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Background. Intracranial solitary fibrous tumor(SFT)/hemangiopericytoma (HPC) is an aggressive malignant tumor originating
from the intracranial vasculature. Angiomatous meningioma (AM) is a benign tumor with a good prognosis. The imaging
manifestations of the two are very similar. Thus, novel noninvasive diagnostic method is urgently needed in clinical practice.
Texture analysis and model building through machine learning may have good prospects. Aim. To evaluate whether a 3D-MRI
texture feature model could be used to differentiate malignant intracranial SFT/HPC from AM. Method. A total of 97 patients
with SFT/HPC and 95 with AM were included in this study. Patients from each group were randomly divided into the train
(70%) and test (30%) sets. ROIs were drawn along the edge of the tumor on each section of T1WI, T2WI, and contrasted T1WI
using ITK-SNAP software. The segmented image was imported into the AK software for texture feature extraction, and the 3D
ROI signal intensity histograms of T1WI, T2WI, and contrasted T1WI were automatically obtained along with all the
parameters. Modeling was performed using the language R. Confusion matrix was used to analyze the accuracy of the model.
ROC curve was constructed to assess the grading ability of the logistic regression model. Results. After Lasso dimension
reduction, 5, 9, and 7 texture features were extracted from T1WI, T2WI, and contrasted T1WI, respectively; additional 8 texture
features were extracted from the combined sequence for modeling. The ROC analyses on four models resulted in an area under
the curve (AUC) of 0.885 (sensitivity 76.1%, specificity 87.9%) for T1WI model, 0.918 (73.1%, 95.5%) for T2WI model, 0.815
(55.2%, 93.9%) for contrasted T1WI model, and 0.959 (92.5%, 84.8%) for the combined sequence model and were enough to
correctly distinguish the two groups in 71.2%, 81.4%, 69.5%, and 83.1% of cases in test set, respectively. Conclusions. The
radiological model based on texture features could be used to differentiate SFT/HPC from AM.

1. Introduction

Intracranial solitary fibrous tumor (SFT)/hemangiopericytoma
(HPC) is a rare malignant tumor originating from the intracra-
nial vasculature, which comprises only 1% of all primary
central nervous system (CNS) tumors [1]. In the past, it was

believed that intracranial SFT/HPC originates from themenin-
ges and thus was considered as a subtype of meningioma [1].
However, with the development of molecular genetics, it was
discovered that SFT/HPC originates from arachnoid cap cells
[2]. SFT/HPC is an aggressive type of neoplasma, which can
easily relapse and metastasize to extracranial tissues.
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Angiomatous meningioma (AM) is a rare World Health
Organization (WHO) grade I histological subtype of menin-
gioma with a good prognosis, accounting for 2.1% of all
meningiomas [3]. AM can be effectively cured through resec-
tion. In radiological images, SFT/HPC mimics AM that is
usually benign [3]. Therefore, preoperative identification of
both is essential.

Screening MRI is the primary method to identify
SFT/HPC and AM; yet, considering that images of both
tumors are very similar, tumor differentiation can be very
challenging. Imaging omics is aimed at maximizing the
potential of medical imaging in disease diagnosis through
high-dimensional image texture features containing patho-
physiological information [4]. Previous studies have shown
that texture analysis software can be used to segment the
tumor area on the image and perform texture analysis [4–
6]; briefly, the characteristic parameters in the image can be
extracted for differential comparison, and the tumor imaging
heterogeneity can be quantitatively analyzed to provide
unrecognizable images by the naked eye. Objective informa-
tion does not depend on the experience and subjective judg-
ment of the imaging physician and has excellent clinical
application value. So far, texture analysis has been applied
to identify intracranial tumors [5, 6], grade meningioma
[7], and for assessment and survival analysis of the therapeu-
tic response of glioma to chemotherapy [6, 8–10]. More
importantly, Kanazawa et al. [11] have suggested that mag-
netic resonance imaging texture analysis can be useful for
distinguishing SFT/HPC from meningioma, especially AM.
Still, his study has certain limitations: (1) it was a relatively
small sample size retrospective study; (2) this study analyzed
only three texture parameters.

This study adopted three-dimensional texture (3D tex-
ture) characteristics based on the overall tumor, which can
more comprehensively and objectively reflect the heteroge-
neity of the tumor. The purpose of this study was to further
improve the diagnostic levels of these two diseases by using
the texture parameters of conventional MRI sequences and
to build the models through machine learning.

2. Materials and Methods

2.1. Patient Selection. The institutional review board
approved the current study. The preoperative MRI was per-
formed on 95 patients with AM (47 males and 48 females;
mean age: 51:54 ± 11:54 years) and 97 with SFT/HPC (47
males and 50 females; mean age: 42:97 ± 14:35 years) at our
institution from May 2012 to March 2019. All MRI results
were retrospectively analyzed.

2.2. Data Acquisition. All MR images were obtained with a
3.0TMR imager (Signa HDxt; GEMedical Systems, Milwau-
kee, WI) with an eight-channel head coil. The imaging proto-
col included unenhanced axial and sagittal T1-weighted
sequences, axial and coronal T2-weighted sequences, and
contrast-enhanced axial, sagittal, and coronal T1-weighted
sequences. The scanning parameters were T1WI (TR/TE,
350msec/9msec); T2WI (TR/TE, 3,500msec/110msec);
thickness, 6.0mm; spacing, 1.0mm; FOV, 220 × 220mm;

matrix, 448 × 256; sagittal and coronal slice, 8.0mm; and
layer spacing, 2.0mm. An enhanced scan bolus Gd-DTPA
(DTPA magnetic display) was given intravenously at a
concentration of 0.1mmol/kg body weight with a flow rate
of 3ml/sec.

2.3. Image Processing. First, based on image segmentation of
the whole tumor, all T1WI, T2WI, and contrasted T1WI data
with Digital Imaging and Communication in Medicine
(DICOM) format were transferred from the picture archiving
and communication system (PACS) workstation (Centricity
PACS 3.1.1.4, GE Healthcare) to ITK-SNAP software. Two
radiologists (residents and deputy chief physicians), who were
blind to the grouping, manually selected the regions of interest
(ROIs) along the edge of the tumor parenchyma on the con-
trasted T1WI, T1WI, and T2WI images; T2WI and contrast-
enhanced T1WI were used as a reference to determine tumor
areas. The ROIs were then manually drawn along the margin
of the tumor parenchyma in each slice, with the intent to
encompass the whole tumor volume. Consequently, the ROIs
of all layers were merged into a 3D ROI (see Figure 1). Finally,
the segmented image was imported into the AK (Artificial
intelligence kit) software for texture feature extraction, and
the 3D ROI signal intensity histograms of T1WI, T2WI, and
contrasted T1WI were automatically obtained along with all
the parameters (see Figure 2).

2.4. Statistical Methods and Modeling. Modeling was per-
formed using the language R (RStudio Version 1.0.143–©
2009-2016 RStudio, Inc.). Approx. 70% of cases from each
group were classified into the train set (133 cases); AM group
(66 cases) and SFT/HPC group (67 cases) were used to estab-
lish the model. The remaining 30% were classified into the
test set (59 cases), AM group (29 cases) and SFT/HPC group
(30 cases), to verify the accuracy of the established model.

A comparison of texture features in T1WI sequences was
analyzed using independent sample t-test and Kruskal-
Wallis test; a P value < 0.05 was considered statistically sig-
nificant. Univariate logistic regression analysis (P < 0:05)
and Spearman’s correlation analysis (P ≥ 0:05 or P < 0:05, r
< 0:9) were used to screen for the parameters with high pre-
dictive power. T2WI and contrasted T1WI sequence texture
feature used the Lasso method to reduce dimensionality
and selected high-performance parameters. Parameters with
high predictive power in the three sequences were further
eliminated using the stepwise iterative method, and the
remaining high-performance parameters were fed into a
multivariate logistic regression analysis to determine an
optimal logistic regression model for tumor classification.
The confusion matrix was used to analyze the accuracy of
the model. ROC curve was constructed to assess the grading
ability of the logistic regression model.

3. Results

3.1. Establishment of T1WI, T2WI, and Contrasted T1WI
Texture Feature Models. After applying the dimension reduc-
tion and stepwise iterative method, the high-performance
parameters of the T1WI texture feature model were kurtosis

2 BioMed Research International



(a) (c)

(d)(b)

Figure 1: (a) Contrasted T1WI. (b) Contrasted T1WI image generated by ITK-SNAP software to depict the ROI of the tumor. (c) 3D ROI
image of the tumor (red area) that is calculated to superimpose at all levels in the contrasted T1WImap. (d) A three-dimensional image of the
tumor.

1. Max Intensity
2. Median Intensity
3. Min Intensity
4. Mean Deviation
5. Mean Value
6. Percentile x
(x=5, 10, 15, 20, 25, 30, 35, 40, 
45, 50, 55, 60, 65, 70, 75, 80, 85, 
90, 95
7. Quantile y
(y=0.025, 0.25, 0.5, 0.75, 0.975)
8. RMS
9. Range
10. Relative Deviation
11. Variance
12. Volume Count
13. Voxel Value Sum
14. Histogram Energy
15. Histogram Entropy
16. Kurtosis
17. Skewness
18. Std Deviation
19. Uniformity
20. FrequencySize 

1. Gray level co-occurrence matrix
2. (N=144)

1. GLCM Energy
2. GLCM Entropy
3. Inertia
4. Correlation
5. Inverse Difference Moment
6. Cluster shade
7. Cluster Prominence
8. Haralick Correlation

⁎Angle=All, 0 ,45, 90, 135, All_SD
⁎Offset=1, 4, 7

Haralick
(N=10)

1. Angular Second Moment
2. Hara 
3. Hara Variance
4. Contrast
5. Difference Entropy
6. Difference Variance
7. Inverse Difference Moment
8. Sum Average
9. Sum Entropy
10. Sum Variance

Haralick features
(N=10)

1. Angular Second Moment
2. Hara Entroy 
3. Hara Variance
4. Contrast
5. Difference Entropy
6. Difference Variance
7. Inverse Difference Moment
8. Sum Average
9. Sum Entropy
10. Sum Variance

*Offset=1, 4, 7

Gray Level Run-length Matrix
(N=180)

1. GreyLevelNonuniformity 
2. HighGreyLevelRunEmphasis 
3. LongRunEmphasis 
4. LongRunHighGreyLevelEmphasis 
5. LongRunLowGreyLevelEmphasis 
6. LowGreyLevelRunEmphasis 
7. RunLengthNonuniformity 
8. ShortRunEmphasis 
9. ShortRunHighGreyLevelEmphasis 
10. ShortRunLowGreyLevelEmphasis 

*Angle=All, 0 ,45, 90, 135, All_SD 
*Offset=1, 4, 7

1. Compactness1
2. Compactness2
3. Maximum3DDiameter
4. Spherical Disproportion
5. Sphericity
6. Surface Area
7. Surface Volume Ratio
8. Volume CC
9. Volume MM

Form factor features
(N=9)

Grey Level Zone Size Matrix
(N=11)

1.1. SizeZoneVariability
2. HighIntensityEmphasis 
3. HighIntensityLargeAreaEmphasis 
4. HighIntensitySmallAreaEmphasis 
5. IntensityVariability 
6. LargeAreaEmphasis 
7. LowIntensityEmphasis 
8. LowIntensityLargeAreaEmphasis 
9. LowIntensitySmallAreaEmphasis 
10. SmallAreaEmphasis 
11. ZonePercentage 

First Order Histogram Features
(N=42)

Second Order Texture Features
(N=334)

Morphological features
(N=9)

GLZSM Features
(N=11)

Figure 2: A total of 396 texture parameters extracted by AK software.
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Figure 3: T1WI texture feature model for identification of HPC and AM performance.
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(KU), skewness (SK), stdDeviation (ST), GLCMEntropy_
angle90_offset1 (GLCME90-1), and SmallAreaEmphasis
(SAE). The T1WI texture feature modeling formula was the
following:

f T1WIð Þ = −13:4078 + 0:3066 × KU − 1:2143 × SK
+ 0:0351 × ST − 1:1441 × GLCME90‐1
+ 23:9030 × SAE:

ð1Þ

In the train set, the ACC of the T1WI model in identify-
ing SFT/HPC and AM was 0.820, and the area under the
ROC curve (AUC) was 0.885, with the cutoff value of 0.598,
a sensitivity of 76.1%, and a specificity of 87.9%. In the test
set, ACC was 0.712 and AUC was 0.830, with a cutoff value
of 0.598, a sensitivity of 60.0%, and a specificity of 82.8%
(see Figure 3).

The high-performance parameters of the T2WI texture
feature model were GLCMEnergy_AllDirection_offset1_SD
(GLCMEA-1-SD), Inertia_angle90_offset7 (IN90-7), InverseDif-
ferenceMoment_AllDdirection_offset7_SD (IDMA-7-SD),
LongRunLowGreyLevelEmphasis_AllDirection_offset4_SD
(LRLGLEA-4-SD), LowGreyLevelRunEmphasis_AllDirection_
offset7_SD (LGLREA-7-SD), ShortRunEmphasis_angle135_off-
set1 (SRE135-1), ShortRunHighGreyLevelEmphasis_angle90_
offset4 (SRHGLE90-4), HighIntensitySmallAreaEmphasis
(HISAE), and LowIntensityLargeAreaEmphasis (LILAE). The
T2WI texture feature modeling formula was the following:

f T2WIð Þ = 9:78e2 + 1:23e8 × GLCMEA‐1‐SD − 2:81e−3

× IN90‐7 − 2:53e4 × IDMA‐7‐SD + 8:56e−1

× LRLGLEA‐4‐SD − 9:72e10 × LGLREA‐7‐SD
− 9:79e2 × SRE135‐1 − 1:38e−4 × SRHGLE90‐4
+ 9:66e−7 × HISAE + 8:04e4 × LILAE:

ð2Þ

In the train set, the ACC of T2WI model in identifying
SFT/HPC and AM was 0.842, and the area under the ROC
curve (AUC) was 0.918, with a cutoff value of 0.678, a sensitiv-
ity of 73.1%, and a specificity of 95.5%. In the test set, ACCwas
0.814 and AUC was 0.864, with a cutoff value of 0.678, a
sensitivity of 73.3%, and a specificity of 89.7% (see Figure 4).

The high-performance parameters involved in the con-
trasted T1WI texture feature model were Quantile0.025, Rela-
tiveDeviation (RD), VoxelValueSum (VVS),
ClusterProminence_AllDirection_offset1_SD (CPA-1-SD),
GLCMEntropy_AllDirection_offset7_SD (GLCMEA-1-SD),
LongRunHighGreyLevelEmphasis_AllDirection_offset1_SD
(LRHGLEA-1-SD), and ShortRunHighGreyLevelEmphasis_
AllDirection_offset4_SD (SRHGLEA-4-SD). The contrasted
T1WI texture feature model modeling formula was the
following:

f contrastedT1WIð Þ = −6:05e−1 + 2:84e−3 × Quantile0:025
+ 8:38e−1 × RD + 3:12e−8 × VVS
− 1:68e−14 × CPA‐1‐SD + 2:89e−1

× GLCMEA‐1‐SD − 1:05e−4

× LRHGLEA‐1‐SD − 1:07e−5

× SRHGLEA‐4‐SD:

ð3Þ

In the train set, the ACC of contrasted T1WI model in
identifying SFT/HPC and AM was 0.744, and the area under
the ROC curve (AUC) was 0.815, which had a cutoff value of
0.676, a sensitivity of 55.2%, and a specificity of 93.9%. In the
test set, ACC was 0.695 and AUC was 0.772, which had a cut-
off value of 0.676, a sensitivity of 60.0%, and a specificity of
79.3% (see Figure 5).

3.2. Establishment of Total Sequences Combine Texture
Feature Model. After the dimension reduction and stepwise
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Figure 6: Total sequences combine the texture feature model for identification of HPC and AM performance.

Table 1: AUC, ACC, cut-off, sensitivity, and specificity of the four texture feature model.

Task ACC AUC Cut-off Sensitivity Specificity

Train (T1WI) 0.820 0.885 0.598 76.1% 87.9%

Test (T1WI) 0.712 0.830 0.598 60.0% 82.8%

Train (T2WI) 0.842 0.918 0.678 73.1% 95.5%

Test (T2WI) 0.814 0.864 0.678 73.3% 89.7%

Train (contrasted-T1WI) 0.744 0.815 0.676 55.2% 93.9%

Test (contrasted-T1WI) 0.695 0.772 0.676 60.0% 79.3%

Train (combined) 0.887 0.959 0.318 92.5% 84.8%

Test (combined) 0.831 0.939 0.318 90.0% 75.9%
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iterative method, the high-performance parameters of the
total sequences combined texture feature model were Percen-
tile95T1WI, KUT1WI, GLCMEntropy_angle90_off-
set1(GLCME90-1)T1WI, HaraEntroy(HE)contrasted T1WI,
RunLengthNonuniformity_angle90_offset7(RLNU90-1) con-

trasted T1WI, Range(RA)T2WI, ClusterProminence_angle135_
offset4(CP135-4)T2WI, and LongRunHighGreyLevelEmpha-
sis_angle45_offset4(LRHGLE45-4)T2WI. The total sequences
combined model modeling formula was the following:

f total sequences combineð Þ = −8:91 + 1:93e−2 × Percentile95 T1WIð Þ
+ 3:09e−1 × KU T1WIð Þ − 1:22

× GLCME90−1 T1WIð Þ + 2:56e1

× HE contrasted T1WIð Þ + 3:14e−5

× RLNU90−1 contrasted T1WIð Þ − 3:76e−3

× RA T2WIð Þ + 1:01e−8 × CP135‐4 T2WIð Þ
− 1:41e−4 × LRHGLE45‐4 T2WIð Þ:

ð4Þ

According to ROC analysis, the combined model used to
identify AM and SFT/HPC in the train set had an AUC of
0.959 (cutoff value = 0:318, specificity of 84.8%, and sensitiv-
ity of 92.5%), and the accuracy of the combined model was
0.887. In the test set, AUC was 0.939, with a cutoff value of
0.318, a sensitivity of 90.0%, and a specificity of 75.9%, and
the accuracy of the combined model was 0.831 (see Figure 6).

Finally, the AUC, ACC, cut-off, sensitivity, and specificity
of the four models are summarized in Table 1.

4. Discussion

Image segmentation is a critical session for the MRI images
to be used in brain tumor studies. In recent years, semiauto-
matic and fully automatic algorithms for brain tumor seg-
mentation have been developed rapidly. A study presented
a fully automatic brain tumor detection and segmentation
method using the U-Net based deep convolution network
and demonstrated that this method can provide both efficient
and robust segmentation compared to manual delineated
ground truth [12]. Soltaninejad et al. [13] proposed a super-
vised learning based method for segmentation tumour in
multimodal MRI brain images. Supervoxels were calculated
using information fusion from multimodal MRI images,
which also demonstrated promising results in the segmenta-
tion of brain tumor. Even so, there are still several opening
challenges for this task mainly due to the high variation of
brain tumors in size, shape, regularity, location, and their
heterogeneous appearance. In addition, AM and HPC/SFP
are rare diseases, and the data is relatively rare compared to
common diseases. We have certain reasons to believe that
segmentation based on big data may have certain errors.
Considering the above reasons, the segmentation was still
relied on manual delineation by human operators in this
study.

In this study, radiomics method was used to construct
four models to identify the 3D-texture features of SFT/HPC
and AM based on conventional MRI sequence images,
including the T1WI model, T2WI model, contrasted T1WI
model, and a combined sequence model. Briefly, the com-
bined sequence model showed the best performance,
followed by the T2WI model. As a noninvasive predictive
method, all four models can provide reference information
for preoperative treatment planning and patient prognosis.
Due to the relatively large number of cases, we have estab-
lished a relatively accurate MRI radiological model for preop-
erative identification of SFT/HPC and AM. To the best of our
knowledge, this is the first study that established an MRI
radiological model, which can be used to differentiate
SFT/HPC from AM.

Texture features are essential markers for intratumoral
homogeneity. Among the twenty-three texture features that
were involved in building our models, eight were
histogram-based features (KU, SK, ST, RD,VVS, RA, Quan-
tile0.025, and Percentile95), and twelve were matrix-based fea-
tures, including five GLCM features (GLCMEnergy,
GLCMEntropy, IN, IDM, and CP) and one Haralick feature
(HE). Besides, there were six GLRM features (LRHGLE,
LRLGLE, LGLRE, RLNU, SRE, and SRHGLE), and three
GLZSM features (HISAE, LILAE, SAE). Histogram-based
features are first-order statistics that primarily rely on inten-
sity information (or brightness information) within and
around the tumor. These features are used to investigate the
overall distribution of intensity information within and
around the tumor. For example, “kurtosis” is a measure of
the “tailedness” of the median distribution of image ROI,
which can be used to describe the concentration of image
brightness information. Higher kurtosis means that the mass
of the distribution is concentrated at the tail. “Skewness” rep-
resents the measure of “skewness” of the median distribution
of the image ROI and is used to describe the degree of asym-
metric distribution in the histogram. The percentile (%) of a
distribution is defined as the brightness value. IDM repre-
sents the uniformity of pixel signal strength in the image,
which can reflect the heterogeneity of tumor tissues.

Matrix-based features are second-order statistics that can
be used to analyze the complexity within the tumor and
around the tumor, changes in the hierarchy, and thickness
of the texture. For example, inertia reflects the clarity of the
image and texture groove depth. The contrast is proportional
to the texture groove; high groove values produce more clar-
ity, while small values lead to small contrast and fuzzy image.
GLCMEntropy measures the average amount of information
required to encode an image value. SRHGLE measures the
joint distribution of shorter run lengths with higher grey-
level values. Larger value leads to a more complex image
and smaller image grey value. LRLGLE measures the joint
distribution of longer-run lengths with lower grey-level
values. SRE is a measure of short lengths, with larger values
representing shorter lengths and finer textures. GLZSM is
particularly efficient to characterize the texture homogeneity,
nonperiodicity, or speckle like texture.

So far, many studies have reported the use of radiological
models based on the texture features of CT and MRI images
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for the identification/differentiation of tumors. Chen et al.
[14] found that the radiomics model based on contrast-
enhanced computed tomography (CECT) could be used for
predicting acute pancreatitis (AP) recurrence. As a quantita-
tive method, radiomics exhibits promising performance in
alerting relapsed patients to potential preventive measures.
Kang et al. [15] tested the technical feasibility, generalizabil-
ity, and diagnostic performance of a radiomics model using
ADC maps for identification of atypical primary central ner-
vous system lymphoma (PCNSL) mimicking glioblastoma.
His model showed good generalizability and improved diag-
nostic performance than single-parameter measurements in
identifying atypical PCNSL mimicking glioblastoma by pro-
viding robust high-dimensional analyses of conventional
and physiological imaging features. Furthermore, Chen and
colleagues [16] confirmed that anMRI-based combined radi-
ography nomogram can effectively predict the immune score
of HCC and help to make treatment decisions.

Our study showed that the combined sequence model was
superior to any single sequence model in differentiating
SFT/HPC from AM. T2WI sequence is the most commonly
used sequence to evaluate brain pathology and the degree of
tumor invasion. T1WI and contrasted T1WI sequences pro-
vide anatomical information, while tissue enhancement
reflects increased blood-brain barrier permeability [17]. Con-
sidering that each sequence has different functions, combining
multiple sequences may improve the accuracy in differentiat-
ing SFT/HPC from AM. Also, Tian et al. [18] verified the
superiority of radiomics features extracted by multiparameter
MRI in glioma grading and found that the combined applica-
tion of multiparameter MRI has higher classification effi-
ciency, which was consistent with our data. It is worth
noting that in the three sequences of conventional MRI, the
AUC of the radiological model based on T2WI image texture
features was higher than in the other two sequences. One
explanation for this may be that the T2WI sequence has a rel-
atively long echo time and high contrast between tissues, so
the image contains many differential texture features with dis-
criminative value. Among the related studies on breast, one
study suggested that T2WI images have a significant role in
the differentiation of benign and malignant diseases of non-
mass breast tumors [19]. Li et al. [20] confirmed that texture
features of SPAIR T2W-MRI can be classified into three differ-
ent types of single-liver lesions and may serve as an adjunct
tool for accurate diagnosis of these diseases. Surprisingly, we
also found that the contrasted T1WI model had the lowest
AUC among the three conventional MRI sequence models.
Furthermore, Zhang et al. [21] found that T1w+Gd had the
lowest AUC in all MRI sequences when evaluating the feasibil-
ity of texture analysis on preoperative conventional MRI
images in predicting early malignant transformation from
low- to high-grade glioma, which was consistent with our
results. Nevertheless, T1WI+Cwere very useful for visual eval-
uation of tumors.

5. Conclusions

The radiological model based on texture features could be
used to differentiate SFT/HPC from AM. Besides, our texture

analysis results, which extract many quantitative features
from various kinds of digital images, provide the basis for
further radiomics analyses and are a rapidly expanding
research area [22, 23].

5.1. Limitations of the Study. Limitations of this study must
be addressed. (1) This study was a retrospective study, which
means that further prospective studies of a larger range of
patients and multivariate analysis are necessary to verify
these results. (2) In this study, only the parenchymal part of
the tumor was selected for texture analysis. The peritumoral
edema area of the two tumors was not analyzed, and the MRI
signs were further combined with the texture parameters to
improve the discrimination efficiency. (3) The ROIs were
manually determined. Automatic segmentation algorithms
may facilitate the procedure. (4) The correlation between
the significance of various parameters of texture analysis
and the biological mechanism of tumors was still insufficient;
thus, further research is required to confirm our findings.
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author upon request.
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