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LETTER TO TH E EDITOR

Construction of an integrated prognostic classifier model
for predicting the efficacy of immune checkpoint inhibitor
therapy in non-small cell lung cancer

Dear Editor:
Although immune checkpoint inhibitor (ICI) has

become an innovative treatment regimen for non-small
cell lung cancer (NSCLC) in recent years, only a small
proportion of patients benefit from this regimen [1].
Nowadays, several biomarkers have been used to predict
the effectiveness of ICI treatment, such as programmed
cell death ligand 1 (PD-L1) expression level in tumor
tissues [2], tumor mutation burden (TMB) [3], and so
on. However, single biomarker has not been found to be
efficient enough to precisely identify treatment-responsive
patients; thereby indicating that multiple biomarkers
would be a better option. Hence, we made a comprehen-
sive analysis of several ICI efficacy-associated biomarkers
and constructed a prognostic classifier model for NSCLC
patients receiving ICI treatment. Ourmain study endpoint
was progression-free survival (PFS).
Some evidences had indicated the prognostic value of

common gene mutations, such as epidermal growth fac-
tor receptor (EGFR) and tumor protein p53 (TP53), for
NSCLC treatment using ICI [1]. Additionally, the human
SWItch/sucrose nonfermentable (SWI/SNF) chromatin-
remodeling complex was encoded by multi-gene fam-
ilies. Mutations in these genes occurred broadly in
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cancer [4]. Previous studies have shown that tumors
harbored SWI/SNF-mutants, such as renal clear cell car-
cinoma, were sensitive to ICIs [5]. Thus, some SWI/SNF-
mutant genes were also taken into account in this study.
First, we downloaded and integrated the publicly avail-

able profiles of an ICI-treated advanced NSCLC cohort
from two datasets through cBioPotal online database
(https://www.cbioportal.org/). Data processing and ana-
lyzing procedures were demonstrated in Supplementary
Figure S1. Pooled dataset containing 86 NSCLC sam-
ples with complete requisite information for subsequent
analysis was utilized for study. Parameters taken into con-
sideration included age, gender, smoking history, treat-
ment type, treatment line, mutation rate, frequency of
fraction of the genome altered by copy number alter-
ations (CN-FGA), TMB, PD-L1 score, as well as sev-
eral gene mutation status and fusion status. Frequent
SWI/SNF submit gene mutations which were deemed
to mediate chromatin remodeling pathway, including
actin like 6A (ACTL6A), AT-rich interaction domain 1A
(ARID1A), AT-rich interaction domain 1B (ARID1B), poly-
bromo 1 (PBRM1), and SWI/SNF related, matrix associ-
ated, actin dependent regulator of chromatin, subfamily
A, member 4 (SMARCA4), were extracted. These genes
were selected based on previously literatures and the Rat
Genome Database (RGD; https://rgd.mcw.edu/rgdweb/
ontology; reference gene sets: altered SWI/SNF family
mediated chromatin remodeling pathway).
Baseline clinical characteristics for the entire cohort of

our study are shown in Supplementary Table S1. COX
regression was adopted to screen out prognostic variables.
Since the fusion of anaplastic lymphoma kinase (ALK) and
ROS proto-oncogene 1(ROS1), and actin like 6A (ACTL6A)
mutation did not exist in the enrolled NSCLC samples,
they could not be analyzed. As shown in Supplementary
Table S2, univariate analysis revealed that smoking his-
tory (hazard ratio [HR] = 0.48; 95% confidence interval
[CI] = 0.28-0.83; P = 0.009), treatment type (HR = 0.38;
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95% CI = 0.17-0.81; P = 0.012), TMB (HR = 0.54; 95%
CI = 0.32-0.93; P = 0.026), PD-L1 score (HR = 0.55; 95%
CI = 0.34-0.88; P = 0.013), TP53 status (HR = 0.51; 95%
CI = 0.32-0.82; P = 0.006), EGFR status (HR = 2.25; 95%
CI = 0.11-4.57; P = 0.023), and ARID1B status (HR = 0.23;
95% CI = 0.06-0.93; P = 0.040) were statistically signif-
icant for predicting PFS. The Kaplan-Meier curves for
these variables are shown in Supplementary Figure S2.
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)
status (P = 0.775), B-Raf proto-oncogene (BRAF) status
(P = 0.153), serine/threonine kinase 11 (STK11) status
(P = 0.336) failed to show statistical significance. These
might be due to the small sample size (n= 76). Next multi-
variate COX regression analysis was performed for 7 men-
tioned above variables with P < 0.05, utilizing “forward
conditional” stepwise method. Eventually, 5 variables with
P < 0.05, including EGFR status, ARID1B status, smoke
history, treatment type, PD-L1 score were finally retained
to generate our prognostic model while TP53 status and
TMB lost statistically significance (P > 0.05). (Supplemen-
tary Table S2). Next, we calculated the “risk score” for each
of the 86 patients according to these 5 variables and their
regression coefficients using the following formula:

0.978 × 𝐸𝐺𝐹𝑅 status (wild-type = 0,mutation = 1)

−1.558 × 𝐴𝑅𝐼𝐷1𝐵 status (wild-type = 0,mutation = 1)

−0.685 × Smoking history (never = 0, ever = 1)

−1.172 × Treatment type (monotherapy = 0,

combination therapy = 1) − 0.009 × PD-L1 score.

The receiver operating characteristic (ROC) curves
were plotted for EGFR status, ARID1B status, smoking
history, Treatment type, PD-L1 score as well as “risk
score” for predicting PFS. Predictive ability was evalu-
ated through area under the receiver operating character-
istic curve (AUC). As shown in Figure 1A, our integrated
prognostic model showed excellent predictive perfor-
mance in 6month (AUC = 0.75, 95% CI = 0.61-0.89) and
12-month (AUC= 0.86, 95%CI= 0.70-1.00) PFS as theAUC
of “risk score” was the largest. The cutoff point -0.96 repre-
sented the highest Youden index (sensitivity+ specificity−
1). It was selected as the threshold value of “risk score” for
categorizing patients into high-or low tumor progression
risk group (Figure 1B). Kaplan-Meier analysis revealed that
patients in the high-risk group had shorter PFS time than
those in low-risk group (median PFS: 10.0 months vs. 2.7
months, P < 0.001) (Figure 1C). Subsequently, a prognos-
tic nomogram for predicting the PFS probability at 2-, 6-
and 12-month was constructed based on the incorporated
5 prognostic factors identified above (Figure 1D). A certain

score of each variable can be shown when a perpendicular
line between the point scale and each variable is drawn. By
adding all the scores as a total score and drawing a perpen-
dicular line between the total point scale and PFS scales,
we can estimate the predicted PFS rate. Thus, with this
nomogram, clinicians could easily predict the efficacy of
ICI treatment for NSCLC patient.
In terms of overall survival (OS), we also tried to explore

potential prognostic factors aforementioned in 76 samples
with survival data. Univariate COX regression found that
only PD-L1 score (HR= 0.35; 95% CI= 0.15-0.83; P= 0.018)
and treatment type (HR = 0.203; 95% CI = 0.048-0.862;
P = 0.031) demonstrated significant predictive value and
their Kaplan-Meier curves are shown in Supplementary
Figure S3.
Next, we used tumor-immune system interactions

database (TISIDB) (http://cis.hku.hk/TISIDB/), an inte-
grated repository portal publicly available for tumor-
immune system interactions to validate the ICI therapy
efficacy of ARID1B mutation (Supplementary Figure S4).
Our results indicated that ARID1B mutation was associ-
ated with ipilimumab treatment response for melanoma
patients. Patients with ARID1B mutation demonstrated
high response rate, with significant difference as com-
pared to those with wide-type (18.5% vs. 1.4% P = 0.002).
As to NSCLC, a similar trend for a pembrolizumab treat-
ment cohort was found. The response rate was 14.3% for
ARID1B mutant patients versus 0% for ARID1B wild-type
patients, but probably because of the small sample size
(34 in total), results did not reach statistical significance
(P = 0.196).
Consistent with the previous studies, EGFR mutation

was a crucial unfavorable factor for ICI treatment effi-
cacy, while PD-L1 score, smoking history, treatment type
(combination therapy) were favorable factors [1,6]. Nowa-
days, TMB still remains a controversial biomarker for ICI
therapy [7]. In this current study, although TMB demon-
strated predictive value in univariate COX regression,
it was not an independent factor in multivariate COX
regression, which suggested that its predictive ability was
relatively smaller when compared with other variables
finally screened out for model construction. Previous stud-
ies suggested that patients harboring SWI/SNF genemuta-
tions, like renal cell cancer patients with PBRM1 muta-
tion, possess a higher capacity to respond to ICI treatment
[4, 5]. In our current study, we found that ARID1B muta-
tion conferred longer PFS time for NSCLC patients receiv-
ing ICI treatment, which had not been reported before.
As one of the members of the human SWI/SNF chro-
matin remodeling complex, ARID1B mutation may alter
the SWI/SNF chromatin remodeling pathway, resulting in
significant changes in chromatin accessibility and con-
tributing to overall genomic instability [8]. Su K et al. [9]
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F IGURE 1 Predictive efficacy of variables finally selected for prognostic model generation and corresponding nomogram constructed.
A. Time dependent ROC curves for evaluating 6-and 12 -month PFS predictive efficacy. B. Cutoff point represented the highest Youden index
(sensitivity + specificity − 1) in ROC curves was selected as the threshold value of “risk score” for categorizing patients into high-or low risk
group. C. Kaplan-Meier curves demonstrated different PFS time for NSCLC patients in high or low-risk group. D. Nomogram to predict the 2-,
6-, and 12-month PFS probability of patients with NSCLC. Abbreviations: PFS, progression free survival; AUC, area under the receiver operating
characteristic curve; EGFR, epidermal growth factor receptor; ARID1B, AT-rich interaction domain 1B; ICI, immune checkpoint inhibitor; PD-
L1, programmed cell death ligand1

revealed ARID1Bmutation in multiple lung lesions from a
single patient and suspected that ARID1B may play a sig-
nificant role in lung cancer formation. Naito T et al. [10]
discovered a higher proportion of PD-L1-positive and TMB
level in NSCLC cases with loss of expression of one or
more subunits of the SWI/SNF complex includingARID1B.
However, whether ARID1B is a key cancer driver in lung
cancer is still remained unknown.
The present study had several limitations. As a retro-

spective study based on public datasets, some informa-
tion such as performance status, the therapeutic schedule
before ICI treatment and the salvage treatments received
after disease progression was not available, which might
cause certain bias. The small available sample size might
reduce the statistical efficiency, especially for infrequent
mutations. We set PFS as the primary outcome rather than
OS because PFS was relatively less affected by confound-
ing factors; as mentioned above, thus might better repre-

sent the ICI efficacy. In our study,mutation status for genes
were detected through targeted next generation sequenc-
ing, whether it could be alternatively detected by other
methods widely used in clinical practice like amplification
refractory mutation system (ARMS) method needed to be
further elucidated. Moreover, other potential biomarkers
such as tumor infiltrating lymphocytes and inflammatory
cytokines [1] were not available for analysis in this study.
This might to some extent impact the prediction accuracy
of our model.
Our results indicated that ICI combination therapy con-

ferred better PFS than monotherapy, but it may arise
greater risk of adverse effects. Nowadays, the combina-
tion of ICI with chemotherapy and even targeted thera-
pies are also wildly used in the real-world clinical practice,
therapeutic synergy effect may need to be considered, thus
the conditions for predicting ICI treatment efficacy will be
more complicated.
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In summary, we constructed a comprehensive predictive
classifier model for evaluating the efficacy of ICI therapy
in NSCLC patients, supporting a personalized approach
for clinical decision making. Patients with low risk scores
can be considered as appropriate candidates for ICI treat-
ment. A SWI/SNF-mutant gene, ARID1B, serves as a novel
molecular biomarker for predicting ICI treatment, which
is worthy of in-depth research. External cohorts, especially
prospective cohorts with large sample size, are needed to
validate and optimize ourmodel and further discovermore
potential biomarkers associated with ICI therapy efficacy.
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