
the activation of MAPK signaling pathway (ERK and p38),
causing decreased induction of c-Fos and NFATc1. Similar to
the in vitro effects, hederagenin treatment significantly prevented
bone loss in OVX mice via inhibiting RANKL-induced bone
resorption and OC generation (91). Meanwhile, hederagenin 3-
O-(2-O-acetyl)-a-L-arabinopyranoside remarkably elevated the
protein levels of BSP and osteocalcin and augmented AP
activity (168).

Tubeimoside I, isolated from the Chinese medicinal herb
Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae),
is a natural pentacyclic triterpenoid, and traditionally used for
the treatment of snake venoms and inflammation. Recently, it
was reported that tubeimoside I could inhibit the formation and
function of OCs, as well as type 2 diabetes-induced decrease of
bone mass in SD rats, resulting from down-regulating IkBa
degradation which subsequently suppressed NF-kB
transcriptional activity (92).

In summary, triterpenoids are potential anti-OP candidates
with multi-target characteristics. In OBs, betulinic acid can
activate Wnt/b-catenin signaling pathway; ophiopogonin D
stimulates FoxO3a/b-catenin signaling pathway; ursolic acid,
limonin, diosgenin, and dioscin promote MAPK signaling
pathway. In OCs, diosgenin and dioscin enhance PI3K/Akt
signaling pathway; lupeol, glycyrrhetinic, and tubeimoside I
inhibit NF-kB signaling pathway; oleanolic acid inhibits
RANKL/RANK signaling pathway; lupeol, betulinic acid,
nomilin, and hederagenin depress MAPK signaling pathway;
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lupeol, alisol B, betulinic acid, and nomilin block NFATc1
signaling pathway.
CONCLUSION AND PROSPECTS

TCM has been widely used around the world for thousands of
years to treat various diseases. These in vivo and in vitro findings
discussed above demonstrate that terpenoids in natural Chinese
medicine own the potential ability to provide therapeutic benefits
for OP treatment.

Although terpenoids are beneficial for OP treatment, some
terpenoids have been reported to be toxic. Cantharidin, a
monoterpene obtained from Mylabris phalerata showed
nephrotoxicity by suppressing the lactate dehydrogenase
expression and intracellular release (169). Diterpene compound
Pekinenin C and pekinenal also exhibited serious cytotoxicity
intestinal toxicity (170). Thus, modification of their structures
for lower toxicity and stronger efficacy are needed. For example,
the quinoxaline derivative of oleanolic acid, QOA-8a, could not
only inhibit bone resorption but also stimulate bone formation,
playing dual roles in anti-OP (171). Meanwhile, the addition of
quinoxaline contributed to lower cytotoxicity (172).
Comparing with andrographolide itself, its derivative 14-
deoxy-11,12-didehydroandrographolide showed stronger anti-
osteoclastogenesis effect with significantly reduced cytotoxicity
(173, 174). Therefore, structure modification will be an optional
strategy for anti-OP drug development based on natural
terpenoids. In addition, other problems, such as poor water
solubility, short half-life, poor stability, and low bioavailability,
severely limit the development and clinical use of TCM. The
application of modern technologies (nanotechnology and co-
crystallization) can overcome these short comings (175–177).
Hence, for those terpenoids with perfect anti-OP efficacy but
poor water solubility, we can apply nanoparticles in the
drug delivery.

Nowadays, though a massive of studies reveal the anti-OP
effects and molecular mechanisms of terpenoids, most of their
direct targets as well as regulation mechanisms have not been
illustrated. Several advanced technologies, such as proteomics
(178) and systems pharmacology-based approaches (179, 180),
have offered effective tools to identify potential targets of natural
terpenoids. Proteomics and systems pharmacology-based
approaches could perform the large-scale study of proteins and
the major targets of most compounds. On the one hand, it is
helpful to explain the exact pharmacological mechanism for pre-
clinical drug development. On the other hand, the screening of
terpenoids targeted proteins in OP treatment benefits researchers
for understanding the pathogenesis of osteoporosis.

Moreover, TCM not only exerted anti-OP functions alone
through diverse signaling pathways, but also showed enhancing
effects via combining with clinically used hormones (estrogen or
growth hormone) to prevent bone loss (181). This combination
can avoid possible toxic side-effects and improve clinical efficacy
(182). In the future, more in-depth and high-quality clinical
researches are essential to ensure the safety, efficacy, and
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specificity of the terpenoids, which will provide more evidence
for the candidates in efficiently anti-osteoporotic applications.
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